"""
Contains lookup tables, constants, and things that are generally static
and useful throughout the library.
"""
import numpy

STDOBSERV_X2 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000129900000,
    0.000414900000,
    0.001368000000,
    0.004243000000,
    0.014310000000,
    0.043510000000,
    0.134380000000,
    0.283900000000,
    0.348280000000,
    0.336200000000,
    0.290800000000,
    0.195360000000,
    0.095640000000,
    0.032010000000,
    0.004900000000,
    0.009300000000,
    0.063270000000,
    0.165500000000,
    0.290400000000,
    0.433449900000,
    0.594500000000,
    0.762100000000,
    0.916300000000,
    1.026300000000,
    1.062200000000,
    1.002600000000,
    0.854449900000,
    0.642400000000,
    0.447900000000,
    0.283500000000,
    0.164900000000,
    0.087400000000,
    0.046770000000,
    0.022700000000,
    0.011359160000,
    0.005790346000,
    0.002899327000,
    0.001439971000,
    0.000690078600,
    0.000332301100,
    0.000166150500,
    0.000083075270,
    0.000041509940,
    0.000020673830,
    0.000010253980,
    0.000005085868,
    0.000002522525,
    0.000001251141
))

STDOBSERV_Y2 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000003917000,
    0.000012390000,
    0.000039000000,
    0.000120000000,
    0.000396000000,
    0.001210000000,
    0.004000000000,
    0.011600000000,
    0.023000000000,
    0.038000000000,
    0.060000000000,
    0.090980000000,
    0.139020000000,
    0.208020000000,
    0.323000000000,
    0.503000000000,
    0.710000000000,
    0.862000000000,
    0.954000000000,
    0.994950100000,
    0.995000000000,
    0.952000000000,
    0.870000000000,
    0.757000000000,
    0.631000000000,
    0.503000000000,
    0.381000000000,
    0.265000000000,
    0.175000000000,
    0.107000000000,
    0.061000000000,
    0.032000000000,
    0.017000000000,
    0.008210000000,
    0.004102000000,
    0.002091000000,
    0.001047000000,
    0.000520000000,
    0.000249200000