# Copyright (c) 1999-2002 Gary Strangman; All Rights Reserved.
#
# This software is distributable under the terms of the GNU
# General Public License (GPL) v2, the text of which can be found at
# http://www.gnu.org/copyleft/gpl.html. Installing, importing or otherwise
# using this module constitutes acceptance of the terms of this License.
#
# Disclaimer
#
# This software is provided "as-is".  There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fittness for a given application.  In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
#
# Comments and/or additions are welcome (send e-mail to:
# strang@nmr.mgh.harvard.edu).
#
"""
stats.py module

(Requires pstat.py module.)

#################################################
#######  Written by:  Gary Strangman  ###########
#######  Last modified:  May 10, 2002 ###########
#################################################

A collection of basic statistical functions for python.  The function
names appear below.

IMPORTANT:  There are really *3* sets of functions.  The first set has an 'l'
prefix, which can be used with list or tuple arguments.  The second set has
an 'a' prefix, which can accept NumPy array arguments.  These latter
functions are defined only when NumPy is available on the system.  The third
type has NO prefix (i.e., has the name that appears below).  Functions of
this set are members of a "Dispatch" class, c/o David Ascher.  This class
allows different functions to be called depending on the type of the passed
arguments.  Thus, stats.mean is a member of the Dispatch class and
stats.mean(range(20)) will call stats.lmean(range(20)) while
stats.mean(Numeric.arange(20)) will call stats.amean(Numeric.arange(20)).
This is a handy way to keep consistent function names when different
argument types require different functions to be called.  Having
implementated the Dispatch class, however, means that to get info on
a given function, you must use the REAL function name ... that is
"print stats.lmean.__doc__" or "print stats.amean.__doc__" work fine,
while "print stats.mean.__doc__" will print the doc for the Dispatch
class.  NUMPY FUNCTIONS ('a' prefix) generally have more argument options
but should otherwise be consistent with the corresponding list functions.

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful

CENTRAL TENDENCY:  geometricmean
                   harmonicmean
                   mean
                   median
                   medianscore
                   mode

MOMENTS:  moment
          variation
          skew
          kurtosis
          skewtest   (for Numpy arrays only)
          kurtosistest (for Numpy arrays only)
          normaltest (for Numpy arrays only)

ALTERED VERSIONS:  tmean  (for Numpy arrays only)
                   tvar   (for Numpy arrays only)
                   tmin   (for Numpy arrays only)
                   tmax   (for Numpy arrays only)
                   tstdev (for Numpy arrays only)
                   tsem   (for Numpy arrays only)
                   describe

FREQUENCY STATS:  itemfreq
                  scoreatpercentile
                  percentileofscore
                  histogram
                  cumfreq
                  relfreq

VARIABILITY:  obrientransform
              samplevar
              samplestdev
              signaltonoise (for Numpy arrays only)
              var
              stdev
              sterr
              sem
              z
              zs
              zmap (for Numpy arrays only)

TRIMMING FCNS:  threshold (for Numpy arrays only)
                trimboth
                trim1
                round (round all vals to 'n' decimals; Numpy only)

CORRELATION FCNS:  covariance  (for Numpy arrays only)
                   correlation (for Numpy arrays only)
                   paired
                   pearsonr
                   spearmanr
                   pointbiserialr
                   kendalltau
                   linregress

INFERENTIAL STATS:  ttest_1samp
                    ttest_ind
                    ttest_rel
                    chisquare
                    ks_2samp
                    mannwhitneyu
                    ranksums
                    wilcoxont
                    kruskalwallish
                    friedmanchisquare

PROBABILITY CALCS:  chisqprob
                    erfcc
                    zprob
                    ksprob
                    fprob
                    betacf
                    gammln
                    betai

ANOVA FUNCTIONS:  F_oneway
                  F_value

SUPPORT FUNCTIONS:  writecc
                    incr
                    sign  (for Numpy arrays only)
                    sum
                    cumsum
                    ss
                    summult
                    sumdiffsquared
                    square_of_sums
                    shellsort
                    rankdata
                    outputpairedstats
                    findwithin
"""
# CHANGE LOG:
# ===========
# 02-11-19 ... fixed attest_ind and attest_rel for div-by-zero Overflows
# 02-05-10 ... fixed lchisqprob indentation (failed when df=even)
# 00-12-28 ... removed aanova() to separate module, fixed licensing to
# match Python License, fixed doc string & imports
# 00-04-13 ... pulled all "global" statements, except from aanova()
# added/fixed lots of documentation, removed io.py dependency
# changed to version 0.5
# 99-11-13 ... added asign() function
# 99-11-01 ... changed version to 0.4 ... enough incremental changes now
# 99-10-25 ... added acovariance and acorrelation functions
# 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
# added aglm function (crude, but will be improved)
# 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, avar, etc. to
# all handle lists of 'dimension's and keepdims
# REMOVED ar0, ar2, ar3, ar4 and replaced them with around
# reinserted fixes for abetai to avoid math overflows
# 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
# handle multi-dimensional arrays (whew!)
# 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
# added anormaltest per same reference
# re-wrote azprob to calc arrays of probs all at once
# 99-08-22 ... edited attest_ind printing section so arrays could be rounded
# 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
# short/byte arrays (mean of #s btw 100-300 = -150??)
# 99-08-09 ... fixed asum so that the None case works for Byte arrays
# 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
# 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
# 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
# 04/11/99 ... added asignaltonoise, athreshold functions, changed all
# max/min in array section to N.maximum/N.minimum,
# fixed square_of_sums to prevent integer overflow
# 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
# 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
# 02/28/99 ... Fixed aobrientransform to return an array rather than a list
# 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
# 01/13/99 ... CHANGED TO VERSION 0.3
# fixed bug in a/lmannwhitneyu p-value calculation
# 12/31/98 ... fixed variable-name bug in ldescribe
# 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
# 12/16/98 ... changed amedianscore to return float (not array) for 1 score
# 12/14/98 ... added atmin and atmax functions
# removed umath from import line (not needed)
# l/ageometricmean modified to reduce chance of overflows (take
# nth root first, then multiply)
# 12/07/98 ... added __version__variable (now 0.2)
# removed all 'stats.' from anova() fcn
# 12/06/98 ... changed those functions (except shellsort) that altered
# arguments in-place ... cumsum, ranksort, ...
# updated (and fixed some) doc-strings
# 12/01/98 ... added anova() function (requires NumPy)
# incorporated Dispatch class
# 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
# added 'asum' function (added functionality to N.add.reduce)
# fixed both moment and amoment (two errors)
# changed name of skewness and askewness to skew and askew
# fixed (a)histogram (which sometimes counted points <lowerlimit)

import copy
import math
import string

from . import pstat  # required 3rd party module

__version__ = 0.6

# DISPATCH CODE


class Dispatch:
    """
    The Dispatch class, care of David Ascher, allows different functions to
    be called depending on the argument types.  This way, there can be one
    function name regardless of the argument type.  To access function doc
    in stats.py module, prefix the function with an 'l' or 'a' for list or
    array arguments, respectively.  That is, print stats.lmean.__doc__ or
    print stats.amean.__doc__ or whatever."""

    def __init__(self, *tuples):
        self._dispatch = {}
        for func, types in tuples:
            for t in types:
                if t in self._dispatch.keys():
                    raise ValueError("can't have two dispatches on " + str(t))
                self._dispatch[t] = func
        self._types = list(self._dispatch.keys())

    def __call__(self, arg1, *args, **kw):
        if type(arg1) not in self._types:
            raise TypeError(f"don't know how to dispatch {type(arg1)} arguments")
        return self._dispatch[type(arg1)](*(arg1,) + args, **kw)


# LIST-BASED FUNCTIONS

# Define these regardless

# CENTRAL TENDENCY


def lgeometricmean(inlist):
    """
    Calculates the geometric mean of the values in the passed list.
    That is:  n-th root of (x1 * x2 * ... * xn).  Assumes a '1D' list.

    Usage:   lgeometricmean(inlist)"""
    mult = 1.0
    one_over_n = 1.0 / len(inlist)
    for item in inlist:
        mult = mult * pow(item, one_over_n)
    return mult


def lharmonicmean(inlist):
    """
    Calculates the harmonic mean of the values in the passed list.
    That is:  n / (1/x1 + 1/x2 + ... + 1/xn).  Assumes a '1D' list.

    Usage:   lharmonicmean(inlist)"""
    sum = 0
    for item in inlist:
        sum = sum + 1.0 / item
    return len(inlist) / sum


def lmean(inlist):
    """
    Returns the arithematic mean of the values in the passed list.
    Assumes a '1D' list, but will function on the 1st dim of an array(!).

    Usage:   lmean(inlist)"""
    sum = 0
    for item in inlist:
        sum = sum + item
    return sum / float(len(inlist))


def lmedian(inlist, numbins=1000):
    """
    Returns the computed median value of a list of numbers, given the
    number of bins to use for the histogram (more bins brings the computed value
    closer to the median score, default number of bins = 1000).  See G.W.
    Heiman's Basic Stats (1st Edition), or CRC Probability & Statistics.

    Usage:   lmedian (inlist, numbins=1000)"""
    (hist, smallest, binsize, extras) = histogram(inlist, numbins)  # make histog
    cumhist = cumsum(hist)  # make cumulative histogram
    for i in range(len(cumhist)):  # get 1st(!) index holding 50%ile score
        if cumhist[i] >= len(inlist) / 2.0:
            cfbin = i
            break
    LRL = smallest + binsize * cfbin  # get lower read limit of that bin
    cfbelow = cumhist[cfbin - 1]
    freq = float(hist[cfbin])  # frequency IN the 50%ile bin
    median = LRL + ((len(inlist) / 2.0 - cfbelow) / float(freq)) * binsize  # median formula
    return median


def lmedianscore(inlist):
    """
    Returns the 'middle' score of the passed list.  If there is an even
    number of scores, the mean of the 2 middle scores is returned.

    Usage:   lmedianscore(inlist)"""

    newlist = sorted(copy.deepcopy(inlist))
    if len(newlist) % 2 == 0:  # if even number of scores, average middle 2
        index = len(newlist) / 2  # integer division correct
        median = float(newlist[index] + newlist[index - 1]) / 2
    else:
        index = len(newlist) / 2  # int divsion gives mid value when count from 0
        median = newlist[index]
    return median


def lmode(inlist):
    """
    Returns a list of the modal (most common) score(s) in the passed
    list.  If there is more than one such score, all are returned.  The
    bin-count for the mode(s) is also returned.

    Usage:   lmode(inlist)
    Returns: bin-count for mode(s), a list of modal value(s)"""

    scores = sorted(pstat.unique(inlist))
    freq = []
    for item in scores:
        freq.append(inlist.count(item))
    maxfreq = max(freq)
    mode = []
    stillmore = 1
    while stillmore:
        try:
            indx = freq.index(maxfreq)
            mode.append(scores[indx])
            del freq[indx]
            del scores[indx]
        except ValueError:
            stillmore = 0
    return maxfreq, mode


# MOMENTS


def lmoment(inlist, moment=1):
    """
    Calculates the nth moment about the mean for a sample (defaults to
    the 1st moment).  Used to calculate coefficients of skewness and kurtosis.

    Usage:   lmoment(inlist,moment=1)
    Returns: appropriate moment (r) from ... 1/n * SUM((inlist(i)-mean)**r)"""
    if moment == 1:
        return 0.0
    else:
        mn = mean(inlist)
        n = len(inlist)
        s = 0
        for x in inlist:
            s = s + (x - mn) ** moment
        return s / float(n)


def lvariation(inlist):
    """
    Returns the coefficient of variation, as defined in CRC Standard
    Probability and Statistics, p.6.

    Usage:   lvariation(inlist)"""
    return 100.0 * samplestdev(inlist) / float(mean(inlist))


def lskew(inlist):
    """
    Returns the skewness of a distribution, as defined in Numerical
    Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)

    Usage:   lskew(inlist)"""
    return moment(inlist, 3) / pow(moment(inlist, 2), 1.5)


def lkurtosis(inlist):
    """
    Returns the kurtosis of a distribution, as defined in Numerical
    Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)

    Usage:   lkurtosis(inlist)"""
    return moment(inlist, 4) / pow(moment(inlist, 2), 2.0)


def ldescribe(inlist):
    """
    Returns some descriptive statistics of the passed list (assumed to be 1D).

    Usage:   ldescribe(inlist)
    Returns: n, mean, standard deviation, skew, kurtosis"""
    n = len(inlist)
    mm = (min(inlist), max(inlist))
    m = mean(inlist)
    sd = stdev(inlist)
    sk = skew(inlist)
    kurt = kurtosis(inlist)
    return n, mm, m, sd, sk, kurt


# FREQUENCY STATS


def litemfreq(inlist):
    """
    Returns a list of pairs.  Each pair consists of one of the scores in inlist
    and it's frequency count.  Assumes a 1D list is passed.

    Usage:   litemfreq(inlist)
    Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)"""
    scores = sorted(pstat.unique(inlist))
    freq = []
    for item in scores:
        freq.append(inlist.count(item))
    return pstat.abut(scores, freq)


def lscoreatpercentile(inlist, percent):
    """
    Returns the score at a given percentile relative to the distribution
    given by inlist.

    Usage:   lscoreatpercentile(inlist,percent)"""
    if percent > 1:
        print("\nDividing percent>1 by 100 in lscoreatpercentile().\n")
        percent = percent / 100.0
    targetcf = percent * len(inlist)
    h, lrl, binsize, extras = histogram(inlist)
    cumhist = cumsum(copy.deepcopy(h))
    for i in range(len(cumhist)):
        if cumhist[i] >= targetcf:
            break
    score = binsize * ((targetcf - cumhist[i - 1]) / float(h[i])) + (lrl + binsize * i)
    return score


def lpercentileofscore(inlist, score, histbins=10, defaultlimits=None):
    """
    Returns the percentile value of a score relative to the distribution
    given by inlist.  Formula depends on the values used to histogram the data(!).

    Usage:   lpercentileofscore(inlist,score,histbins=10,defaultlimits=None)"""

    h, lrl, binsize, extras = histogram(inlist, histbins, defaultlimits)
    cumhist = cumsum(copy.deepcopy(h))
    i = int((score - lrl) / float(binsize))
    pct = (cumhist[i - 1] + ((score - (lrl + binsize * i)) / float(binsize)) * h[i]) / float(len(inlist)) * 100
    return pct


def lhistogram(inlist, numbins=10, defaultreallimits=None, printextras=0):
    """
    Returns (i) a list of histogram bin counts, (ii) the smallest value
    of the histogram binning, and (iii) the bin width (the last 2 are not
    necessarily integers).  Default number of bins is 10.  If no sequence object
    is given for defaultreallimits, the routine picks (usually non-pretty) bins
    spanning all the numbers in the inlist.

    Usage:   lhistogram (inlist, numbins=10, defaultreallimits=None,suppressoutput=0)
    Returns: list of bin values, lowerreallimit, binsize, extrapoints"""
    if defaultreallimits is not None:
        if (
            type(defaultreallimits) not in [list, tuple] or len(defaultreallimits) == 1
        ):  # only one limit given, assumed to be lower one & upper is calc'd
            lowerreallimit = defaultreallimits
            upperreallimit = 1.0001 * max(inlist)
        else:  # assume both limits given
            lowerreallimit = defaultreallimits[0]
            upperreallimit = defaultreallimits[1]
        binsize = (upperreallimit - lowerreallimit) / float(numbins)
    else:  # no limits given for histogram, both must be calc'd
        estbinwidth = (max(inlist) - min(inlist)) / float(numbins) + 1  # 1=>cover all
        binsize = (max(inlist) - min(inlist) + estbinwidth) / float(numbins)
        lowerreallimit = min(inlist) - binsize / 2  # lower real limit,1st bin
    bins = [0] * (numbins)
    extrapoints = 0
    for num in inlist:
        try:
            if (num - lowerreallimit) < 0:
                extrapoints = extrapoints + 1
            else:
                bintoincrement = int((num - lowerreallimit) / float(binsize))
                bins[bintoincrement] = bins[bintoincrement] + 1
        except Exception:
            extrapoints = extrapoints + 1
    if extrapoints > 0 and printextras == 1:
        print("\nPoints outside given histogram range =", extrapoints)
    return (bins, lowerreallimit, binsize, extrapoints)


def lcumfreq(inlist, numbins=10, defaultreallimits=None):
    """
    Returns a cumulative frequency histogram, using the histogram function.

    Usage:   lcumfreq(inlist,numbins=10,defaultreallimits=None)
    Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints"""
    h, l, b, e = histogram(inlist, numbins, defaultreallimits)
    cumhist = cumsum(copy.deepcopy(h))
    return cumhist, l, b, e


def lrelfreq(inlist, numbins=10, defaultreallimits=None):
    """
    Returns a relative frequency histogram, using the histogram function.

    Usage:   lrelfreq(inlist,numbins=10,defaultreallimits=None)
    Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints"""
    h, l, b, e = histogram(inlist, numbins, defaultreallimits)
    for i in range(len(h)):
        h[i] = h[i] / float(len(inlist))
    return h, l, b, e


# VARIABILITY FUNCTIONS


def lobrientransform(*args):
    """
    Computes a transform on input data (any number of columns).  Used to
    test for homogeneity of variance prior to running one-way stats.  From
    Maxwell and Delaney, p.112.

    Usage:   lobrientransform(*args)
    Returns: transformed data for use in an ANOVA"""
    TINY = 1e-10
    k = len(args)
    n = [0.0] * k
    v = [0.0] * k
    m = [0.0] * k
    nargs = []
    for i in range(k):
        nargs.append(copy.deepcopy(args[i]))
        n[i] = float(len(nargs[i]))
        v[i] = var(nargs[i])
        m[i] = mean(nargs[i])
    for j in range(k):
        for i in range(n[j]):
            t1 = (n[j] - 1.5) * n[j] * (nargs[j][i] - m[j]) ** 2
            t2 = 0.5 * v[j] * (n[j] - 1.0)
            t3 = (n[j] - 1.0) * (n[j] - 2.0)
            nargs[j][i] = (t1 - t2) / float(t3)
    check = 1
    for j in range(k):
        if v[j] - mean(nargs[j]) > TINY:
            check = 0
    if check != 1:
        raise ValueError("Problem in obrientransform.")
    else:
        return nargs


def lsamplevar(inlist):
    """
    Returns the variance of the values in the passed list using
    N for the denominator (i.e., DESCRIBES the sample variance only).

    Usage:   lsamplevar(inlist)"""
    n = len(inlist)
    mn = mean(inlist)
    deviations = []
    for item in inlist:
        deviations.append(item - mn)
    return ss(deviations) / float(n)


def lsamplestdev(inlist):
    """
    Returns the standard deviation of the values in the passed list using
    N for the denominator (i.e., DESCRIBES the sample stdev only).

    Usage:   lsamplestdev(inlist)"""
    return math.sqrt(samplevar(inlist))


def lvar(inlist):
    """
    Returns the variance of the values in the passed list using N-1
    for the denominator (i.e., for estimating population variance).

    Usage:   lvar(inlist)"""
    n = len(inlist)
    mn = mean(inlist)
    deviations = [0] * len(inlist)
    for i in range(len(inlist)):
        deviations[i] = inlist[i] - mn
    return ss(deviations) / float(n - 1)


def lstdev(inlist):
    """
    Returns the standard deviation of the values in the passed list
    using N-1 in the denominator (i.e., to estimate population stdev).

    Usage:   lstdev(inlist)"""
    return math.sqrt(var(inlist))


def lsterr(inlist):
    """
    Returns the standard error of the values in the passed list using N-1
    in the denominator (i.e., to estimate population standard error).

    Usage:   lsterr(inlist)"""
    return stdev(inlist) / float(math.sqrt(len(inlist)))


def lsem(inlist):
    """
    Returns the estimated standard error of the mean (sx-bar) of the
    values in the passed list.  sem = stdev / sqrt(n)

    Usage:   lsem(inlist)"""
    sd = stdev(inlist)
    n = len(inlist)
    return sd / math.sqrt(n)


def lz(inlist, score):
    """
    Returns the z-score for a given input score, given that score and the
    list from which that score came.  Not appropriate for population calculations.

    Usage:   lz(inlist, score)"""
    z = (score - mean(inlist)) / samplestdev(inlist)
    return z


def lzs(inlist):
    """
    Returns a list of z-scores, one for each score in the passed list.

    Usage:   lzs(inlist)"""
    zscores = []
    for item in inlist:
        zscores.append(z(inlist, item))
    return zscores


# TRIMMING FUNCTIONS


def ltrimboth(l, proportiontocut):
    """
    Slices off the passed proportion of items from BOTH ends of the passed
    list (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost'
    10% of scores.  Assumes list is sorted by magnitude.  Slices off LESS if
    proportion results in a non-integer slice index (i.e., conservatively
    slices off proportiontocut).

    Usage:   ltrimboth (l,proportiontocut)
    Returns: trimmed version of list l"""
    lowercut = int(proportiontocut * len(l))
    uppercut = len(l) - lowercut
    return l[lowercut:uppercut]


def ltrim1(l, proportiontocut, tail="right"):
    """
    Slices off the passed proportion of items from ONE end of the passed
    list (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
    10% of scores).  Slices off LESS if proportion results in a non-integer
    slice index (i.e., conservatively slices off proportiontocut).

    Usage:   ltrim1 (l,proportiontocut,tail='right')  or set tail='left'
    Returns: trimmed version of list l"""
    if tail == "right":
        lowercut = 0
        uppercut = len(l) - int(proportiontocut * len(l))
    elif tail == "left":
        lowercut = int(proportiontocut * len(l))
        uppercut = len(l)
    return l[lowercut:uppercut]


# CORRELATION FUNCTIONS


def lpaired(x, y):
    """
    Interactively determines the type of data and then runs the
    appropriated statistic for paired group data.

    Usage:   lpaired(x,y)
    Returns: appropriate statistic name, value, and probability"""
    samples = ""
    while samples not in ["i", "r", "I", "R", "c", "C"]:
        print("\nIndependent or related samples, or correlation (i,r,c): ", end=" ")
        samples = input()

    if samples in ["i", "I", "r", "R"]:
        print("\nComparing variances ...", end=" ")
        # USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
        r = obrientransform(x, y)
        f, p = F_oneway(pstat.colex(r, 0), pstat.colex(r, 1))
        if p < 0.05:
            vartype = "unequal, p=" + str(round(p, 4))
        else:
            vartype = "equal"
        print(vartype)
        if samples in ["i", "I"]:
            if vartype[0] == "e":
                t, p = ttest_ind(x, y, 0)
                print("\nIndependent samples t-test:  ", round(t, 4), round(p, 4))
            else:
                if len(x) > 20 or len(y) > 20:
                    z, p = ranksums(x, y)
                    print("\nRank Sums test (NONparametric, n>20):  ", round(z, 4), round(p, 4))
                else:
                    u, p = mannwhitneyu(x, y)
                    print("\nMann-Whitney U-test (NONparametric, ns<20):  ", round(u, 4), round(p, 4))

        else:  # RELATED SAMPLES
            if vartype[0] == "e":
                t, p = ttest_rel(x, y, 0)
                print("\nRelated samples t-test:  ", round(t, 4), round(p, 4))
            else:
                t, p = ranksums(x, y)
                print("\nWilcoxon T-test (NONparametric):  ", round(t, 4), round(p, 4))
    else:  # CORRELATION ANALYSIS
        corrtype = ""
        while corrtype not in ["c", "C", "r", "R", "d", "D"]:
            print("\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ", end=" ")
            corrtype = input()
        if corrtype in ["c", "C"]:
            m, b, r, p, see = linregress(x, y)
            print("\nLinear regression for continuous variables ...")
            lol = [
                ["Slope", "Intercept", "r", "Prob", "SEestimate"],
                [round(m, 4), round(b, 4), round(r, 4), round(p, 4), round(see, 4)],
            ]
            pstat.printcc(lol)
        elif corrtype in ["r", "R"]:
            r, p = spearmanr(x, y)
            print("\nCorrelation for ranked variables ...")
            print("Spearman's r: ", round(r, 4), round(p, 4))
        else:  # DICHOTOMOUS
            r, p = pointbiserialr(x, y)
            print("\nAssuming x contains a dichotomous variable ...")
            print("Point Biserial r: ", round(r, 4), round(p, 4))
    print("\n\n")
    return None


def lpearsonr(x, y):
    """
    Calculates a Pearson correlation coefficient and the associated
    probability value.  Taken from Heiman's Basic Statistics for the Behav.
    Sci (2nd), p.195.

    Usage:   lpearsonr(x,y)      where x and y are equal-length lists
    Returns: Pearson's r value, two-tailed p-value"""
    TINY = 1.0e-30
    if len(x) != len(y):
        raise ValueError("Input values not paired in pearsonr.  Aborting.")
    n = len(x)
    x = [float(_) for _ in x]
    y = [float(_) for _ in y]
    r_num = n * (summult(x, y)) - sum(x) * sum(y)
    r_den = math.sqrt((n * ss(x) - square_of_sums(x)) * (n * ss(y) - square_of_sums(y)))
    r = r_num / r_den  # denominator already a float
    df = n - 2
    t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
    prob = betai(0.5 * df, 0.5, df / float(df + t * t))
    return r, prob


def lspearmanr(x, y):
    """
    Calculates a Spearman rank-order correlation coefficient.  Taken
    from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.

    Usage:   lspearmanr(x,y)      where x and y are equal-length lists
    Returns: Spearman's r, two-tailed p-value"""
    if len(x) != len(y):
        raise ValueError("Input values not paired in spearmanr.  Aborting.")
    n = len(x)
    rankx = rankdata(x)
    ranky = rankdata(y)
    dsq = sumdiffsquared(rankx, ranky)
    rs = 1 - 6 * dsq / float(n * (n**2 - 1))
    t = rs * math.sqrt((n - 2) / ((rs + 1.0) * (1.0 - rs)))
    df = n - 2
    probrs = betai(0.5 * df, 0.5, df / (df + t * t))  # t already a float
    # probability values for rs are from part 2 of the spearman function in
    # Numerical Recipies, p.510.  They are close to tables, but not exact. (?)
    return rs, probrs


def lpointbiserialr(x, y):
    """
    Calculates a point-biserial correlation coefficient and the associated
    probability value.  Taken from Heiman's Basic Statistics for the Behav.
    Sci (1st), p.194.

    Usage:   lpointbiserialr(x,y)      where x,y are equal-length lists
    Returns: Point-biserial r, two-tailed p-value"""
    TINY = 1e-30
    if len(x) != len(y):
        raise ValueError("INPUT VALUES NOT PAIRED IN pointbiserialr.  ABORTING.")
    data = pstat.abut(x, y)
    categories = pstat.unique(x)
    if len(categories) != 2:
        raise ValueError("Exactly 2 categories required for pointbiserialr().")
    else:  # there are 2 categories, continue
        codemap = pstat.abut(categories, range(2))
        pstat.recode(data, codemap, 0)  # recoded
        x = pstat.linexand(data, 0, categories[0])
        y = pstat.linexand(data, 0, categories[1])
        xmean = mean(pstat.colex(x, 1))
        ymean = mean(pstat.colex(y, 1))
        n = len(data)
        adjust = math.sqrt((len(x) / float(n)) * (len(y) / float(n)))
        rpb = (ymean - xmean) / samplestdev(pstat.colex(data, 1)) * adjust
        df = n - 2
        t = rpb * math.sqrt(df / ((1.0 - rpb + TINY) * (1.0 + rpb + TINY)))
        prob = betai(0.5 * df, 0.5, df / (df + t * t))  # t already a float
        return rpb, prob


def lkendalltau(x, y):
    """
    Calculates Kendall's tau ... correlation of ordinal data.  Adapted
    from function kendl1 in Numerical Recipies.  Needs good test-routine.@@@

    Usage:   lkendalltau(x,y)
    Returns: Kendall's tau, two-tailed p-value"""
    n1 = 0
    n2 = 0
    iss = 0
    for j in range(len(x) - 1):
        for k in range(j, len(y)):
            a1 = x[j] - x[k]
            a2 = y[j] - y[k]
            aa = a1 * a2
            if aa:  # neither list has a tie
                n1 = n1 + 1
                n2 = n2 + 1
                if aa > 0:
                    iss = iss + 1
                else:
                    iss = iss - 1
            else:
                if a1:
                    n1 = n1 + 1
                else:
                    n2 = n2 + 1
    tau = iss / math.sqrt(n1 * n2)
    svar = (4.0 * len(x) + 10.0) / (9.0 * len(x) * (len(x) - 1))
    z = tau / math.sqrt(svar)
    prob = erfcc(abs(z) / 1.4142136)
    return tau, prob


def llinregress(x, y):
    """
    Calculates a regression line on x,y pairs.

    Usage:   llinregress(x,y)      x,y are equal-length lists of x-y coordinates
    Returns: slope, intercept, r, two-tailed prob, sterr-of-estimate"""
    TINY = 1.0e-20
    if len(x) != len(y):
        raise ValueError("Input values not paired in linregress.  Aborting.")
    n = len(x)
    x = [float(_) for _ in x]
    y = [float(_) for _ in y]
    xmean = mean(x)
    ymean = mean(y)
    r_num = float(n * (summult(x, y)) - sum(x) * sum(y))
    r_den = math.sqrt((n * ss(x) - square_of_sums(x)) * (n * ss(y) - square_of_sums(y)))
    r = r_num / r_den
    df = n - 2
    t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
    prob = betai(0.5 * df, 0.5, df / (df + t * t))
    slope = r_num / float(n * ss(x) - square_of_sums(x))
    intercept = ymean - slope * xmean
    sterrest = math.sqrt(1 - r * r) * samplestdev(y)
    return slope, intercept, r, prob, sterrest


# INFERENTIAL STATISTICS


def lttest_1samp(a, popmean, printit=0, name="Sample", writemode="a"):
    """
    Calculates the t-obtained for the independent samples T-test on ONE group
    of scores a, given a population mean.  If printit=1, results are printed
    to the screen.  If printit='filename', the results are output to 'filename'
    using the given writemode (default=append).  Returns t-value, and prob.

    Usage:   lttest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
    Returns: t-value, two-tailed prob"""
    x = mean(a)
    v = var(a)
    n = len(a)
    df = n - 1
    svar = ((n - 1) * v) / float(df)
    t = (x - popmean) / math.sqrt(svar * (1.0 / n))
    prob = betai(0.5 * df, 0.5, float(df) / (df + t * t))

    if printit != 0:
        statname = "Single-sample T-test."
        outputpairedstats(
            printit, writemode, "Population", "--", popmean, 0, 0, 0, name, n, x, v, min(a), max(a), statname, t, prob
        )
    return t, prob


def lttest_ind(a, b, printit=0, name1="Samp1", name2="Samp2", writemode="a"):
    """
    Calculates the t-obtained T-test on TWO INDEPENDENT samples of
    scores a, and b.  From Numerical Recipies, p.483.  If printit=1, results
    are printed to the screen.  If printit='filename', the results are output
    to 'filename' using the given writemode (default=append).  Returns t-value,
    and prob.

    Usage:   lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a')
    Returns: t-value, two-tailed prob"""
    x1 = mean(a)
    x2 = mean(b)
    v1 = stdev(a) ** 2
    v2 = stdev(b) ** 2
    n1 = len(a)
    n2 = len(b)
    df = n1 + n2 - 2
    svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df)
    t = (x1 - x2) / math.sqrt(svar * (1.0 / n1 + 1.0 / n2))
    prob = betai(0.5 * df, 0.5, df / (df + t * t))

    if printit != 0:
        statname = "Independent samples T-test."
        outputpairedstats(
            printit, writemode, name1, n1, x1, v1, min(a), max(a), name2, n2, x2, v2, min(b), max(b), statname, t, prob
        )
    return t, prob


def lttest_rel(a, b, printit=0, name1="Sample1", name2="Sample2", writemode="a"):
    """
    Calculates the t-obtained T-test on TWO RELATED samples of scores,
    a and b.  From Numerical Recipies, p.483.  If printit=1, results are
    printed to the screen.  If printit='filename', the results are output to
    'filename' using the given writemode (default=append).  Returns t-value,
    and prob.

    Usage:   lttest_rel(a,b,printit=0,name1='Sample1',name2='Sample2',writemode='a')
    Returns: t-value, two-tailed prob"""
    if len(a) != len(b):
        raise ValueError("Unequal length lists in ttest_rel.")
    x1 = mean(a)
    x2 = mean(b)
    v1 = var(a)
    v2 = var(b)
    n = len(a)
    cov = 0
    for i in range(len(a)):
        cov = cov + (a[i] - x1) * (b[i] - x2)
    df = n - 1
    cov = cov / float(df)
    sd = math.sqrt((v1 + v2 - 2.0 * cov) / float(n))
    t = (x1 - x2) / sd
    prob = betai(0.5 * df, 0.5, df / (df + t * t))

    if printit != 0:
        statname = "Related samples T-test."
        outputpairedstats(
            printit, writemode, name1, n, x1, v1, min(a), max(a), name2, n, x2, v2, min(b), max(b), statname, t, prob
        )
    return t, prob


def lchisquare(f_obs, f_exp=None):
    """
    Calculates a one-way chi square for list of observed frequencies and returns
    the result.  If no expected frequencies are given, the total N is assumed to
    be equally distributed across all groups.

    Usage:   lchisquare(f_obs, f_exp=None)   f_obs = list of observed cell freq.
    Returns: chisquare-statistic, associated p-value"""
    k = len(f_obs)  # number of groups
    if f_exp is None:
        f_exp = [sum(f_obs) / float(k)] * len(f_obs)  # create k bins with = freq.
    chisq = 0
    for i in range(len(f_obs)):
        chisq = chisq + (f_obs[i] - f_exp[i]) ** 2 / float(f_exp[i])
    return chisq, chisqprob(chisq, k - 1)


def lks_2samp(data1, data2):
    """
    Computes the Kolmogorov-Smirnof statistic on 2 samples.  From
    Numerical Recipies in C, page 493.

    Usage:   lks_2samp(data1,data2)   data1&2 are lists of values for 2 conditions
    Returns: KS D-value, associated p-value"""
    j1 = 0
    j2 = 0
    fn1 = 0.0
    fn2 = 0.0
    n1 = len(data1)
    n2 = len(data2)
    en1 = n1
    en2 = n2
    d = 0.0
    data1.sort()
    data2.sort()
    while j1 < n1 and j2 < n2:
        d1 = data1[j1]
        d2 = data2[j2]
        if d1 <= d2:
            fn1 = (j1) / float(en1)
            j1 = j1 + 1
        if d2 <= d1:
            fn2 = (j2) / float(en2)
            j2 = j2 + 1
        dt = fn2 - fn1
        if math.fabs(dt) > math.fabs(d):
            d = dt
    try:
        en = math.sqrt(en1 * en2 / float(en1 + en2))
        prob = ksprob((en + 0.12 + 0.11 / en) * abs(d))
    except Exception:
        prob = 1.0
    return d, prob


def lmannwhitneyu(x, y):
    """
    Calculates a Mann-Whitney U statistic on the provided scores and
    returns the result.  Use only when the n in each condition is < 20 and
    you have 2 independent samples of ranks.  NOTE: Mann-Whitney U is
    significant if the u-obtained is LESS THAN or equal to the critical
    value of U found in the tables.  Equivalent to Kruskal-Wallis H with
    just 2 groups.

    Usage:   lmannwhitneyu(data)
    Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))"""
    n1 = len(x)
    n2 = len(y)
    ranked = rankdata(x + y)
    rankx = ranked[0:n1]  # get the x-ranks
    u1 = n1 * n2 + (n1 * (n1 + 1)) / 2.0 - sum(rankx)  # calc U for x
    u2 = n1 * n2 - u1  # remainder is U for y
    bigu = max(u1, u2)
    smallu = min(u1, u2)
    T = math.sqrt(tiecorrect(ranked))  # correction factor for tied scores
    if T == 0:
        raise ValueError("All numbers are identical in lmannwhitneyu")
    sd = math.sqrt(T * n1 * n2 * (n1 + n2 + 1) / 12.0)
    z = abs((bigu - n1 * n2 / 2.0) / sd)  # normal approximation for prob calc
    return smallu, 1.0 - zprob(z)


def ltiecorrect(rankvals):
    """
    Corrects for ties in Mann Whitney U and Kruskal Wallis H tests.  See
    Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences.
    New York: McGraw-Hill.  Code adapted from |Stat rankind.c code.

    Usage:   ltiecorrect(rankvals)
    Returns: T correction factor for U or H"""
    sorted, posn = shellsort(rankvals)
    n = len(sorted)
    T = 0.0
    i = 0
    while i < n - 1:
        if sorted[i] == sorted[i + 1]:
            nties = 1
            while (i < n - 1) and (sorted[i] == sorted[i + 1]):
                nties = nties + 1
                i = i + 1
            T = T + nties**3 - nties
        i = i + 1
    T = T / float(n**3 - n)
    return 1.0 - T


def lranksums(x, y):
    """
    Calculates the rank sums statistic on the provided scores and
    returns the result.  Use only when the n in each condition is > 20 and you
    have 2 independent samples of ranks.

    Usage:   lranksums(x,y)
    Returns: a z-statistic, two-tailed p-value"""
    n1 = len(x)
    n2 = len(y)
    alldata = x + y
    ranked = rankdata(alldata)
    x = ranked[:n1]
    y = ranked[n1:]
    s = sum(x)
    expected = n1 * (n1 + n2 + 1) / 2.0
    z = (s - expected) / math.sqrt(n1 * n2 * (n1 + n2 + 1) / 12.0)
    prob = 2 * (1.0 - zprob(abs(z)))
    return z, prob


def lwilcoxont(x, y):
    """
    Calculates the Wilcoxon T-test for related samples and returns the
    result.  A non-parametric T-test.

    Usage:   lwilcoxont(x,y)
    Returns: a t-statistic, two-tail probability estimate"""
    if len(x) != len(y):
        raise ValueError("Unequal N in wilcoxont.  Aborting.")
    d = []
    for i in range(len(x)):
        diff = x[i] - y[i]
        if diff != 0:
            d.append(diff)
    count = len(d)
    absd = [abs(_) for _ in d]
    absranked = rankdata(absd)
    r_plus = 0.0
    r_minus = 0.0
    for i in range(len(absd)):
        if d[i] < 0:
            r_minus = r_minus + absranked[i]
        else:
            r_plus = r_plus + absranked[i]
    wt = min(r_plus, r_minus)
    mn = count * (count + 1) * 0.25
    se = math.sqrt(count * (count + 1) * (2.0 * count + 1.0) / 24.0)
    z = math.fabs(wt - mn) / se
    prob = 2 * (1.0 - zprob(abs(z)))
    return wt, prob


def lkruskalwallish(*args):
    """
    The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
    groups, requiring at least 5 subjects in each group.  This function
    calculates the Kruskal-Wallis H-test for 3 or more independent samples
    and returns the result.

    Usage:   lkruskalwallish(*args)
    Returns: H-statistic (corrected for ties), associated p-value"""
    args = list(args)
    n = [0] * len(args)
    all = []
    n = [len(_) for _ in args]
    for i in range(len(args)):
        all = all + args[i]
    ranked = rankdata(all)
    T = tiecorrect(ranked)
    for i in range(len(args)):
        args[i] = ranked[0 : n[i]]
        del ranked[0 : n[i]]
    rsums = []
    for i in range(len(args)):
        rsums.append(sum(args[i]) ** 2)
        rsums[i] = rsums[i] / float(n[i])
    ssbn = sum(rsums)
    totaln = sum(n)
    h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
    df = len(args) - 1
    if T == 0:
        raise ValueError("All numbers are identical in lkruskalwallish")
    h = h / float(T)
    return h, chisqprob(h, df)


def lfriedmanchisquare(*args):
    """
    Friedman Chi-Square is a non-parametric, one-way within-subjects
    ANOVA.  This function calculates the Friedman Chi-square test for repeated
    measures and returns the result, along with the associated probability
    value.  It assumes 3 or more repeated measures.  Only 3 levels requires a
    minimum of 10 subjects in the study.  Four levels requires 5 subjects per
    level(??).

    Usage:   lfriedmanchisquare(*args)
    Returns: chi-square statistic, associated p-value"""
    k = len(args)
    if k < 3:
        raise ValueError("Less than 3 levels.  Friedman test not appropriate.")
    n = len(args[0])
    data = pstat.abut(*tuple(args))
    for i in range(len(data)):
        data[i] = rankdata(data[i])
    ssbn = 0
    for i in range(k):
        ssbn = ssbn + sum(args[i]) ** 2
    chisq = 12.0 / (k * n * (k + 1)) * ssbn - 3 * n * (k + 1)
    return chisq, chisqprob(chisq, k - 1)


# PROBABILITY CALCULATIONS


def lchisqprob(chisq, df):
    """
    Returns the (1-tailed) probability value associated with the provided
    chi-square value and df.  Adapted from chisq.c in Gary Perlman's |Stat.

    Usage:   lchisqprob(chisq,df)"""
    BIG = 20.0

    def ex(x):
        BIG = 20.0
        if x < -BIG:
            return 0.0
        else:
            return math.exp(x)

    if chisq <= 0 or df < 1:
        return 1.0
    a = 0.5 * chisq
    if df % 2 == 0:
        even = 1
    else:
        even = 0
    if df > 1:
        y = ex(-a)
    if even:
        s = y
    else:
        s = 2.0 * zprob(-math.sqrt(chisq))
    if df > 2:
        chisq = 0.5 * (df - 1.0)
        if even:
            z = 1.0
        else:
            z = 0.5
        if a > BIG:
            if even:
                e = 0.0
            else:
                e = math.log(math.sqrt(math.pi))
            c = math.log(a)
            while z <= chisq:
                e = math.log(z) + e
                s = s + ex(c * z - a - e)
                z = z + 1.0
            return s
        else:
            if even:
                e = 1.0
            else:
                e = 1.0 / math.sqrt(math.pi) / math.sqrt(a)
            c = 0.0
            while z <= chisq:
                e = e * (a / float(z))
                c = c + e
                z = z + 1.0
            return c * y + s
    else:
        return s


def lerfcc(x):
    """
    Returns the complementary error function erfc(x) with fractional
    error everywhere less than 1.2e-7.  Adapted from Numerical Recipies.

    Usage:   lerfcc(x)"""
    z = abs(x)
    t = 1.0 / (1.0 + 0.5 * z)
    ans = t * math.exp(
        -z * z
        - 1.26551223
        + t
        * (
            1.00002368
            + t
            * (
                0.37409196
                + t
                * (
                    0.09678418
                    + t
                    * (
                        -0.18628806
                        + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277))))
                    )
                )
            )
        )
    )
    if x >= 0:
        return ans
    else:
        return 2.0 - ans


def lzprob(z):
    """
    Returns the area under the normal curve 'to the left of' the given z value.
    Thus,
        for z<0, zprob(z) = 1-tail probability
        for z>0, 1.0-zprob(z) = 1-tail probability
        for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
    Adapted from z.c in Gary Perlman's |Stat.

    Usage:   lzprob(z)"""
    Z_MAX = 6.0  # maximum meaningful z-value
    if z == 0.0:
        x = 0.0
    else:
        y = 0.5 * math.fabs(z)
        if y >= (Z_MAX * 0.5):
            x = 1.0
        elif y < 1.0:
            w = y * y
            x = (
                (
                    (
                        (
                            (
                                (
                                    (((0.000124818987 * w - 0.001075204047) * w + 0.005198775019) * w - 0.019198292004)
                                    * w
                                    + 0.059054035642
                                )
                                * w
                                - 0.151968751364
                            )
                            * w
                            + 0.319152932694
                        )
                        * w
                        - 0.531923007300
                    )
                    * w
                    + 0.797884560593
                )
                * y
                * 2.0
            )
        else:
            y = y - 2.0
            x = (
                (
                    (
                        (
                            (
                                (
                                    (
                                        (
                                            (
                                                (
                                                    (
                                                        ((-0.000045255659 * y + 0.000152529290) * y - 0.000019538132)
                                                        * y
                                                        - 0.000676904986
                                                    )
                                                    * y
                                                    + 0.001390604284
                                                )
                                                * y
                                                - 0.000794620820
                                            )
                                            * y
                                            - 0.002034254874
                                        )
                                        * y
                                        + 0.006549791214
                                    )
                                    * y
                                    - 0.010557625006
                                )
                                * y
                                + 0.011630447319
                            )
                            * y
                            - 0.009279453341
                        )
                        * y
                        + 0.005353579108
                    )
                    * y
                    - 0.002141268741
                )
                * y
                + 0.000535310849
            ) * y + 0.999936657524
    if z > 0.0:
        prob = (x + 1.0) * 0.5
    else:
        prob = (1.0 - x) * 0.5
    return prob


def lksprob(alam):
    """
    Computes a Kolmolgorov-Smirnov t-test significance level.  Adapted from
    Numerical Recipies.

    Usage:   lksprob(alam)"""
    fac = 2.0
    sum = 0.0
    termbf = 0.0
    a2 = -2.0 * alam * alam
    for j in range(1, 201):
        term = fac * math.exp(a2 * j * j)
        sum = sum + term
        if math.fabs(term) <= (0.001 * termbf) or math.fabs(term) < (1.0e-8 * sum):
            return sum
        fac = -fac
        termbf = math.fabs(term)
    return 1.0  # Get here only if fails to converge; was 0.0!!


def lfprob(dfnum, dfden, F):
    """
    Returns the (1-tailed) significance level (p-value) of an F
    statistic given the degrees of freedom for the numerator (dfR-dfF) and
    the degrees of freedom for the denominator (dfF).

    Usage:   lfprob(dfnum, dfden, F)   where usually dfnum=dfbn, dfden=dfwn"""
    p = betai(0.5 * dfden, 0.5 * dfnum, dfden / float(dfden + dfnum * F))
    return p


def lbetacf(a, b, x):
    """
    This function evaluates the continued fraction form of the incomplete
    Beta function, betai.  (Adapted from: Numerical Recipies in C.)

    Usage:   lbetacf(a,b,x)"""
    ITMAX = 200
    EPS = 3.0e-7

    bm = az = am = 1.0
    qab = a + b
    qap = a + 1.0
    qam = a - 1.0
    bz = 1.0 - qab * x / qap
    for i in range(ITMAX + 1):
        em = float(i + 1)
        tem = em + em
        d = em * (b - em) * x / ((qam + tem) * (a + tem))
        ap = az + d * am
        bp = bz + d * bm
        d = -(a + em) * (qab + em) * x / ((qap + tem) * (a + tem))
        app = ap + d * az
        bpp = bp + d * bz
        aold = az
        am = ap / bpp
        bm = bp / bpp
        az = app / bpp
        bz = 1.0
        if abs(az - aold) < (EPS * abs(az)):
            return az
    print("a or b too big, or ITMAX too small in Betacf.")


def lgammln(xx):
    """
    Returns the gamma function of xx.
        Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
    (Adapted from: Numerical Recipies in C.)

    Usage:   lgammln(xx)"""

    coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516, 0.120858003e-2, -0.536382e-5]
    x = xx - 1.0
    tmp = x + 5.5
    tmp = tmp - (x + 0.5) * math.log(tmp)
    ser = 1.0
    for j in range(len(coeff)):
        x = x + 1
        ser = ser + coeff[j] / x
    return -tmp + math.log(2.50662827465 * ser)


def lbetai(a, b, x):
    """
    Returns the incomplete beta function:

        I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

    where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
    function of a.  The continued fraction formulation is implemented here,
    using the betacf function.  (Adapted from: Numerical Recipies in C.)

    Usage:   lbetai(a,b,x)"""
    if x < 0.0 or x > 1.0:
        raise ValueError("Bad x in lbetai")
    if x == 0.0 or x == 1.0:
        bt = 0.0
    else:
        bt = math.exp(gammln(a + b) - gammln(a) - gammln(b) + a * math.log(x) + b * math.log(1.0 - x))
    if x < (a + 1.0) / (a + b + 2.0):
        return bt * betacf(a, b, x) / float(a)
    else:
        return 1.0 - bt * betacf(b, a, 1.0 - x) / float(b)


# ANOVA CALCULATIONS


def lF_oneway(*lists):
    """
    Performs a 1-way ANOVA, returning an F-value and probability given
    any number of groups.  From Heiman, pp.394-7.

    Usage:   F_oneway(*lists)    where *lists is any number of lists, one per
                                      treatment group
    Returns: F value, one-tailed p-value"""
    a = len(lists)  # ANOVA on 'a' groups, each in it's own list
    alldata = []
    for i in range(len(lists)):
        alldata = alldata + lists[i]
    alldata = N.array(alldata)
    bign = len(alldata)
    sstot = ass(alldata) - (asquare_of_sums(alldata) / float(bign))
    ssbn = 0
    for list in lists:
        ssbn = ssbn + asquare_of_sums(N.array(list)) / float(len(list))
    ssbn = ssbn - (asquare_of_sums(alldata) / float(bign))
    sswn = sstot - ssbn
    dfbn = a - 1
    dfwn = bign - a
    msb = ssbn / float(dfbn)
    msw = sswn / float(dfwn)
    f = msb / msw
    prob = fprob(dfbn, dfwn, f)
    return f, prob


def lF_value(ER, EF, dfnum, dfden):
    """
    Returns an F-statistic given the following:
            ER  = error associated with the null hypothesis (the Restricted model)
            EF  = error associated with the alternate hypothesis (the Full model)
            dfR-dfF = degrees of freedom of the numerator
            dfF = degrees of freedom associated with the denominator/Full model

    Usage:   lF_value(ER,EF,dfnum,dfden)"""
    return (ER - EF) / float(dfnum) / (EF / float(dfden))


# SUPPORT FUNCTIONS


def writecc(listoflists, file, writetype="w", extra=2):
    """
    Writes a list of lists to a file in columns, customized by the max
    size of items within the columns (max size of items in col, +2 characters)
    to specified file.  File-overwrite is the default.

    Usage:   writecc (listoflists,file,writetype='w',extra=2)
    Returns: None"""
    if type(listoflists[0]) not in [list, tuple]:
        listoflists = [listoflists]
    outfile = open(file, writetype)
    rowstokill = []
    list2print = copy.deepcopy(listoflists)
    for i in range(len(listoflists)):
        if listoflists[i] == ["\n"] or listoflists[i] == "\n" or listoflists[i] == "dashes":
            rowstokill = rowstokill + [i]
    rowstokill.reverse()
    for row in rowstokill:
        del list2print[row]
    maxsize = [0] * len(list2print[0])
    for col in range(len(list2print[0])):
        items = pstat.colex(list2print, col)
        items = [pstat.makestr(_) for _ in items]
        maxsize[col] = max(map(len, items)) + extra
    for row in listoflists:
        if row == ["\n"] or row == "\n":
            outfile.write("\n")
        elif row == ["dashes"] or row == "dashes":
            dashes = [0] * len(maxsize)
            for j in range(len(maxsize)):
                dashes[j] = "-" * (maxsize[j] - 2)
            outfile.write(pstat.lineincustcols(dashes, maxsize))
        else:
            outfile.write(pstat.lineincustcols(row, maxsize))
        outfile.write("\n")
    outfile.close()
    return None


def lincr(l, cap):  # to increment a list up to a max-list of 'cap'
    """
    Simulate a counting system from an n-dimensional list.

    Usage:   lincr(l,cap)   l=list to increment, cap=max values for each list pos'n
    Returns: next set of values for list l, OR -1 (if overflow)"""
    l[0] = l[0] + 1  # e.g., [0,0,0] --> [2,4,3] (=cap)
    for i in range(len(l)):
        if l[i] > cap[i] and i < len(l) - 1:  # if carryover AND not done
            l[i] = 0
            l[i + 1] = l[i + 1] + 1
        elif l[i] > cap[i] and i == len(l) - 1:  # overflow past last column, must be finished
            l = -1
    return l


def lsum(inlist):
    """
    Returns the sum of the items in the passed list.

    Usage:   lsum(inlist)"""
    s = 0
    for item in inlist:
        s = s + item
    return s


def lcumsum(inlist):
    """
    Returns a list consisting of the cumulative sum of the items in the
    passed list.

    Usage:   lcumsum(inlist)"""
    newlist = copy.deepcopy(inlist)
    for i in range(1, len(newlist)):
        newlist[i] = newlist[i] + newlist[i - 1]
    return newlist


def lss(inlist):
    """
    Squares each value in the passed list, adds up these squares and
    returns the result.

    Usage:   lss(inlist)"""
    ss = 0
    for item in inlist:
        ss = ss + item * item
    return ss


def lsummult(list1, list2):
    """
    Multiplies elements in list1 and list2, element by element, and
    returns the sum of all resulting multiplications.  Must provide equal
    length lists.

    Usage:   lsummult(list1,list2)"""
    if len(list1) != len(list2):
        raise ValueError("Lists not equal length in summult.")
    s = 0
    for item1, item2 in pstat.abut(list1, list2):
        s = s + item1 * item2
    return s


def lsumdiffsquared(x, y):
    """
    Takes pairwise differences of the values in lists x and y, squares
    these differences, and returns the sum of these squares.

    Usage:   lsumdiffsquared(x,y)
    Returns: sum[(x[i]-y[i])**2]"""
    sds = 0
    for i in range(len(x)):
        sds = sds + (x[i] - y[i]) ** 2
    return sds


def lsquare_of_sums(inlist):
    """
    Adds the values in the passed list, squares the sum, and returns
    the result.

    Usage:   lsquare_of_sums(inlist)
    Returns: sum(inlist[i])**2"""
    s = sum(inlist)
    return float(s) * s


def lshellsort(inlist):
    """
    Shellsort algorithm.  Sorts a 1D-list.

    Usage:   lshellsort(inlist)
    Returns: sorted-inlist, sorting-index-vector (for original list)"""
    n = len(inlist)
    svec = copy.deepcopy(inlist)
    ivec = list(range(n))
    gap = n / 2  # integer division needed
    while gap > 0:
        for i in range(gap, n):
            for j in range(i - gap, -1, -gap):
                while j >= 0 and svec[j] > svec[j + gap]:
                    temp = svec[j]
                    svec[j] = svec[j + gap]
                    svec[j + gap] = temp
                    itemp = ivec[j]
                    ivec[j] = ivec[j + gap]
                    ivec[j + gap] = itemp
        gap = gap / 2  # integer division needed
    # svec is now sorted inlist, and ivec has the order svec[i] = vec[ivec[i]]
    return svec, ivec


def lrankdata(inlist):
    """
    Ranks the data in inlist, dealing with ties appropritely.  Assumes
    a 1D inlist.  Adapted from Gary Perlman's |Stat ranksort.

    Usage:   lrankdata(inlist)
    Returns: a list of length equal to inlist, containing rank scores"""
    n = len(inlist)
    svec, ivec = shellsort(inlist)
    sumranks = 0
    dupcount = 0
    newlist = [0] * n
    for i in range(n):
        sumranks = sumranks + i
        dupcount = dupcount + 1
        if i == n - 1 or svec[i] != svec[i + 1]:
            averank = sumranks / float(dupcount) + 1
            for j in range(i - dupcount + 1, i + 1):
                newlist[ivec[j]] = averank
            sumranks = 0
            dupcount = 0
    return newlist


def outputpairedstats(
    fname, writemode, name1, n1, m1, se1, min1, max1, name2, n2, m2, se2, min2, max2, statname, stat, prob
):
    """
    Prints or write to a file stats for two groups, using the name, n,
    mean, sterr, min and max for each group, as well as the statistic name,
    its value, and the associated p-value.

    Usage:   outputpairedstats(fname,writemode,
                               name1,n1,mean1,stderr1,min1,max1,
                               name2,n2,mean2,stderr2,min2,max2,
                               statname,stat,prob)
    Returns: None"""
    suffix = ""  # for *s after the p-value
    try:
        prob.shape
        prob = prob[0]
    except Exception:
        pass
    if prob < 0.001:
        suffix = "  ***"
    elif prob < 0.01:
        suffix = "  **"
    elif prob < 0.05:
        suffix = "  *"
    title = [["Name", "N", "Mean", "SD", "Min", "Max"]]
    lofl = title + [
        [name1, n1, round(m1, 3), round(math.sqrt(se1), 3), min1, max1],
        [name2, n2, round(m2, 3), round(math.sqrt(se2), 3), min2, max2],
    ]
    if not isinstance(fname, str) or len(fname) == 0:
        print()
        print(statname)
        print()
        pstat.printcc(lofl)
        print()
        try:
            if stat.shape == ():
                stat = stat[0]
            if prob.shape == ():
                prob = prob[0]
        except Exception:
            pass
        print("Test statistic = ", round(stat, 3), "   p = ", round(prob, 3), suffix)
        print()
    else:
        file = open(fname, writemode)
        file.write("\n" + statname + "\n\n")
        file.close()
        writecc(lofl, fname, "a")
        file = open(fname, "a")
        try:
            if stat.shape == ():
                stat = stat[0]
            if prob.shape == ():
                prob = prob[0]
        except Exception:
            pass
        file.write(
            pstat.list2string(["\nTest statistic = ", round(stat, 4), "   p = ", round(prob, 4), suffix, "\n\n"])
        )
        file.close()
    return None


def lfindwithin(data):
    """
    Returns an integer representing a binary vector, where 1=within-
    subject factor, 0=between.  Input equals the entire data 2D list (i.e.,
    column 0=random factor, column -1=measured values (those two are skipped).
    Note: input data is in |Stat format ... a list of lists ("2D list") with
    one row per measured value, first column=subject identifier, last column=
    score, one in-between column per factor (these columns contain level
    designations on each factor).  See also stats.anova.__doc__.

    Usage:   lfindwithin(data)     data in |Stat format"""

    numfact = len(data[0]) - 1
    withinvec = 0
    for col in range(1, numfact):
        examplelevel = pstat.unique(pstat.colex(data, col))[0]
        rows = pstat.linexand(data, col, examplelevel)  # get 1 level of this factor
        factsubjs = pstat.unique(pstat.colex(rows, 0))
        allsubjs = pstat.unique(pstat.colex(data, 0))
        if len(factsubjs) == len(allsubjs):  # fewer Ss than scores on this factor?
            withinvec = withinvec + (1 << col)
    return withinvec


# DISPATCH LISTS AND TUPLES TO ABOVE FCNS

# CENTRAL TENDENCY:
geometricmean = Dispatch(
    (lgeometricmean, (list, tuple)),
)
harmonicmean = Dispatch(
    (lharmonicmean, (list, tuple)),
)
mean = Dispatch(
    (lmean, (list, tuple)),
)
median = Dispatch(
    (lmedian, (list, tuple)),
)
medianscore = Dispatch(
    (lmedianscore, (list, tuple)),
)
mode = Dispatch(
    (lmode, (list, tuple)),
)

# MOMENTS:
moment = Dispatch(
    (lmoment, (list, tuple)),
)
variation = Dispatch(
    (lvariation, (list, tuple)),
)
skew = Dispatch(
    (lskew, (list, tuple)),
)
kurtosis = Dispatch(
    (lkurtosis, (list, tuple)),
)
describe = Dispatch(
    (ldescribe, (list, tuple)),
)

# FREQUENCY STATISTICS:
itemfreq = Dispatch(
    (litemfreq, (list, tuple)),
)
scoreatpercentile = Dispatch(
    (lscoreatpercentile, (list, tuple)),
)
percentileofscore = Dispatch(
    (lpercentileofscore, (list, tuple)),
)
histogram = Dispatch(
    (lhistogram, (list, tuple)),
)
cumfreq = Dispatch(
    (lcumfreq, (list, tuple)),
)
relfreq = Dispatch(
    (lrelfreq, (list, tuple)),
)

# VARIABILITY:
obrientransform = Dispatch(
    (lobrientransform, (list, tuple)),
)
samplevar = Dispatch(
    (lsamplevar, (list, tuple)),
)
samplestdev = Dispatch(
    (lsamplestdev, (list, tuple)),
)
var = Dispatch(
    (lvar, (list, tuple)),
)
stdev = Dispatch(
    (lstdev, (list, tuple)),
)
sterr = Dispatch(
    (lsterr, (list, tuple)),
)
sem = Dispatch(
    (lsem, (list, tuple)),
)
z = Dispatch(
    (lz, (list, tuple)),
)
zs = Dispatch(
    (lzs, (list, tuple)),
)

# TRIMMING FCNS:
trimboth = Dispatch(
    (ltrimboth, (list, tuple)),
)
trim1 = Dispatch(
    (ltrim1, (list, tuple)),
)

# CORRELATION FCNS:
paired = Dispatch(
    (lpaired, (list, tuple)),
)
pearsonr = Dispatch(
    (lpearsonr, (list, tuple)),
)
spearmanr = Dispatch(
    (lspearmanr, (list, tuple)),
)
pointbiserialr = Dispatch(
    (lpointbiserialr, (list, tuple)),
)
kendalltau = Dispatch(
    (lkendalltau, (list, tuple)),
)
linregress = Dispatch(
    (llinregress, (list, tuple)),
)

# INFERENTIAL STATS:
ttest_1samp = Dispatch(
    (lttest_1samp, (list, tuple)),
)
ttest_ind = Dispatch(
    (lttest_ind, (list, tuple)),
)
ttest_rel = Dispatch(
    (lttest_rel, (list, tuple)),
)
chisquare = Dispatch(
    (lchisquare, (list, tuple)),
)
ks_2samp = Dispatch(
    (lks_2samp, (list, tuple)),
)
mannwhitneyu = Dispatch(
    (lmannwhitneyu, (list, tuple)),
)
ranksums = Dispatch(
    (lranksums, (list, tuple)),
)
tiecorrect = Dispatch(
    (ltiecorrect, (list, tuple)),
)
wilcoxont = Dispatch(
    (lwilcoxont, (list, tuple)),
)
kruskalwallish = Dispatch(
    (lkruskalwallish, (list, tuple)),
)
friedmanchisquare = Dispatch(
    (lfriedmanchisquare, (list, tuple)),
)

# PROBABILITY CALCS:
chisqprob = Dispatch(
    (lchisqprob, (int, float)),
)
zprob = Dispatch(
    (lzprob, (int, float)),
)
ksprob = Dispatch(
    (lksprob, (int, float)),
)
fprob = Dispatch(
    (lfprob, (int, float)),
)
betacf = Dispatch(
    (lbetacf, (int, float)),
)
betai = Dispatch(
    (lbetai, (int, float)),
)
erfcc = Dispatch(
    (lerfcc, (int, float)),
)
gammln = Dispatch(
    (lgammln, (int, float)),
)

# ANOVA FUNCTIONS:
F_oneway = Dispatch(
    (lF_oneway, (list, tuple)),
)
F_value = Dispatch(
    (lF_value, (list, tuple)),
)

# SUPPORT FUNCTIONS:
incr = Dispatch(
    (lincr, (list, tuple)),
)
sum = Dispatch(
    (lsum, (list, tuple)),
)
cumsum = Dispatch(
    (lcumsum, (list, tuple)),
)
ss = Dispatch(
    (lss, (list, tuple)),
)
summult = Dispatch(
    (lsummult, (list, tuple)),
)
square_of_sums = Dispatch(
    (lsquare_of_sums, (list, tuple)),
)
sumdiffsquared = Dispatch(
    (lsumdiffsquared, (list, tuple)),
)
shellsort = Dispatch(
    (lshellsort, (list, tuple)),
)
rankdata = Dispatch(
    (lrankdata, (list, tuple)),
)
findwithin = Dispatch(
    (lfindwithin, (list, tuple)),
)


# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
# =============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============

try:  # DEFINE THESE *ONLY* IF NUMERIC IS AVAILABLE
    import Numeric

    N = Numeric
    import LinearAlgebra

    LA = LinearAlgebra

    # ACENTRAL TENDENCY

    def ageometricmean(inarray, dimension=None, keepdims=0):
        """
        Calculates the geometric mean of the values in the passed array.
        That is:  n-th root of (x1 * x2 * ... * xn).  Defaults to ALL values in
        the passed array.  Use dimension=None to flatten array first.  REMEMBER: if
        dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
        if dimension is a sequence, it collapses over all specified dimensions.  If
        keepdims is set to 1, the resulting array will have as many dimensions as
        inarray, with only 1 'level' per dim that was collapsed over.

        Usage:   ageometricmean(inarray,dimension=None,keepdims=0)
        Returns: geometric mean computed over dim(s) listed in dimension
        """
        inarray = N.array(inarray, N.Float)
        if dimension is None:
            inarray = N.ravel(inarray)
            size = len(inarray)
            mult = N.power(inarray, 1.0 / size)
            mult = N.multiply.reduce(mult)
        elif type(dimension) in [int, float]:
            size = inarray.shape[dimension]
            mult = N.power(inarray, 1.0 / size)
            mult = N.multiply.reduce(mult, dimension)
            if keepdims == 1:
                shp = list(inarray.shape)
                shp[dimension] = 1
                N.reshape(sum, shp)
        else:  # must be a SEQUENCE of dims to average over
            dims = sorted(dimension)
            dims.reverse()
            size = N.array(N.multiply.reduce(N.take(inarray.shape, dims)), N.Float)
            mult = N.power(inarray, 1.0 / size)
            for dim in dims:
                mult = N.multiply.reduce(mult, dim)
            if keepdims == 1:
                shp = list(inarray.shape)
                for dim in dims:
                    shp[dim] = 1
                mult = N.reshape(mult, shp)
        return mult

    def aharmonicmean(inarray, dimension=None, keepdims=0):
        """
        Calculates the harmonic mean of the values in the passed array.
        That is:  n / (1/x1 + 1/x2 + ... + 1/xn).  Defaults to ALL values in
        the passed array.  Use dimension=None to flatten array first.  REMEMBER: if
        dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
        if dimension is a sequence, it collapses over all specified dimensions.  If
        keepdims is set to 1, the resulting array will have as many dimensions as
        inarray, with only 1 'level' per dim that was collapsed over.

        Usage:   aharmonicmean(inarray,dimension=None,keepdims=0)
        Returns: harmonic mean computed over dim(s) in dimension
        """
        inarray = inarray.astype(N.Float)
        if dimension is None:
            inarray = N.ravel(inarray)
            size = len(inarray)
            s = N.add.reduce(1.0 / inarray)
        elif type(dimension) in [int, float]:
            size = float(inarray.shape[dimension])
            s = N.add.reduce(1.0 / inarray, dimension)
            if keepdims == 1:
                shp = list(inarray.shape)
                shp[dimension] = 1
                s = N.reshape(s, shp)
        else:  # must be a SEQUENCE of dims to average over
            dims = sorted(dimension)
            nondims = []
            for i in range(len(inarray.shape)):
                if i not in dims:
                    nondims.append(i)
            tinarray = N.transpose(inarray, nondims + dims)  # put keep-dims first
            idx = [0] * len(nondims)
            if idx == []:
                size = len(N.ravel(inarray))
                s = asum(1.0 / inarray)
                if keepdims == 1:
                    s = N.reshape([s], N.ones(len(inarray.shape)))
            else:
                idx[0] = -1
                loopcap = N.array(tinarray.shape[0 : len(nondims)]) - 1
                s = N.zeros(loopcap + 1, N.Float)
                while incr(idx, loopcap) != -1:
                    s[idx] = asum(1.0 / tinarray[idx])
                size = N.multiply.reduce(N.take(inarray.shape, dims))
                if keepdims == 1:
                    shp = list(inarray.shape)
                    for dim in dims:
                        shp[dim] = 1
                    s = N.reshape(s, shp)
        return size / s

    def amean(inarray, dimension=None, keepdims=0):
        """
        Calculates the arithmatic mean of the values in the passed array.
        That is:  1/n * (x1 + x2 + ... + xn).  Defaults to ALL values in the
        passed array.  Use dimension=None to flatten array first.  REMEMBER: if
        dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
        if dimension is a sequence, it collapses over all specified dimensions.  If
        keepdims is set to 1, the resulting array will have as many dimensions as
        inarray, with only 1 'level' per dim that was collapsed over.

        Usage:   amean(inarray,dimension=None,keepdims=0)
        Returns: arithematic mean calculated over dim(s) in dimension
        """
        if inarray.typecode() in ["l", "s", "b"]:
            inarray = inarray.astype(N.Float)
        if dimension is None:
            inarray = N.ravel(inarray)
            sum = N.add.reduce(inarray)
            denom = float(len(inarray))
        elif type(dimension) in [int, float]:
            sum = asum(inarray, dimension)
            denom = float(inarray.shape[dimension])
            if keepdims == 1:
                shp = list(inarray.shape)
                shp[dimension] = 1
                sum = N.reshape(sum, shp)
        else:  # must be a TUPLE of dims to average over
            dims = sorted(dimension)
            dims.reverse()
            sum = inarray * 1.0
            for dim in dims:
                sum = N.add.reduce(sum, dim)
            denom = N.array(N.multiply.reduce(N.take(inarray.shape, dims)), N.Float)
            if keepdims == 1:
                shp = list(inarray.shape)
                for dim in dims:
                    shp[dim] = 1
                sum = N.reshape(sum, shp)
        return sum / denom

    def amedian(inarray, numbins=1000):
        """
        Calculates the COMPUTED median value of an array of numbers, given the
        number of bins to use for the histogram (more bins approaches finding the
        precise median value of the array; default number of bins = 1000).  From
        G.W. Heiman's Basic Stats, or CRC Probability & Statistics.
        NOTE:  THIS ROUTINE ALWAYS uses the entire passed array (flattens it first).

        Usage:   amedian(inarray,numbins=1000)
        Returns: median calculated over ALL values in inarray
        """
        inarray = N.ravel(inarray)
        (hist, smallest, binsize, extras) = ahistogram(inarray, numbins)
        cumhist = N.cumsum(hist)  # make cumulative histogram
        otherbins = N.greater_equal(cumhist, len(inarray) / 2.0)
        otherbins = list(otherbins)  # list of 0/1s, 1s start at median bin
        cfbin = otherbins.index(1)  # get 1st(!) index holding 50%ile score
        LRL = smallest + binsize * cfbin  # get lower read limit of that bin
        cfbelow = N.add.reduce(hist[0:cfbin])  # cum. freq. below bin
        freq = hist[cfbin]  # frequency IN the 50%ile bin
        median = LRL + ((len(inarray) / 2.0 - cfbelow) / float(freq)) * binsize  # MEDIAN
        return median

    def amedianscore(inarray, dimension=None):
        """
        Returns the 'middle' score of the passed array.  If there is an even
        number of scores, the mean of the 2 middle scores is returned.  Can function
        with 1D arrays, or on the FIRST dimension of 2D arrays (i.e., dimension can
        be None, to pre-flatten the array, or else dimension must equal 0).

        Usage:   amedianscore(inarray,dimension=None)
        Returns: 'middle' score of the array, or the mean of the 2 middle scores
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        inarray = N.sort(inarray, dimension)
        if inarray.shape[dimension] % 2 == 0:  # if even number of elements
            indx = inarray.shape[dimension] / 2  # integer division correct
            median = N.asarray(inarray[indx] + inarray[indx - 1]) / 2.0
        else:
            indx = inarray.shape[dimension] / 2  # integer division correct
            median = N.take(inarray, [indx], dimension)
            if median.shape == (1,):
                median = median[0]
        return median

    def amode(a, dimension=None):
        """
        Returns an array of the modal (most common) score in the passed array.
        If there is more than one such score, ONLY THE FIRST is returned.
        The bin-count for the modal values is also returned.  Operates on whole
        array (dimension=None), or on a given dimension.

        Usage:   amode(a, dimension=None)
        Returns: array of bin-counts for mode(s), array of corresponding modal values
        """

        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        scores = pstat.aunique(N.ravel(a))  # get ALL unique values
        testshape = list(a.shape)
        testshape[dimension] = 1
        oldmostfreq = N.zeros(testshape)
        oldcounts = N.zeros(testshape)
        for score in scores:
            template = N.equal(a, score)
            counts = asum(template, dimension, 1)
            mostfrequent = N.where(N.greater(counts, oldcounts), score, oldmostfreq)
            oldcounts = N.where(N.greater(counts, oldcounts), counts, oldcounts)
            oldmostfreq = mostfrequent
        return oldcounts, mostfrequent

    def atmean(a, limits=None, inclusive=(1, 1)):
        """
        Returns the arithmetic mean of all values in an array, ignoring values
        strictly outside the sequence passed to 'limits'.   Note: either limit
        in the sequence, or the value of limits itself, can be set to None.  The
        inclusive list/tuple determines whether the lower and upper limiting bounds
        (respectively) are open/exclusive (0) or closed/inclusive (1).

        Usage:   atmean(a,limits=None,inclusive=(1,1))
        """
        if a.typecode() in ["l", "s", "b"]:
            a = a.astype(N.Float)
        if limits is None:
            return mean(a)
        assert type(limits) in [list, tuple, N.ArrayType], "Wrong type for limits in atmean"
        if inclusive[0]:
            lowerfcn = N.greater_equal
        else:
            lowerfcn = N.greater
        if inclusive[1]:
            upperfcn = N.less_equal
        else:
            upperfcn = N.less
        if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
            raise ValueError("No array values within given limits (atmean).")
        elif limits[0] is None and limits[1] is not None:
            mask = upperfcn(a, limits[1])
        elif limits[0] is not None and limits[1] is None:
            mask = lowerfcn(a, limits[0])
        elif limits[0] is not None and limits[1] is not None:
            mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
        s = float(N.add.reduce(N.ravel(a * mask)))
        n = float(N.add.reduce(N.ravel(mask)))
        return s / n

    def atvar(a, limits=None, inclusive=(1, 1)):
        """
        Returns the sample variance of values in an array, (i.e., using N-1),
        ignoring values strictly outside the sequence passed to 'limits'.
        Note: either limit in the sequence, or the value of limits itself,
        can be set to None.  The inclusive list/tuple determines whether the lower
        and upper limiting bounds (respectively) are open/exclusive (0) or
        closed/inclusive (1).

        Usage:   atvar(a,limits=None,inclusive=(1,1))
        """
        a = a.astype(N.Float)
        if limits is None or limits == [None, None]:
            term1 = N.add.reduce(N.ravel(a * a))
            n = float(len(N.ravel(a))) - 1
            term2 = N.add.reduce(N.ravel(a)) ** 2 / n
            print(term1, term2, n)
            return (term1 - term2) / n
        assert type(limits) in [list, tuple, N.ArrayType], "Wrong type for limits in atvar"
        if inclusive[0]:
            lowerfcn = N.greater_equal
        else:
            lowerfcn = N.greater
        if inclusive[1]:
            upperfcn = N.less_equal
        else:
            upperfcn = N.less
        if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
            raise ValueError("No array values within given limits (atvar).")
        elif limits[0] is None and limits[1] is not None:
            mask = upperfcn(a, limits[1])
        elif limits[0] is not None and limits[1] is None:
            mask = lowerfcn(a, limits[0])
        elif limits[0] is not None and limits[1] is not None:
            mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
        term1 = N.add.reduce(N.ravel(a * a * mask))
        n = float(N.add.reduce(N.ravel(mask))) - 1
        term2 = N.add.reduce(N.ravel(a * mask)) ** 2 / n
        print(term1, term2, n)
        return (term1 - term2) / n

    def atmin(a, lowerlimit=None, dimension=None, inclusive=1):
        """
        Returns the minimum value of a, along dimension, including only values less
        than (or equal to, if inclusive=1) lowerlimit.  If the limit is set to None,
        all values in the array are used.

        Usage:   atmin(a,lowerlimit=None,dimension=None,inclusive=1)
        """
        if inclusive:
            lowerfcn = N.greater
        else:
            lowerfcn = N.greater_equal
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        if lowerlimit is None:
            lowerlimit = N.minimum.reduce(N.ravel(a)) - 11
        biggest = N.maximum.reduce(N.ravel(a))
        ta = N.where(lowerfcn(a, lowerlimit), a, biggest)
        return N.minimum.reduce(ta, dimension)

    def atmax(a, upperlimit, dimension=None, inclusive=1):
        """
        Returns the maximum value of a, along dimension, including only values greater
        than (or equal to, if inclusive=1) upperlimit.  If the limit is set to None,
        a limit larger than the max value in the array is used.

        Usage:   atmax(a,upperlimit,dimension=None,inclusive=1)
        """
        if inclusive:
            upperfcn = N.less
        else:
            upperfcn = N.less_equal
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        if upperlimit is None:
            upperlimit = N.maximum.reduce(N.ravel(a)) + 1
        smallest = N.minimum.reduce(N.ravel(a))
        ta = N.where(upperfcn(a, upperlimit), a, smallest)
        return N.maximum.reduce(ta, dimension)

    def atstdev(a, limits=None, inclusive=(1, 1)):
        """
        Returns the standard deviation of all values in an array, ignoring values
        strictly outside the sequence passed to 'limits'.   Note: either limit
        in the sequence, or the value of limits itself, can be set to None.  The
        inclusive list/tuple determines whether the lower and upper limiting bounds
        (respectively) are open/exclusive (0) or closed/inclusive (1).

        Usage:   atstdev(a,limits=None,inclusive=(1,1))
        """
        return N.sqrt(tvar(a, limits, inclusive))

    def atsem(a, limits=None, inclusive=(1, 1)):
        """
        Returns the standard error of the mean for the values in an array,
        (i.e., using N for the denominator), ignoring values strictly outside
        the sequence passed to 'limits'.   Note: either limit in the sequence,
        or the value of limits itself, can be set to None.  The inclusive list/tuple
        determines whether the lower and upper limiting bounds (respectively) are
        open/exclusive (0) or closed/inclusive (1).

        Usage:   atsem(a,limits=None,inclusive=(1,1))
        """
        sd = tstdev(a, limits, inclusive)
        if limits is None or limits == [None, None]:
            n = float(len(N.ravel(a)))
        assert type(limits) in [list, tuple, N.ArrayType], "Wrong type for limits in atsem"
        if inclusive[0]:
            lowerfcn = N.greater_equal
        else:
            lowerfcn = N.greater
        if inclusive[1]:
            upperfcn = N.less_equal
        else:
            upperfcn = N.less
        if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
            raise ValueError("No array values within given limits (atsem).")
        elif limits[0] is None and limits[1] is not None:
            mask = upperfcn(a, limits[1])
        elif limits[0] is not None and limits[1] is None:
            mask = lowerfcn(a, limits[0])
        elif limits[0] is not None and limits[1] is not None:
            mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
        N.add.reduce(N.ravel(a * a * mask))
        n = float(N.add.reduce(N.ravel(mask)))
        return sd / math.sqrt(n)

    # AMOMENTS

    def amoment(a, moment=1, dimension=None):
        """
        Calculates the nth moment about the mean for a sample (defaults to the
        1st moment).  Generally used to calculate coefficients of skewness and
        kurtosis.  Dimension can equal None (ravel array first), an integer
        (the dimension over which to operate), or a sequence (operate over
        multiple dimensions).

        Usage:   amoment(a,moment=1,dimension=None)
        Returns: appropriate moment along given dimension
        """
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        if moment == 1:
            return 0.0
        else:
            mn = amean(a, dimension, 1)  # 1=keepdims
            s = N.power((a - mn), moment)
            return amean(s, dimension)

    def avariation(a, dimension=None):
        """
        Returns the coefficient of variation, as defined in CRC Standard
        Probability and Statistics, p.6. Dimension can equal None (ravel array
        first), an integer (the dimension over which to operate), or a
        sequence (operate over multiple dimensions).

        Usage:   avariation(a,dimension=None)
        """
        return 100.0 * asamplestdev(a, dimension) / amean(a, dimension)

    def askew(a, dimension=None):
        """
        Returns the skewness of a distribution (normal ==> 0.0; >0 means extra
        weight in left tail).  Use askewtest() to see if it's close enough.
        Dimension can equal None (ravel array first), an integer (the
        dimension over which to operate), or a sequence (operate over multiple
        dimensions).

        Usage:   askew(a, dimension=None)
        Returns: skew of vals in a along dimension, returning ZERO where all vals equal
        """
        denom = N.power(amoment(a, 2, dimension), 1.5)
        zero = N.equal(denom, 0)
        if isinstance(denom, N.ArrayType) and asum(zero) != 0:
            print("Number of zeros in askew: ", asum(zero))
        denom = denom + zero  # prevent divide-by-zero
        return N.where(zero, 0, amoment(a, 3, dimension) / denom)

    def akurtosis(a, dimension=None):
        """
        Returns the kurtosis of a distribution (normal ==> 3.0; >3 means
        heavier in the tails, and usually more peaked).  Use akurtosistest()
        to see if it's close enough.  Dimension can equal None (ravel array
        first), an integer (the dimension over which to operate), or a
        sequence (operate over multiple dimensions).

        Usage:   akurtosis(a,dimension=None)
        Returns: kurtosis of values in a along dimension, and ZERO where all vals equal
        """
        denom = N.power(amoment(a, 2, dimension), 2)
        zero = N.equal(denom, 0)
        if isinstance(denom, N.ArrayType) and asum(zero) != 0:
            print("Number of zeros in akurtosis: ", asum(zero))
        denom = denom + zero  # prevent divide-by-zero
        return N.where(zero, 0, amoment(a, 4, dimension) / denom)

    def adescribe(inarray, dimension=None):
        """
        Returns several descriptive statistics of the passed array.  Dimension
        can equal None (ravel array first), an integer (the dimension over
        which to operate), or a sequence (operate over multiple dimensions).

        Usage:   adescribe(inarray,dimension=None)
        Returns: n, (min,max), mean, standard deviation, skew, kurtosis
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        n = inarray.shape[dimension]
        mm = (N.minimum.reduce(inarray), N.maximum.reduce(inarray))
        m = amean(inarray, dimension)
        sd = astdev(inarray, dimension)
        skew = askew(inarray, dimension)
        kurt = akurtosis(inarray, dimension)
        return n, mm, m, sd, skew, kurt

    # NORMALITY TESTS

    def askewtest(a, dimension=None):
        """
        Tests whether the skew is significantly different from a normal
        distribution.  Dimension can equal None (ravel array first), an
        integer (the dimension over which to operate), or a sequence (operate
        over multiple dimensions).

        Usage:   askewtest(a,dimension=None)
        Returns: z-score and 2-tail z-probability
        """
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        b2 = askew(a, dimension)
        n = float(a.shape[dimension])
        y = b2 * N.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
        beta2 = (3.0 * (n * n + 27 * n - 70) * (n + 1) * (n + 3)) / ((n - 2.0) * (n + 5) * (n + 7) * (n + 9))
        W2 = -1 + N.sqrt(2 * (beta2 - 1))
        delta = 1 / N.sqrt(N.log(N.sqrt(W2)))
        alpha = N.sqrt(2 / (W2 - 1))
        y = N.where(N.equal(y, 0), 1, y)
        Z = delta * N.log(y / alpha + N.sqrt((y / alpha) ** 2 + 1))
        return Z, (1.0 - zprob(Z)) * 2

    def akurtosistest(a, dimension=None):
        """
        Tests whether a dataset has normal kurtosis (i.e.,
        kurtosis=3(n-1)/(n+1)) Valid only for n>20.  Dimension can equal None
        (ravel array first), an integer (the dimension over which to operate),
        or a sequence (operate over multiple dimensions).

        Usage:   akurtosistest(a,dimension=None)
        Returns: z-score and 2-tail z-probability, returns 0 for bad pixels
        """
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        n = float(a.shape[dimension])
        if n < 20:
            print("akurtosistest only valid for n>=20 ... continuing anyway, n=", n)
        b2 = akurtosis(a, dimension)
        E = 3.0 * (n - 1) / (n + 1)
        varb2 = 24.0 * n * (n - 2) * (n - 3) / ((n + 1) * (n + 1) * (n + 3) * (n + 5))
        x = (b2 - E) / N.sqrt(varb2)
        sqrtbeta1 = (
            6.0
            * (n * n - 5 * n + 2)
            / ((n + 7) * (n + 9))
            * N.sqrt((6.0 * (n + 3) * (n + 5)) / (n * (n - 2) * (n - 3)))
        )
        A = 6.0 + 8.0 / sqrtbeta1 * (2.0 / sqrtbeta1 + N.sqrt(1 + 4.0 / (sqrtbeta1**2)))
        term1 = 1 - 2 / (9.0 * A)
        denom = 1 + x * N.sqrt(2 / (A - 4.0))
        denom = N.where(N.less(denom, 0), 99, denom)
        term2 = N.where(N.equal(denom, 0), term1, N.power((1 - 2.0 / A) / denom, 1 / 3.0))
        Z = (term1 - term2) / N.sqrt(2 / (9.0 * A))
        Z = N.where(N.equal(denom, 99), 0, Z)
        return Z, (1.0 - zprob(Z)) * 2

    def anormaltest(a, dimension=None):
        """
        Tests whether skew and/OR kurtosis of dataset differs from normal
        curve.  Can operate over multiple dimensions.  Dimension can equal
        None (ravel array first), an integer (the dimension over which to
        operate), or a sequence (operate over multiple dimensions).

        Usage:   anormaltest(a,dimension=None)
        Returns: z-score and 2-tail probability
        """
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        s, p = askewtest(a, dimension)
        k, p = akurtosistest(a, dimension)
        k2 = N.power(s, 2) + N.power(k, 2)
        return k2, achisqprob(k2, 2)

    # AFREQUENCY FUNCTIONS

    def aitemfreq(a):
        """
        Returns a 2D array of item frequencies.  Column 1 contains item values,
        column 2 contains their respective counts.  Assumes a 1D array is passed.

        Usage:   aitemfreq(a)
        Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)
        """
        scores = pstat.aunique(a)
        scores = N.sort(scores)
        freq = N.zeros(len(scores))
        for i in range(len(scores)):
            freq[i] = N.add.reduce(N.equal(a, scores[i]))
        return N.array(pstat.aabut(scores, freq))

    def ascoreatpercentile(inarray, percent):
        """
        Usage:   ascoreatpercentile(inarray,percent)   0<percent<100
        Returns: score at given percentile, relative to inarray distribution
        """
        percent = percent / 100.0
        targetcf = percent * len(inarray)
        h, lrl, binsize, extras = histogram(inarray)
        cumhist = cumsum(h * 1)
        for i in range(len(cumhist)):
            if cumhist[i] >= targetcf:
                break
        score = binsize * ((targetcf - cumhist[i - 1]) / float(h[i])) + (lrl + binsize * i)
        return score

    def apercentileofscore(inarray, score, histbins=10, defaultlimits=None):
        """
        Note: result of this function depends on the values used to histogram
        the data(!).

        Usage:   apercentileofscore(inarray,score,histbins=10,defaultlimits=None)
        Returns: percentile-position of score (0-100) relative to inarray
        """
        h, lrl, binsize, extras = histogram(inarray, histbins, defaultlimits)
        cumhist = cumsum(h * 1)
        i = int((score - lrl) / float(binsize))
        pct = (cumhist[i - 1] + ((score - (lrl + binsize * i)) / float(binsize)) * h[i]) / float(len(inarray)) * 100
        return pct

    def ahistogram(inarray, numbins=10, defaultlimits=None, printextras=1):
        """
        Returns (i) an array of histogram bin counts, (ii) the smallest value
        of the histogram binning, and (iii) the bin width (the last 2 are not
        necessarily integers).  Default number of bins is 10.  Defaultlimits
        can be None (the routine picks bins spanning all the numbers in the
        inarray) or a 2-sequence (lowerlimit, upperlimit).  Returns all of the
        following: array of bin values, lowerreallimit, binsize, extrapoints.

        Usage:   ahistogram(inarray,numbins=10,defaultlimits=None,printextras=1)
        Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)
        """
        inarray = N.ravel(inarray)  # flatten any >1D arrays
        if defaultlimits is not None:
            lowerreallimit = defaultlimits[0]
            upperreallimit = defaultlimits[1]
            binsize = (upperreallimit - lowerreallimit) / float(numbins)
        else:
            Min = N.minimum.reduce(inarray)
            Max = N.maximum.reduce(inarray)
            estbinwidth = float(Max - Min) / float(numbins) + 1
            binsize = (Max - Min + estbinwidth) / float(numbins)
            lowerreallimit = Min - binsize / 2.0  # lower real limit,1st bin
        bins = N.zeros(numbins)
        extrapoints = 0
        for num in inarray:
            try:
                if (num - lowerreallimit) < 0:
                    extrapoints = extrapoints + 1
                else:
                    bintoincrement = int((num - lowerreallimit) / float(binsize))
                    bins[bintoincrement] = bins[bintoincrement] + 1
            except Exception:  # point outside lower/upper limits
                extrapoints = extrapoints + 1
        if extrapoints > 0 and printextras == 1:
            print("\nPoints outside given histogram range =", extrapoints)
        return (bins, lowerreallimit, binsize, extrapoints)

    def acumfreq(a, numbins=10, defaultreallimits=None):
        """
        Returns a cumulative frequency histogram, using the histogram function.
        Defaultreallimits can be None (use all data), or a 2-sequence containing
        lower and upper limits on values to include.

        Usage:   acumfreq(a,numbins=10,defaultreallimits=None)
        Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
        """
        h, l, b, e = histogram(a, numbins, defaultreallimits)
        cumhist = cumsum(h * 1)
        return cumhist, l, b, e

    def arelfreq(a, numbins=10, defaultreallimits=None):
        """
        Returns a relative frequency histogram, using the histogram function.
        Defaultreallimits can be None (use all data), or a 2-sequence containing
        lower and upper limits on values to include.

        Usage:   arelfreq(a,numbins=10,defaultreallimits=None)
        Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
        """
        h, l, b, e = histogram(a, numbins, defaultreallimits)
        h = N.array(h / float(a.shape[0]))
        return h, l, b, e

    # AVARIABILITY FUNCTIONS

    def aobrientransform(*args):
        """
        Computes a transform on input data (any number of columns).  Used to
        test for homogeneity of variance prior to running one-way stats.  Each
        array in *args is one level of a factor.  If an F_oneway() run on the
        transformed data and found significant, variances are unequal.   From
        Maxwell and Delaney, p.112.

        Usage:   aobrientransform(*args)    *args = 1D arrays, one per level of factor
        Returns: transformed data for use in an ANOVA
        """
        TINY = 1e-10
        k = len(args)
        n = N.zeros(k, N.Float)
        v = N.zeros(k, N.Float)
        m = N.zeros(k, N.Float)
        nargs = []
        for i in range(k):
            nargs.append(args[i].astype(N.Float))
            n[i] = float(len(nargs[i]))
            v[i] = var(nargs[i])
            m[i] = mean(nargs[i])
        for j in range(k):
            for i in range(n[j]):
                t1 = (n[j] - 1.5) * n[j] * (nargs[j][i] - m[j]) ** 2
                t2 = 0.5 * v[j] * (n[j] - 1.0)
                t3 = (n[j] - 1.0) * (n[j] - 2.0)
                nargs[j][i] = (t1 - t2) / float(t3)
        check = 1
        for j in range(k):
            if v[j] - mean(nargs[j]) > TINY:
                check = 0
        if check != 1:
            raise ValueError("Lack of convergence in obrientransform.")
        else:
            return N.array(nargs)

    def asamplevar(inarray, dimension=None, keepdims=0):
        """
        Returns the sample standard deviation of the values in the passed
        array (i.e., using N).  Dimension can equal None (ravel array first),
        an integer (the dimension over which to operate), or a sequence
        (operate over multiple dimensions).  Set keepdims=1 to return an array
        with the same number of dimensions as inarray.

        Usage:   asamplevar(inarray,dimension=None,keepdims=0)
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        if dimension == 1:
            mn = amean(inarray, dimension)[:, N.NewAxis]
        else:
            mn = amean(inarray, dimension, keepdims=1)
        deviations = inarray - mn
        if isinstance(dimension, list):
            n = 1
            for d in dimension:
                n = n * inarray.shape[d]
        else:
            n = inarray.shape[dimension]
        svar = ass(deviations, dimension, keepdims) / float(n)
        return svar

    def asamplestdev(inarray, dimension=None, keepdims=0):
        """
        Returns the sample standard deviation of the values in the passed
        array (i.e., using N).  Dimension can equal None (ravel array first),
        an integer (the dimension over which to operate), or a sequence
        (operate over multiple dimensions).  Set keepdims=1 to return an array
        with the same number of dimensions as inarray.

        Usage:   asamplestdev(inarray,dimension=None,keepdims=0)
        """
        return N.sqrt(asamplevar(inarray, dimension, keepdims))

    def asignaltonoise(instack, dimension=0):
        """
        Calculates signal-to-noise.  Dimension can equal None (ravel array
        first), an integer (the dimension over which to operate), or a
        sequence (operate over multiple dimensions).

        Usage:   asignaltonoise(instack,dimension=0):
        Returns: array containing the value of (mean/stdev) along dimension,
                 or 0 when stdev=0
        """
        m = mean(instack, dimension)
        sd = stdev(instack, dimension)
        return N.where(N.equal(sd, 0), 0, m / sd)

    def avar(inarray, dimension=None, keepdims=0):
        """
        Returns the estimated population variance of the values in the passed
        array (i.e., N-1).  Dimension can equal None (ravel array first), an
        integer (the dimension over which to operate), or a sequence (operate
        over multiple dimensions).  Set keepdims=1 to return an array with the
        same number of dimensions as inarray.

        Usage:   avar(inarray,dimension=None,keepdims=0)
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        mn = amean(inarray, dimension, 1)
        deviations = inarray - mn
        if isinstance(dimension, list):
            n = 1
            for d in dimension:
                n = n * inarray.shape[d]
        else:
            n = inarray.shape[dimension]
        var = ass(deviations, dimension, keepdims) / float(n - 1)
        return var

    def astdev(inarray, dimension=None, keepdims=0):
        """
        Returns the estimated population standard deviation of the values in
        the passed array (i.e., N-1).  Dimension can equal None (ravel array
        first), an integer (the dimension over which to operate), or a
        sequence (operate over multiple dimensions).  Set keepdims=1 to return
        an array with the same number of dimensions as inarray.

        Usage:   astdev(inarray,dimension=None,keepdims=0)
        """
        return N.sqrt(avar(inarray, dimension, keepdims))

    def asterr(inarray, dimension=None, keepdims=0):
        """
        Returns the estimated population standard error of the values in the
        passed array (i.e., N-1).  Dimension can equal None (ravel array
        first), an integer (the dimension over which to operate), or a
        sequence (operate over multiple dimensions).  Set keepdims=1 to return
        an array with the same number of dimensions as inarray.

        Usage:   asterr(inarray,dimension=None,keepdims=0)
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        return astdev(inarray, dimension, keepdims) / float(N.sqrt(inarray.shape[dimension]))

    def asem(inarray, dimension=None, keepdims=0):
        """
        Returns the standard error of the mean (i.e., using N) of the values
        in the passed array.  Dimension can equal None (ravel array first), an
        integer (the dimension over which to operate), or a sequence (operate
        over multiple dimensions).  Set keepdims=1 to return an array with the
        same number of dimensions as inarray.

        Usage:   asem(inarray,dimension=None, keepdims=0)
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        if isinstance(dimension, list):
            n = 1
            for d in dimension:
                n = n * inarray.shape[d]
        else:
            n = inarray.shape[dimension]
        s = asamplestdev(inarray, dimension, keepdims) / N.sqrt(n - 1)
        return s

    def az(a, score):
        """
        Returns the z-score of a given input score, given thearray from which
        that score came.  Not appropriate for population calculations, nor for
        arrays > 1D.

        Usage:   az(a, score)
        """
        z = (score - amean(a)) / asamplestdev(a)
        return z

    def azs(a):
        """
        Returns a 1D array of z-scores, one for each score in the passed array,
        computed relative to the passed array.

        Usage:   azs(a)
        """
        zscores = []
        for item in a:
            zscores.append(z(a, item))
        return N.array(zscores)

    def azmap(scores, compare, dimension=0):
        """
        Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to
        array passed to compare (e.g., [time,x,y]).  Assumes collapsing over dim 0
        of the compare array.

        Usage:   azs(scores, compare, dimension=0)
        """
        mns = amean(compare, dimension)
        sstd = asamplestdev(compare, 0)
        return (scores - mns) / sstd

    # ATRIMMING FUNCTIONS

    def around(a, digits=1):
        """
        Rounds all values in array a to 'digits' decimal places.

        Usage:   around(a,digits)
        Returns: a, where each value is rounded to 'digits' decimals
        """

        def ar(x, d=digits):
            return round(x, d)

        if not isinstance(a, N.ArrayType):
            try:
                a = N.array(a)
            except Exception:
                a = N.array(a, "O")
        shp = a.shape
        if a.typecode() in ["f", "F", "d", "D"]:
            b = N.ravel(a)
            b = N.array([ar(_) for _ in b])
            b.shape = shp
        elif a.typecode() in ["o", "O"]:
            b = N.ravel(a) * 1
            for i in range(len(b)):
                if isinstance(b[i], float):
                    b[i] = round(b[i], digits)
            b.shape = shp
        else:  # not a float, double or Object array
            b = a * 1
        return b

    def athreshold(a, threshmin=None, threshmax=None, newval=0):
        """
        Like Numeric.clip() except that values <threshmid or >threshmax are replaced
        by newval instead of by threshmin/threshmax (respectively).

        Usage:   athreshold(a,threshmin=None,threshmax=None,newval=0)
        Returns: a, with values <threshmin or >threshmax replaced with newval
        """
        mask = N.zeros(a.shape)
        if threshmin is not None:
            mask = mask + N.where(N.less(a, threshmin), 1, 0)
        if threshmax is not None:
            mask = mask + N.where(N.greater(a, threshmax), 1, 0)
        mask = N.clip(mask, 0, 1)
        return N.where(mask, newval, a)

    def atrimboth(a, proportiontocut):
        """
        Slices off the passed proportion of items from BOTH ends of the passed
        array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND
        'rightmost' 10% of scores.  You must pre-sort the array if you want
        "proper" trimming.  Slices off LESS if proportion results in a
        non-integer slice index (i.e., conservatively slices off
        proportiontocut).

        Usage:   atrimboth (a,proportiontocut)
        Returns: trimmed version of array a
        """
        lowercut = int(proportiontocut * len(a))
        uppercut = len(a) - lowercut
        return a[lowercut:uppercut]

    def atrim1(a, proportiontocut, tail="right"):
        """
        Slices off the passed proportion of items from ONE end of the passed
        array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
        10% of scores).  Slices off LESS if proportion results in a non-integer
        slice index (i.e., conservatively slices off proportiontocut).

        Usage:   atrim1(a,proportiontocut,tail='right')  or set tail='left'
        Returns: trimmed version of array a
        """
        if string.lower(tail) == "right":
            lowercut = 0
            uppercut = len(a) - int(proportiontocut * len(a))
        elif string.lower(tail) == "left":
            lowercut = int(proportiontocut * len(a))
            uppercut = len(a)
        return a[lowercut:uppercut]

    # ACORRELATION FUNCTIONS

    def acovariance(X):
        """
        Computes the covariance matrix of a matrix X.  Requires a 2D matrix input.

        Usage:   acovariance(X)
        Returns: covariance matrix of X
        """
        if len(X.shape) != 2:
            raise TypeError("acovariance requires 2D matrices")
        n = X.shape[0]
        mX = amean(X, 0)
        return N.dot(N.transpose(X), X) / float(n) - N.multiply.outer(mX, mX)

    def acorrelation(X):
        """
        Computes the correlation matrix of a matrix X.  Requires a 2D matrix input.

        Usage:   acorrelation(X)
        Returns: correlation matrix of X
        """
        C = acovariance(X)
        V = N.diagonal(C)
        return C / N.sqrt(N.multiply.outer(V, V))

    def apaired(x, y):
        """
        Interactively determines the type of data in x and y, and then runs the
        appropriated statistic for paired group data.

        Usage:   apaired(x,y)     x,y = the two arrays of values to be compared
        Returns: appropriate statistic name, value, and probability
        """
        samples = ""
        while samples not in ["i", "r", "I", "R", "c", "C"]:
            print("\nIndependent or related samples, or correlation (i,r,c): ", end=" ")
            samples = input()

        if samples in ["i", "I", "r", "R"]:
            print("\nComparing variances ...", end=" ")
            # USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
            r = obrientransform(x, y)
            f, p = F_oneway(pstat.colex(r, 0), pstat.colex(r, 1))
            if p < 0.05:
                vartype = "unequal, p=" + str(round(p, 4))
            else:
                vartype = "equal"
            print(vartype)
            if samples in ["i", "I"]:
                if vartype[0] == "e":
                    t, p = ttest_ind(x, y, None, 0)
                    print("\nIndependent samples t-test:  ", round(t, 4), round(p, 4))
                else:
                    if len(x) > 20 or len(y) > 20:
                        z, p = ranksums(x, y)
                        print("\nRank Sums test (NONparametric, n>20):  ", round(z, 4), round(p, 4))
                    else:
                        u, p = mannwhitneyu(x, y)
                        print("\nMann-Whitney U-test (NONparametric, ns<20):  ", round(u, 4), round(p, 4))

            else:  # RELATED SAMPLES
                if vartype[0] == "e":
                    t, p = ttest_rel(x, y, 0)
                    print("\nRelated samples t-test:  ", round(t, 4), round(p, 4))
                else:
                    t, p = ranksums(x, y)
                    print("\nWilcoxon T-test (NONparametric):  ", round(t, 4), round(p, 4))
        else:  # CORRELATION ANALYSIS
            corrtype = ""
            while corrtype not in ["c", "C", "r", "R", "d", "D"]:
                print("\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ", end=" ")
                corrtype = input()
            if corrtype in ["c", "C"]:
                m, b, r, p, see = linregress(x, y)
                print("\nLinear regression for continuous variables ...")
                lol = [
                    ["Slope", "Intercept", "r", "Prob", "SEestimate"],
                    [round(m, 4), round(b, 4), round(r, 4), round(p, 4), round(see, 4)],
                ]
                pstat.printcc(lol)
            elif corrtype in ["r", "R"]:
                r, p = spearmanr(x, y)
                print("\nCorrelation for ranked variables ...")
                print("Spearman's r: ", round(r, 4), round(p, 4))
            else:  # DICHOTOMOUS
                r, p = pointbiserialr(x, y)
                print("\nAssuming x contains a dichotomous variable ...")
                print("Point Biserial r: ", round(r, 4), round(p, 4))
        print("\n\n")
        return None

    def apearsonr(x, y, verbose=1):
        """
        Calculates a Pearson correlation coefficient and returns p.  Taken
        from Heiman's Basic Statistics for the Behav. Sci (2nd), p.195.

        Usage:   apearsonr(x,y,verbose=1)      where x,y are equal length arrays
        Returns: Pearson's r, two-tailed p-value
        """
        TINY = 1.0e-20
        n = len(x)
        r_num = n * (N.add.reduce(x * y)) - N.add.reduce(x) * N.add.reduce(y)
        r_den = math.sqrt((n * ass(x) - asquare_of_sums(x)) * (n * ass(y) - asquare_of_sums(y)))
        r = r_num / r_den
        df = n - 2
        t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
        prob = abetai(0.5 * df, 0.5, df / (df + t * t), verbose)
        return r, prob

    def aspearmanr(x, y):
        """
        Calculates a Spearman rank-order correlation coefficient.  Taken
        from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.

        Usage:   aspearmanr(x,y)      where x,y are equal-length arrays
        Returns: Spearman's r, two-tailed p-value
        """
        n = len(x)
        rankx = rankdata(x)
        ranky = rankdata(y)
        dsq = N.add.reduce((rankx - ranky) ** 2)
        rs = 1 - 6 * dsq / float(n * (n**2 - 1))
        t = rs * math.sqrt((n - 2) / ((rs + 1.0) * (1.0 - rs)))
        df = n - 2
        probrs = abetai(0.5 * df, 0.5, df / (df + t * t))
        # probability values for rs are from part 2 of the spearman function in
        # Numerical Recipies, p.510.  They close to tables, but not exact.(?)
        return rs, probrs

    def apointbiserialr(x, y):
        """
        Calculates a point-biserial correlation coefficient and the associated
        probability value.  Taken from Heiman's Basic Statistics for the Behav.
        Sci (1st), p.194.

        Usage:   apointbiserialr(x,y)      where x,y are equal length arrays
        Returns: Point-biserial r, two-tailed p-value
        """
        TINY = 1e-30
        categories = pstat.aunique(x)
        data = pstat.aabut(x, y)
        if len(categories) != 2:
            raise ValueError("Exactly 2 categories required (in x) for pointbiserialr().")
        else:  # there are 2 categories, continue
            codemap = pstat.aabut(categories, N.arange(2))
            pstat.arecode(data, codemap, 0)  # recoded
            x = pstat.alinexand(data, 0, categories[0])
            y = pstat.alinexand(data, 0, categories[1])
            xmean = amean(pstat.acolex(x, 1))
            ymean = amean(pstat.acolex(y, 1))
            n = len(data)
            adjust = math.sqrt((len(x) / float(n)) * (len(y) / float(n)))
            rpb = (ymean - xmean) / asamplestdev(pstat.acolex(data, 1)) * adjust
            df = n - 2
            t = rpb * math.sqrt(df / ((1.0 - rpb + TINY) * (1.0 + rpb + TINY)))
            prob = abetai(0.5 * df, 0.5, df / (df + t * t))
            return rpb, prob

    def akendalltau(x, y):
        """
        Calculates Kendall's tau ... correlation of ordinal data.  Adapted
        from function kendl1 in Numerical Recipies.  Needs good test-cases.@@@

        Usage:   akendalltau(x,y)
        Returns: Kendall's tau, two-tailed p-value
        """
        n1 = 0
        n2 = 0
        iss = 0
        for j in range(len(x) - 1):
            for k in range(j, len(y)):
                a1 = x[j] - x[k]
                a2 = y[j] - y[k]
                aa = a1 * a2
                if aa:  # neither array has a tie
                    n1 = n1 + 1
                    n2 = n2 + 1
                    if aa > 0:
                        iss = iss + 1
                    else:
                        iss = iss - 1
                else:
                    if a1:
                        n1 = n1 + 1
                    else:
                        n2 = n2 + 1
        tau = iss / math.sqrt(n1 * n2)
        svar = (4.0 * len(x) + 10.0) / (9.0 * len(x) * (len(x) - 1))
        z = tau / math.sqrt(svar)
        prob = erfcc(abs(z) / 1.4142136)
        return tau, prob

    def alinregress(*args):
        """
        Calculates a regression line on two arrays, x and y, corresponding to x,y
        pairs.  If a single 2D array is passed, alinregress finds dim with 2 levels
        and splits data into x,y pairs along that dim.

        Usage:   alinregress(*args)    args=2 equal-length arrays, or one 2D array
        Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate
        """
        TINY = 1.0e-20
        if len(args) == 1:  # more than 1D array?
            args = args[0]
            if len(args) == 2:
                x = args[0]
                y = args[1]
            else:
                x = args[:, 0]
                y = args[:, 1]
        else:
            x = args[0]
            y = args[1]
        n = len(x)
        xmean = amean(x)
        ymean = amean(y)
        r_num = n * (N.add.reduce(x * y)) - N.add.reduce(x) * N.add.reduce(y)
        r_den = math.sqrt((n * ass(x) - asquare_of_sums(x)) * (n * ass(y) - asquare_of_sums(y)))
        r = r_num / r_den
        df = n - 2
        t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
        prob = abetai(0.5 * df, 0.5, df / (df + t * t))
        slope = r_num / (float(n) * ass(x) - asquare_of_sums(x))
        intercept = ymean - slope * xmean
        sterrest = math.sqrt(1 - r * r) * asamplestdev(y)
        return slope, intercept, r, prob, sterrest

    # AINFERENTIAL STATISTICS

    def attest_1samp(a, popmean, printit=0, name="Sample", writemode="a"):
        """
        Calculates the t-obtained for the independent samples T-test on ONE group
        of scores a, given a population mean.  If printit=1, results are printed
        to the screen.  If printit='filename', the results are output to 'filename'
        using the given writemode (default=append).  Returns t-value, and prob.

        Usage:   attest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
        Returns: t-value, two-tailed prob
        """
        if not isinstance(a, N.ArrayType):
            a = N.array(a)
        x = amean(a)
        v = avar(a)
        n = len(a)
        df = n - 1
        svar = ((n - 1) * v) / float(df)
        t = (x - popmean) / math.sqrt(svar * (1.0 / n))
        prob = abetai(0.5 * df, 0.5, df / (df + t * t))

        if printit != 0:
            statname = "Single-sample T-test."
            outputpairedstats(
                printit,
                writemode,
                "Population",
                "--",
                popmean,
                0,
                0,
                0,
                name,
                n,
                x,
                v,
                N.minimum.reduce(N.ravel(a)),
                N.maximum.reduce(N.ravel(a)),
                statname,
                t,
                prob,
            )
        return t, prob

    def attest_ind(a, b, dimension=None, printit=0, name1="Samp1", name2="Samp2", writemode="a"):
        """
        Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores
        a, and b.  From Numerical Recipies, p.483.  If printit=1, results are
        printed to the screen.  If printit='filename', the results are output
        to 'filename' using the given writemode (default=append).  Dimension
        can equal None (ravel array first), or an integer (the dimension over
        which to operate on a and b).

        Usage:   attest_ind (a,b,dimension=None,printit=0,
                             Name1='Samp1',Name2='Samp2',writemode='a')
        Returns: t-value, two-tailed p-value
        """
        if dimension is None:
            a = N.ravel(a)
            b = N.ravel(b)
            dimension = 0
        x1 = amean(a, dimension)
        x2 = amean(b, dimension)
        v1 = avar(a, dimension)
        v2 = avar(b, dimension)
        n1 = a.shape[dimension]
        n2 = b.shape[dimension]
        df = n1 + n2 - 2
        svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df)
        zerodivproblem = N.equal(svar, 0)
        svar = N.where(zerodivproblem, 1, svar)  # avoid zero-division in 1st place
        t = (x1 - x2) / N.sqrt(svar * (1.0 / n1 + 1.0 / n2))  # N-D COMPUTATION HERE!!!!!!
        t = N.where(zerodivproblem, 1.0, t)  # replace NaN/wrong t-values with 1.0
        probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))

        if isinstance(t, N.ArrayType):
            probs = N.reshape(probs, t.shape)
        if len(probs) == 1:
            probs = probs[0]

        if printit != 0:
            if isinstance(t, N.ArrayType):
                t = t[0]
            if isinstance(probs, N.ArrayType):
                probs = probs[0]
            statname = "Independent samples T-test."
            outputpairedstats(
                printit,
                writemode,
                name1,
                n1,
                x1,
                v1,
                N.minimum.reduce(N.ravel(a)),
                N.maximum.reduce(N.ravel(a)),
                name2,
                n2,
                x2,
                v2,
                N.minimum.reduce(N.ravel(b)),
                N.maximum.reduce(N.ravel(b)),
                statname,
                t,
                probs,
            )
            return
        return t, probs

    def attest_rel(a, b, dimension=None, printit=0, name1="Samp1", name2="Samp2", writemode="a"):
        """
        Calculates the t-obtained T-test on TWO RELATED samples of scores, a
        and b.  From Numerical Recipies, p.483.  If printit=1, results are
        printed to the screen.  If printit='filename', the results are output
        to 'filename' using the given writemode (default=append).  Dimension
        can equal None (ravel array first), or an integer (the dimension over
        which to operate on a and b).

        Usage:   attest_rel(a,b,dimension=None,printit=0,
                            name1='Samp1',name2='Samp2',writemode='a')
        Returns: t-value, two-tailed p-value
        """
        if dimension is None:
            a = N.ravel(a)
            b = N.ravel(b)
            dimension = 0
        if len(a) != len(b):
            raise ValueError("Unequal length arrays.")
        x1 = amean(a, dimension)
        x2 = amean(b, dimension)
        v1 = avar(a, dimension)
        v2 = avar(b, dimension)
        n = a.shape[dimension]
        df = float(n - 1)
        d = (a - b).astype("d")

        denom = N.sqrt((n * N.add.reduce(d * d, dimension) - N.add.reduce(d, dimension) ** 2) / df)
        zerodivproblem = N.equal(denom, 0)
        denom = N.where(zerodivproblem, 1, denom)  # avoid zero-division in 1st place
        t = N.add.reduce(d, dimension) / denom  # N-D COMPUTATION HERE!!!!!!
        t = N.where(zerodivproblem, 1.0, t)  # replace NaN/wrong t-values with 1.0
        probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
        if isinstance(t, N.ArrayType):
            probs = N.reshape(probs, t.shape)
        if len(probs) == 1:
            probs = probs[0]

        if printit != 0:
            statname = "Related samples T-test."
            outputpairedstats(
                printit,
                writemode,
                name1,
                n,
                x1,
                v1,
                N.minimum.reduce(N.ravel(a)),
                N.maximum.reduce(N.ravel(a)),
                name2,
                n,
                x2,
                v2,
                N.minimum.reduce(N.ravel(b)),
                N.maximum.reduce(N.ravel(b)),
                statname,
                t,
                probs,
            )
            return
        return t, probs

    def achisquare(f_obs, f_exp=None):
        """
        Calculates a one-way chi square for array of observed frequencies and returns
        the result.  If no expected frequencies are given, the total N is assumed to
        be equally distributed across all groups.

        Usage:   achisquare(f_obs, f_exp=None)   f_obs = array of observed cell freq.
        Returns: chisquare-statistic, associated p-value
        """

        k = len(f_obs)
        if f_exp is None:
            f_exp = N.array([sum(f_obs) / float(k)] * len(f_obs), N.Float)
        f_exp = f_exp.astype(N.Float)
        chisq = N.add.reduce((f_obs - f_exp) ** 2 / f_exp)
        return chisq, chisqprob(chisq, k - 1)

    def aks_2samp(data1, data2):
        """
        Computes the Kolmogorov-Smirnof statistic on 2 samples.  Modified from
        Numerical Recipies in C, page 493.  Returns KS D-value, prob.  Not ufunc-
        like.

        Usage:   aks_2samp(data1,data2)  where data1 and data2 are 1D arrays
        Returns: KS D-value, p-value
        """
        j1 = 0  # N.zeros(data1.shape[1:]) TRIED TO MAKE THIS UFUNC-LIKE
        j2 = 0  # N.zeros(data2.shape[1:])
        fn1 = 0.0  # N.zeros(data1.shape[1:],N.Float)
        fn2 = 0.0  # N.zeros(data2.shape[1:],N.Float)
        n1 = data1.shape[0]
        n2 = data2.shape[0]
        en1 = n1 * 1
        en2 = n2 * 1
        d = N.zeros(data1.shape[1:], N.Float)
        data1 = N.sort(data1, 0)
        data2 = N.sort(data2, 0)
        while j1 < n1 and j2 < n2:
            d1 = data1[j1]
            d2 = data2[j2]
            if d1 <= d2:
                fn1 = (j1) / float(en1)
                j1 = j1 + 1
            if d2 <= d1:
                fn2 = (j2) / float(en2)
                j2 = j2 + 1
            dt = fn2 - fn1
            if abs(dt) > abs(d):
                d = dt
        try:
            en = math.sqrt(en1 * en2 / float(en1 + en2))
            prob = aksprob((en + 0.12 + 0.11 / en) * N.fabs(d))
        except Exception:
            prob = 1.0
        return d, prob

    def amannwhitneyu(x, y):
        """
        Calculates a Mann-Whitney U statistic on the provided scores and
        returns the result.  Use only when the n in each condition is < 20 and
        you have 2 independent samples of ranks.  REMEMBER: Mann-Whitney U is
        significant if the u-obtained is LESS THAN or equal to the critical
        value of U.

        Usage:   amannwhitneyu(x,y)     where x,y are arrays of values for 2 conditions
        Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))
        """
        n1 = len(x)
        n2 = len(y)
        ranked = rankdata(N.concatenate((x, y)))
        rankx = ranked[0:n1]  # get the x-ranks
        u1 = n1 * n2 + (n1 * (n1 + 1)) / 2.0 - sum(rankx)  # calc U for x
        u2 = n1 * n2 - u1  # remainder is U for y
        bigu = max(u1, u2)
        smallu = min(u1, u2)
        T = math.sqrt(tiecorrect(ranked))  # correction factor for tied scores
        if T == 0:
            raise ValueError("All numbers are identical in amannwhitneyu")
        sd = math.sqrt(T * n1 * n2 * (n1 + n2 + 1) / 12.0)
        z = abs((bigu - n1 * n2 / 2.0) / sd)  # normal approximation for prob calc
        return smallu, 1.0 - zprob(z)

    def atiecorrect(rankvals):
        """
        Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
        See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
        Sciences.  New York: McGraw-Hill.  Code adapted from |Stat rankind.c
        code.

        Usage:   atiecorrect(rankvals)
        Returns: T correction factor for U or H
        """
        sorted, posn = ashellsort(N.array(rankvals))
        n = len(sorted)
        T = 0.0
        i = 0
        while i < n - 1:
            if sorted[i] == sorted[i + 1]:
                nties = 1
                while (i < n - 1) and (sorted[i] == sorted[i + 1]):
                    nties = nties + 1
                    i = i + 1
                T = T + nties**3 - nties
            i = i + 1
        T = T / float(n**3 - n)
        return 1.0 - T

    def aranksums(x, y):
        """
        Calculates the rank sums statistic on the provided scores and returns
        the result.

        Usage:   aranksums(x,y)     where x,y are arrays of values for 2 conditions
        Returns: z-statistic, two-tailed p-value
        """
        n1 = len(x)
        n2 = len(y)
        alldata = N.concatenate((x, y))
        ranked = arankdata(alldata)
        x = ranked[:n1]
        y = ranked[n1:]
        s = sum(x)
        expected = n1 * (n1 + n2 + 1) / 2.0
        z = (s - expected) / math.sqrt(n1 * n2 * (n1 + n2 + 1) / 12.0)
        prob = 2 * (1.0 - zprob(abs(z)))
        return z, prob

    def awilcoxont(x, y):
        """
        Calculates the Wilcoxon T-test for related samples and returns the
        result.  A non-parametric T-test.

        Usage:   awilcoxont(x,y)     where x,y are equal-length arrays for 2 conditions
        Returns: t-statistic, two-tailed p-value
        """
        if len(x) != len(y):
            raise ValueError("Unequal N in awilcoxont.  Aborting.")
        d = x - y
        d = N.compress(N.not_equal(d, 0), d)  # Keep all non-zero differences
        count = len(d)
        absd = abs(d)
        absranked = arankdata(absd)
        r_plus = 0.0
        r_minus = 0.0
        for i in range(len(absd)):
            if d[i] < 0:
                r_minus = r_minus + absranked[i]
            else:
                r_plus = r_plus + absranked[i]
        wt = min(r_plus, r_minus)
        mn = count * (count + 1) * 0.25
        se = math.sqrt(count * (count + 1) * (2.0 * count + 1.0) / 24.0)
        z = math.fabs(wt - mn) / se
        z = math.fabs(wt - mn) / se
        prob = 2 * (1.0 - zprob(abs(z)))
        return wt, prob

    def akruskalwallish(*args):
        """
        The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
        groups, requiring at least 5 subjects in each group.  This function
        calculates the Kruskal-Wallis H and associated p-value for 3 or more
        independent samples.

        Usage:   akruskalwallish(*args)     args are separate arrays for 3+ conditions
        Returns: H-statistic (corrected for ties), associated p-value
        """
        assert len(args) == 3, "Need at least 3 groups in stats.akruskalwallish()"
        args = list(args)
        n = [0] * len(args)
        n = [len(_) for _ in args]
        all = []
        for i in range(len(args)):
            all = all + args[i].tolist()
        ranked = rankdata(all)
        T = tiecorrect(ranked)
        for i in range(len(args)):
            args[i] = ranked[0 : n[i]]
            del ranked[0 : n[i]]
        rsums = []
        for i in range(len(args)):
            rsums.append(sum(args[i]) ** 2)
            rsums[i] = rsums[i] / float(n[i])
        ssbn = sum(rsums)
        totaln = sum(n)
        h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
        df = len(args) - 1
        if T == 0:
            raise ValueError("All numbers are identical in akruskalwallish")
        h = h / float(T)
        return h, chisqprob(h, df)

    def afriedmanchisquare(*args):
        """
        Friedman Chi-Square is a non-parametric, one-way within-subjects
        ANOVA.  This function calculates the Friedman Chi-square test for
        repeated measures and returns the result, along with the associated
        probability value.  It assumes 3 or more repeated measures.  Only 3
        levels requires a minimum of 10 subjects in the study.  Four levels
        requires 5 subjects per level(??).

        Usage:   afriedmanchisquare(*args)   args are separate arrays for 2+ conditions
        Returns: chi-square statistic, associated p-value
        """
        k = len(args)
        if k < 3:
            raise ValueError("\nLess than 3 levels.  Friedman test not appropriate.\n")
        n = len(args[0])
        data = pstat.aabut(*args)
        data = data.astype(N.Float)
        for i in range(len(data)):
            data[i] = arankdata(data[i])
        ssbn = asum(asum(args, 1) ** 2)
        chisq = 12.0 / (k * n * (k + 1)) * ssbn - 3 * n * (k + 1)
        return chisq, chisqprob(chisq, k - 1)

    # APROBABILITY CALCULATIONS

    def achisqprob(chisq, df):
        """
        Returns the (1-tail) probability value associated with the provided chi-square
        value and df.  Heavily modified from chisq.c in Gary Perlman's |Stat.  Can
        handle multiple dimensions.

        Usage:   achisqprob(chisq,df)    chisq=chisquare stat., df=degrees of freedom
        """
        BIG = 200.0

        def ex(x):
            BIG = 200.0
            exponents = N.where(N.less(x, -BIG), -BIG, x)
            return N.exp(exponents)

        if not isinstance(chisq, N.ArrayType):
            chisq = N.array([chisq])
        if df < 1:
            return N.ones(chisq.shape, N.float)
        probs = N.zeros(chisq.shape, N.Float)
        probs = N.where(N.less_equal(chisq, 0), 1.0, probs)  # set prob=1 for chisq<0
        a = 0.5 * chisq
        if df > 1:
            y = ex(-a)
        if df % 2 == 0:
            even = 1
            s = y * 1
            s2 = s * 1
        else:
            even = 0
            s = 2.0 * azprob(-N.sqrt(chisq))
            s2 = s * 1
        if df > 2:
            chisq = 0.5 * (df - 1.0)
            if even:
                z = N.ones(probs.shape, N.Float)
            else:
                z = 0.5 * N.ones(probs.shape, N.Float)
            if even:
                e = N.zeros(probs.shape, N.Float)
            else:
                e = N.log(N.sqrt(N.pi)) * N.ones(probs.shape, N.Float)
            c = N.log(a)
            mask = N.zeros(probs.shape)
            a_big = N.greater(a, BIG)
            a_big_frozen = -1 * N.ones(probs.shape, N.Float)
            totalelements = N.multiply.reduce(N.array(probs.shape))
            while asum(mask) != totalelements:
                e = N.log(z) + e
                s = s + ex(c * z - a - e)
                z = z + 1.0
                newmask = N.greater(z, chisq)
                a_big_frozen = N.where(newmask * N.equal(mask, 0) * a_big, s, a_big_frozen)
                mask = N.clip(newmask + mask, 0, 1)
            if even:
                z = N.ones(probs.shape, N.Float)
                e = N.ones(probs.shape, N.Float)
            else:
                z = 0.5 * N.ones(probs.shape, N.Float)
                e = 1.0 / N.sqrt(N.pi) / N.sqrt(a) * N.ones(probs.shape, N.Float)
            c = 0.0
            mask = N.zeros(probs.shape)
            a_notbig_frozen = -1 * N.ones(probs.shape, N.Float)
            while asum(mask) != totalelements:
                e = e * (a / z.astype(N.Float))
                c = c + e
                z = z + 1.0
                newmask = N.greater(z, chisq)
                a_notbig_frozen = N.where(newmask * N.equal(mask, 0) * (1 - a_big), c * y + s2, a_notbig_frozen)
                mask = N.clip(newmask + mask, 0, 1)
            probs = N.where(N.equal(probs, 1), 1, N.where(N.greater(a, BIG), a_big_frozen, a_notbig_frozen))
            return probs
        else:
            return s

    def aerfcc(x):
        """
        Returns the complementary error function erfc(x) with fractional error
        everywhere less than 1.2e-7.  Adapted from Numerical Recipies.  Can
        handle multiple dimensions.

        Usage:   aerfcc(x)
        """
        z = abs(x)
        t = 1.0 / (1.0 + 0.5 * z)
        ans = t * N.exp(
            -z * z
            - 1.26551223
            + t
            * (
                1.00002368
                + t
                * (
                    0.37409196
                    + t
                    * (
                        0.09678418
                        + t
                        * (
                            -0.18628806
                            + t
                            * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277))))
                        )
                    )
                )
            )
        )
        return N.where(N.greater_equal(x, 0), ans, 2.0 - ans)

    def azprob(z):
        """
        Returns the area under the normal curve 'to the left of' the given z value.
        Thus,
            for z<0, zprob(z) = 1-tail probability
            for z>0, 1.0-zprob(z) = 1-tail probability
            for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
        Adapted from z.c in Gary Perlman's |Stat.  Can handle multiple dimensions.

        Usage:   azprob(z)    where z is a z-value
        """

        def yfunc(y):
            x = (
                (
                    (
                        (
                            (
                                (
                                    (
                                        (
                                            (
                                                (
                                                    (
                                                        ((-0.000045255659 * y + 0.000152529290) * y - 0.000019538132)
                                                        * y
                                                        - 0.000676904986
                                                    )
                                                    * y
                                                    + 0.001390604284
                                                )
                                                * y
                                                - 0.000794620820
                                            )
                                            * y
                                            - 0.002034254874
                                        )
                                        * y
                                        + 0.006549791214
                                    )
                                    * y
                                    - 0.010557625006
                                )
                                * y
                                + 0.011630447319
                            )
                            * y
                            - 0.009279453341
                        )
                        * y
                        + 0.005353579108
                    )
                    * y
                    - 0.002141268741
                )
                * y
                + 0.000535310849
            ) * y + 0.999936657524
            return x

        def wfunc(w):
            x = (
                (
                    (
                        (
                            (
                                (
                                    (((0.000124818987 * w - 0.001075204047) * w + 0.005198775019) * w - 0.019198292004)
                                    * w
                                    + 0.059054035642
                                )
                                * w
                                - 0.151968751364
                            )
                            * w
                            + 0.319152932694
                        )
                        * w
                        - 0.531923007300
                    )
                    * w
                    + 0.797884560593
                )
                * N.sqrt(w)
                * 2.0
            )
            return x

        Z_MAX = 6.0  # maximum meaningful z-value
        x = N.zeros(z.shape, N.Float)  # initialize
        y = 0.5 * N.fabs(z)
        x = N.where(N.less(y, 1.0), wfunc(y * y), yfunc(y - 2.0))  # get x's
        x = N.where(N.greater(y, Z_MAX * 0.5), 1.0, x)  # kill those with big Z
        prob = N.where(N.greater(z, 0), (x + 1) * 0.5, (1 - x) * 0.5)
        return prob

    def aksprob(alam):
        """
        Returns the probability value for a K-S statistic computed via ks_2samp.
        Adapted from Numerical Recipies.  Can handle multiple dimensions.

        Usage:   aksprob(alam)
        """
        if isinstance(alam, N.ArrayType):
            frozen = -1 * N.ones(alam.shape, N.Float64)
            alam = alam.astype(N.Float64)
            arrayflag = 1
        else:
            frozen = N.array(-1.0)
            alam = N.array(alam, N.Float64)
        mask = N.zeros(alam.shape)
        fac = 2.0 * N.ones(alam.shape, N.Float)
        sum = N.zeros(alam.shape, N.Float)
        termbf = N.zeros(alam.shape, N.Float)
        a2 = N.array(-2.0 * alam * alam, N.Float64)
        totalelements = N.multiply.reduce(N.array(mask.shape))
        for j in range(1, 201):
            if asum(mask) == totalelements:
                break
            exponents = a2 * j * j
            overflowmask = N.less(exponents, -746)
            frozen = N.where(overflowmask, 0, frozen)
            mask = mask + overflowmask
            term = fac * N.exp(exponents)
            sum = sum + term
            newmask = N.where(N.less_equal(abs(term), (0.001 * termbf)) + N.less(abs(term), 1.0e-8 * sum), 1, 0)
            frozen = N.where(newmask * N.equal(mask, 0), sum, frozen)
            mask = N.clip(mask + newmask, 0, 1)
            fac = -fac
            termbf = abs(term)
        if arrayflag:
            return N.where(N.equal(frozen, -1), 1.0, frozen)  # 1.0 if doesn't converge
        else:
            return N.where(N.equal(frozen, -1), 1.0, frozen)[0]  # 1.0 if doesn't converge

    def afprob(dfnum, dfden, F):
        """
        Returns the 1-tailed significance level (p-value) of an F statistic
        given the degrees of freedom for the numerator (dfR-dfF) and the degrees
        of freedom for the denominator (dfF).  Can handle multiple dims for F.

        Usage:   afprob(dfnum, dfden, F)   where usually dfnum=dfbn, dfden=dfwn
        """
        if isinstance(F, N.ArrayType):
            return abetai(0.5 * dfden, 0.5 * dfnum, dfden / (1.0 * dfden + dfnum * F))
        else:
            return abetai(0.5 * dfden, 0.5 * dfnum, dfden / float(dfden + dfnum * F))

    def abetacf(a, b, x, verbose=1):
        """
        Evaluates the continued fraction form of the incomplete Beta function,
        betai.  (Adapted from: Numerical Recipies in C.)  Can handle multiple
        dimensions for x.

        Usage:   abetacf(a,b,x,verbose=1)
        """
        ITMAX = 200
        EPS = 3.0e-7

        arrayflag = 1
        if isinstance(x, N.ArrayType):
            frozen = N.ones(x.shape, N.Float) * -1  # start out w/ -1s, should replace all
        else:
            arrayflag = 0
            frozen = N.array([-1])
            x = N.array([x])
        mask = N.zeros(x.shape)
        bm = az = am = 1.0
        qab = a + b
        qap = a + 1.0
        qam = a - 1.0
        bz = 1.0 - qab * x / qap
        for i in range(ITMAX + 1):
            if N.sum(N.ravel(N.equal(frozen, -1))) == 0:
                break
            em = float(i + 1)
            tem = em + em
            d = em * (b - em) * x / ((qam + tem) * (a + tem))
            ap = az + d * am
            bp = bz + d * bm
            d = -(a + em) * (qab + em) * x / ((qap + tem) * (a + tem))
            app = ap + d * az
            bpp = bp + d * bz
            aold = az * 1
            am = ap / bpp
            bm = bp / bpp
            az = app / bpp
            bz = 1.0
            newmask = N.less(abs(az - aold), EPS * abs(az))
            frozen = N.where(newmask * N.equal(mask, 0), az, frozen)
            mask = N.clip(mask + newmask, 0, 1)
        noconverge = asum(N.equal(frozen, -1))
        if noconverge != 0 and verbose:
            print("a or b too big, or ITMAX too small in Betacf for ", noconverge, " elements")
        if arrayflag:
            return frozen
        else:
            return frozen[0]

    def agammln(xx):
        """
        Returns the gamma function of xx.
            Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
        Adapted from: Numerical Recipies in C.  Can handle multiple dims ... but
        probably doesn't normally have to.

        Usage:   agammln(xx)
        """
        coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516, 0.120858003e-2, -0.536382e-5]
        x = xx - 1.0
        tmp = x + 5.5
        tmp = tmp - (x + 0.5) * N.log(tmp)
        ser = 1.0
        for j in range(len(coeff)):
            x = x + 1
            ser = ser + coeff[j] / x
        return -tmp + N.log(2.50662827465 * ser)

    def abetai(a, b, x, verbose=1):
        """
        Returns the incomplete beta function:

            I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

        where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
        function of a.  The continued fraction formulation is implemented
        here, using the betacf function.  (Adapted from: Numerical Recipies in
        C.)  Can handle multiple dimensions.

        Usage:   abetai(a,b,x,verbose=1)
        """
        TINY = 1e-15
        if isinstance(a, N.ArrayType):
            if asum(N.less(x, 0) + N.greater(x, 1)) != 0:
                raise ValueError("Bad x in abetai")
        x = N.where(N.equal(x, 0), TINY, x)
        x = N.where(N.equal(x, 1.0), 1 - TINY, x)

        bt = N.where(N.equal(x, 0) + N.equal(x, 1), 0, -1)
        exponents = gammln(a + b) - gammln(a) - gammln(b) + a * N.log(x) + b * N.log(1.0 - x)
        # 746 (below) is the MAX POSSIBLE BEFORE OVERFLOW
        exponents = N.where(N.less(exponents, -740), -740, exponents)
        bt = N.exp(exponents)
        if isinstance(x, N.ArrayType):
            ans = N.where(
                N.less(x, (a + 1) / (a + b + 2.0)),
                bt * abetacf(a, b, x, verbose) / float(a),
                1.0 - bt * abetacf(b, a, 1.0 - x, verbose) / float(b),
            )
        else:
            if x < (a + 1) / (a + b + 2.0):
                ans = bt * abetacf(a, b, x, verbose) / float(a)
            else:
                ans = 1.0 - bt * abetacf(b, a, 1.0 - x, verbose) / float(b)
        return ans

    # AANOVA CALCULATIONS

    import LinearAlgebra

    LA = LinearAlgebra

    def aglm(data, para):
        """
        Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken
        from:
            Peterson et al. Statistical limitations in functional neuroimaging
            I. Non-inferential methods and statistical models.  Phil Trans Royal Soc
            Lond B 354: 1239-1260.

        Usage:   aglm(data,para)
        Returns: statistic, p-value ???
        """
        if len(para) != len(data):
            print("data and para must be same length in aglm")
            return
        n = len(para)
        p = pstat.aunique(para)
        x = N.zeros((n, len(p)))  # design matrix
        for l in range(len(p)):
            x[:, l] = N.equal(para, p[l])
        b = N.dot(N.dot(LA.inverse(N.dot(N.transpose(x), x)), N.transpose(x)), data)  # i.e., b=inv(X'X)X'Y
        diffs = data - N.dot(x, b)
        s_sq = 1.0 / (n - len(p)) * N.dot(N.transpose(diffs), diffs)

        if len(p) == 2:  # ttest_ind
            c = N.array([1, -1])
            df = n - 2
            fact = asum(1.0 / asum(x, 0))  # i.e., 1/n1 + 1/n2 + 1/n3 ...
            t = N.dot(c, b) / N.sqrt(s_sq * fact)
            probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
            return t, probs

    def aF_oneway(*args):
        """
        Performs a 1-way ANOVA, returning an F-value and probability given
        any number of groups.  From Heiman, pp.394-7.

        Usage:   aF_oneway (*args)    where *args is 2 or more arrays, one per
                                        treatment group
        Returns: f-value, probability
        """
        na = len(args)  # ANOVA on 'na' groups, each in it's own array
        alldata = []
        alldata = N.concatenate(args)
        bign = len(alldata)
        sstot = ass(alldata) - (asquare_of_sums(alldata) / float(bign))
        ssbn = 0
        for a in args:
            ssbn = ssbn + asquare_of_sums(N.array(a)) / float(len(a))
        ssbn = ssbn - (asquare_of_sums(alldata) / float(bign))
        sswn = sstot - ssbn
        dfbn = na - 1
        dfwn = bign - na
        msb = ssbn / float(dfbn)
        msw = sswn / float(dfwn)
        f = msb / msw
        prob = fprob(dfbn, dfwn, f)
        return f, prob

    def aF_value(ER, EF, dfR, dfF):
        """
        Returns an F-statistic given the following:
                ER  = error associated with the null hypothesis (the Restricted model)
                EF  = error associated with the alternate hypothesis (the Full model)
                dfR = degrees of freedom the Restricted model
                dfF = degrees of freedom associated with the Restricted model
        """
        return (ER - EF) / float(dfR - dfF) / (EF / float(dfF))

    def outputfstats(Enum, Eden, dfnum, dfden, f, prob):
        Enum = round(Enum, 3)
        Eden = round(Eden, 3)
        dfnum = round(Enum, 3)
        dfden = round(dfden, 3)
        f = round(f, 3)
        prob = round(prob, 3)
        suffix = ""  # for *s after the p-value
        if prob < 0.001:
            suffix = "  ***"
        elif prob < 0.01:
            suffix = "  **"
        elif prob < 0.05:
            suffix = "  *"
        title = [["EF/ER", "DF", "Mean Square", "F-value", "prob", ""]]
        lofl = title + [
            [Enum, dfnum, round(Enum / float(dfnum), 3), f, prob, suffix],
            [Eden, dfden, round(Eden / float(dfden), 3), "", "", ""],
        ]
        pstat.printcc(lofl)
        return

    def F_value_multivariate(ER, EF, dfnum, dfden):
        """
        Returns an F-statistic given the following:
                ER  = error associated with the null hypothesis (the Restricted model)
                EF  = error associated with the alternate hypothesis (the Full model)
                dfR = degrees of freedom the Restricted model
                dfF = degrees of freedom associated with the Restricted model
        where ER and EF are matrices from a multivariate F calculation.
        """
        if type(ER) in [int, float]:
            ER = N.array([[ER]])
        if type(EF) in [int, float]:
            EF = N.array([[EF]])
        n_um = (LA.determinant(ER) - LA.determinant(EF)) / float(dfnum)
        d_en = LA.determinant(EF) / float(dfden)
        return n_um / d_en

    # ASUPPORT FUNCTIONS

    def asign(a):
        """
        Usage:   asign(a)
        Returns: array shape of a, with -1 where a<0 and +1 where a>=0
        """
        a = N.asarray(a)
        if (isinstance(a, float)) or (isinstance(a, int)):
            return a - a - N.less(a, 0) + N.greater(a, 0)
        else:
            return N.zeros(N.shape(a)) - N.less(a, 0) + N.greater(a, 0)

    def asum(a, dimension=None, keepdims=0):
        """
        An alternative to the Numeric.add.reduce function, which allows one to
        (1) collapse over multiple dimensions at once, and/or (2) to retain
        all dimensions in the original array (squashing one down to size.
        Dimension can equal None (ravel array first), an integer (the
        dimension over which to operate), or a sequence (operate over multiple
        dimensions).  If keepdims=1, the resulting array will have as many
        dimensions as the input array.

        Usage:   asum(a, dimension=None, keepdims=0)
        Returns: array summed along 'dimension'(s), same _number_ of dims if keepdims=1
        """
        if isinstance(a, N.ArrayType) and a.typecode() in ["l", "s", "b"]:
            a = a.astype(N.Float)
        if dimension is None:
            s = N.sum(N.ravel(a))
        elif type(dimension) in [int, float]:
            s = N.add.reduce(a, dimension)
            if keepdims == 1:
                shp = list(a.shape)
                shp[dimension] = 1
                s = N.reshape(s, shp)
        else:  # must be a SEQUENCE of dims to sum over
            dims = sorted(dimension)
            dims.reverse()
            s = a * 1.0
            for dim in dims:
                s = N.add.reduce(s, dim)
            if keepdims == 1:
                shp = list(a.shape)
                for dim in dims:
                    shp[dim] = 1
                s = N.reshape(s, shp)
        return s

    def acumsum(a, dimension=None):
        """
        Returns an array consisting of the cumulative sum of the items in the
        passed array.  Dimension can equal None (ravel array first), an
        integer (the dimension over which to operate), or a sequence (operate
        over multiple dimensions, but this last one just barely makes sense).

        Usage:   acumsum(a,dimension=None)
        """
        if dimension is None:
            a = N.ravel(a)
            dimension = 0
        if type(dimension) in [list, tuple, N.ArrayType]:
            dimension = sorted(dimension)
            dimension.reverse()
            for d in dimension:
                a = N.add.accumulate(a, d)
            return a
        else:
            return N.add.accumulate(a, dimension)

    def ass(inarray, dimension=None, keepdims=0):
        """
        Squares each value in the passed array, adds these squares & returns
        the result.  Unfortunate function name. :-) Defaults to ALL values in
        the array.  Dimension can equal None (ravel array first), an integer
        (the dimension over which to operate), or a sequence (operate over
        multiple dimensions).  Set keepdims=1 to maintain the original number
        of dimensions.

        Usage:   ass(inarray, dimension=None, keepdims=0)
        Returns: sum-along-'dimension' for (inarray*inarray)
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        return asum(inarray * inarray, dimension, keepdims)

    def asummult(array1, array2, dimension=None, keepdims=0):
        """
        Multiplies elements in array1 and array2, element by element, and
        returns the sum (along 'dimension') of all resulting multiplications.
        Dimension can equal None (ravel array first), an integer (the
        dimension over which to operate), or a sequence (operate over multiple
        dimensions).  A trivial function, but included for completeness.

        Usage:   asummult(array1,array2,dimension=None,keepdims=0)
        """
        if dimension is None:
            array1 = N.ravel(array1)
            array2 = N.ravel(array2)
            dimension = 0
        return asum(array1 * array2, dimension, keepdims)

    def asquare_of_sums(inarray, dimension=None, keepdims=0):
        """
        Adds the values in the passed array, squares that sum, and returns the
        result.  Dimension can equal None (ravel array first), an integer (the
        dimension over which to operate), or a sequence (operate over multiple
        dimensions).  If keepdims=1, the returned array will have the same
        NUMBER of dimensions as the original.

        Usage:   asquare_of_sums(inarray, dimension=None, keepdims=0)
        Returns: the square of the sum over dim(s) in dimension
        """
        if dimension is None:
            inarray = N.ravel(inarray)
            dimension = 0
        s = asum(inarray, dimension, keepdims)
        if isinstance(s, N.ArrayType):
            return s.astype(N.Float) * s
        else:
            return float(s) * s

    def asumdiffsquared(a, b, dimension=None, keepdims=0):
        """
        Takes pairwise differences of the values in arrays a and b, squares
        these differences, and returns the sum of these squares.  Dimension
        can equal None (ravel array first), an integer (the dimension over
        which to operate), or a sequence (operate over multiple dimensions).
        keepdims=1 means the return shape = len(a.shape) = len(b.shape)

        Usage:   asumdiffsquared(a,b)
        Returns: sum[ravel(a-b)**2]
        """
        if dimension is None:
            N.ravel(a)  # inarray
            dimension = 0
        return asum((a - b) ** 2, dimension, keepdims)

    def ashellsort(inarray):
        """
        Shellsort algorithm.  Sorts a 1D-array.

        Usage:   ashellsort(inarray)
        Returns: sorted-inarray, sorting-index-vector (for original array)
        """
        n = len(inarray)
        svec = inarray * 1.0
        ivec = list(range(n))
        gap = n / 2  # integer division needed
        while gap > 0:
            for i in range(gap, n):
                for j in range(i - gap, -1, -gap):
                    while j >= 0 and svec[j] > svec[j + gap]:
                        temp = svec[j]
                        svec[j] = svec[j + gap]
                        svec[j + gap] = temp
                        itemp = ivec[j]
                        ivec[j] = ivec[j + gap]
                        ivec[j + gap] = itemp
            gap = gap / 2  # integer division needed
        #    svec is now sorted input vector, ivec has the order svec[i] = vec[ivec[i]]
        return svec, ivec

    def arankdata(inarray):
        """
        Ranks the data in inarray, dealing with ties appropritely.  Assumes
        a 1D inarray.  Adapted from Gary Perlman's |Stat ranksort.

        Usage:   arankdata(inarray)
        Returns: array of length equal to inarray, containing rank scores
        """
        n = len(inarray)
        svec, ivec = ashellsort(inarray)
        sumranks = 0
        dupcount = 0
        newarray = N.zeros(n, N.Float)
        for i in range(n):
            sumranks = sumranks + i
            dupcount = dupcount + 1
            if i == n - 1 or svec[i] != svec[i + 1]:
                averank = sumranks / float(dupcount) + 1
                for j in range(i - dupcount + 1, i + 1):
                    newarray[ivec[j]] = averank
                sumranks = 0
                dupcount = 0
        return newarray

    def afindwithin(data):
        """
        Returns a binary vector, 1=within-subject factor, 0=between.  Input
        equals the entire data array (i.e., column 1=random factor, last
        column = measured values.

        Usage:   afindwithin(data)     data in |Stat format
        """
        numfact = len(data[0]) - 2
        withinvec = [0] * numfact
        for col in range(1, numfact + 1):
            rows = pstat.linexand(data, col, pstat.unique(pstat.colex(data, 1))[0])  # get 1 level of this factor
            if len(pstat.unique(pstat.colex(rows, 0))) < len(rows):  # if fewer subjects than scores on this factor
                withinvec[col - 1] = 1
        return withinvec

    # RE-DEFINE DISPATCHES TO INCLUDE ARRAYS

    # CENTRAL TENDENCY:
    geometricmean = Dispatch((lgeometricmean, (list, tuple)), (ageometricmean, (N.ArrayType,)))
    harmonicmean = Dispatch((lharmonicmean, (list, tuple)), (aharmonicmean, (N.ArrayType,)))
    mean = Dispatch((lmean, (list, tuple)), (amean, (N.ArrayType,)))
    median = Dispatch((lmedian, (list, tuple)), (amedian, (N.ArrayType,)))
    medianscore = Dispatch((lmedianscore, (list, tuple)), (amedianscore, (N.ArrayType,)))
    mode = Dispatch((lmode, (list, tuple)), (amode, (N.ArrayType,)))
    tmean = Dispatch((atmean, (N.ArrayType,)))
    tvar = Dispatch((atvar, (N.ArrayType,)))
    tstdev = Dispatch((atstdev, (N.ArrayType,)))
    tsem = Dispatch((atsem, (N.ArrayType,)))

    # VARIATION:
    moment = Dispatch((lmoment, (list, tuple)), (amoment, (N.ArrayType,)))
    variation = Dispatch((lvariation, (list, tuple)), (avariation, (N.ArrayType,)))
    skew = Dispatch((lskew, (list, tuple)), (askew, (N.ArrayType,)))
    kurtosis = Dispatch((lkurtosis, (list, tuple)), (akurtosis, (N.ArrayType,)))
    describe = Dispatch((ldescribe, (list, tuple)), (adescribe, (N.ArrayType,)))

    # DISTRIBUTION TESTS

    skewtest = Dispatch((askewtest, (list, tuple)), (askewtest, (N.ArrayType,)))
    kurtosistest = Dispatch((akurtosistest, (list, tuple)), (akurtosistest, (N.ArrayType,)))
    normaltest = Dispatch((anormaltest, (list, tuple)), (anormaltest, (N.ArrayType,)))

    # FREQUENCY STATS:
    itemfreq = Dispatch((litemfreq, (list, tuple)), (aitemfreq, (N.ArrayType,)))
    scoreatpercentile = Dispatch((lscoreatpercentile, (list, tuple)), (ascoreatpercentile, (N.ArrayType,)))
    percentileofscore = Dispatch((lpercentileofscore, (list, tuple)), (apercentileofscore, (N.ArrayType,)))
    histogram = Dispatch((lhistogram, (list, tuple)), (ahistogram, (N.ArrayType,)))
    cumfreq = Dispatch((lcumfreq, (list, tuple)), (acumfreq, (N.ArrayType,)))
    relfreq = Dispatch((lrelfreq, (list, tuple)), (arelfreq, (N.ArrayType,)))

    # VARIABILITY:
    obrientransform = Dispatch((lobrientransform, (list, tuple)), (aobrientransform, (N.ArrayType,)))
    samplevar = Dispatch((lsamplevar, (list, tuple)), (asamplevar, (N.ArrayType,)))
    samplestdev = Dispatch((lsamplestdev, (list, tuple)), (asamplestdev, (N.ArrayType,)))
    signaltonoise = Dispatch(
        (asignaltonoise, (N.ArrayType,)),
    )
    var = Dispatch((lvar, (list, tuple)), (avar, (N.ArrayType,)))
    stdev = Dispatch((lstdev, (list, tuple)), (astdev, (N.ArrayType,)))
    sterr = Dispatch((lsterr, (list, tuple)), (asterr, (N.ArrayType,)))
    sem = Dispatch((lsem, (list, tuple)), (asem, (N.ArrayType,)))
    z = Dispatch((lz, (list, tuple)), (az, (N.ArrayType,)))
    zs = Dispatch((lzs, (list, tuple)), (azs, (N.ArrayType,)))

    # TRIMMING FCNS:
    threshold = Dispatch(
        (athreshold, (N.ArrayType,)),
    )
    trimboth = Dispatch((ltrimboth, (list, tuple)), (atrimboth, (N.ArrayType,)))
    trim1 = Dispatch((ltrim1, (list, tuple)), (atrim1, (N.ArrayType,)))

    # CORRELATION FCNS:
    paired = Dispatch((lpaired, (list, tuple)), (apaired, (N.ArrayType,)))
    pearsonr = Dispatch((lpearsonr, (list, tuple)), (apearsonr, (N.ArrayType,)))
    spearmanr = Dispatch((lspearmanr, (list, tuple)), (aspearmanr, (N.ArrayType,)))
    pointbiserialr = Dispatch((lpointbiserialr, (list, tuple)), (apointbiserialr, (N.ArrayType,)))
    kendalltau = Dispatch((lkendalltau, (list, tuple)), (akendalltau, (N.ArrayType,)))
    linregress = Dispatch((llinregress, (list, tuple)), (alinregress, (N.ArrayType,)))

    # INFERENTIAL STATS:
    ttest_1samp = Dispatch((lttest_1samp, (list, tuple)), (attest_1samp, (N.ArrayType,)))
    ttest_ind = Dispatch((lttest_ind, (list, tuple)), (attest_ind, (N.ArrayType,)))
    ttest_rel = Dispatch((lttest_rel, (list, tuple)), (attest_rel, (N.ArrayType,)))
    chisquare = Dispatch((lchisquare, (list, tuple)), (achisquare, (N.ArrayType,)))
    ks_2samp = Dispatch((lks_2samp, (list, tuple)), (aks_2samp, (N.ArrayType,)))
    mannwhitneyu = Dispatch((lmannwhitneyu, (list, tuple)), (amannwhitneyu, (N.ArrayType,)))
    tiecorrect = Dispatch((ltiecorrect, (list, tuple)), (atiecorrect, (N.ArrayType,)))
    ranksums = Dispatch((lranksums, (list, tuple)), (aranksums, (N.ArrayType,)))
    wilcoxont = Dispatch((lwilcoxont, (list, tuple)), (awilcoxont, (N.ArrayType,)))
    kruskalwallish = Dispatch((lkruskalwallish, (list, tuple)), (akruskalwallish, (N.ArrayType,)))
    friedmanchisquare = Dispatch((lfriedmanchisquare, (list, tuple)), (afriedmanchisquare, (N.ArrayType,)))

    # PROBABILITY CALCS:
    chisqprob = Dispatch((lchisqprob, (int, float)), (achisqprob, (N.ArrayType,)))
    zprob = Dispatch((lzprob, (int, float)), (azprob, (N.ArrayType,)))
    ksprob = Dispatch((lksprob, (int, float)), (aksprob, (N.ArrayType,)))
    fprob = Dispatch((lfprob, (int, float)), (afprob, (N.ArrayType,)))
    betacf = Dispatch((lbetacf, (int, float)), (abetacf, (N.ArrayType,)))
    betai = Dispatch((lbetai, (int, float)), (abetai, (N.ArrayType,)))
    erfcc = Dispatch((lerfcc, (int, float)), (aerfcc, (N.ArrayType,)))
    gammln = Dispatch((lgammln, (int, float)), (agammln, (N.ArrayType,)))

    # ANOVA FUNCTIONS:
    F_oneway = Dispatch((lF_oneway, (list, tuple)), (aF_oneway, (N.ArrayType,)))
    F_value = Dispatch((lF_value, (list, tuple)), (aF_value, (N.ArrayType,)))

    # SUPPORT FUNCTIONS:
    incr = Dispatch(
        (lincr, (list, tuple, N.ArrayType)),
    )
    sum = Dispatch((lsum, (list, tuple)), (asum, (N.ArrayType,)))
    cumsum = Dispatch((lcumsum, (list, tuple)), (acumsum, (N.ArrayType,)))
    ss = Dispatch((lss, (list, tuple)), (ass, (N.ArrayType,)))
    summult = Dispatch((lsummult, (list, tuple)), (asummult, (N.ArrayType,)))
    square_of_sums = Dispatch((lsquare_of_sums, (list, tuple)), (asquare_of_sums, (N.ArrayType,)))
    sumdiffsquared = Dispatch((lsumdiffsquared, (list, tuple)), (asumdiffsquared, (N.ArrayType,)))
    shellsort = Dispatch((lshellsort, (list, tuple)), (ashellsort, (N.ArrayType,)))
    rankdata = Dispatch((lrankdata, (list, tuple)), (arankdata, (N.ArrayType,)))
    findwithin = Dispatch((lfindwithin, (list, tuple)), (afindwithin, (N.ArrayType,)))

# END OF NUMERIC FUNCTION BLOCK

# END OF STATISTICAL FUNCTIONS

except ImportError:
    pass
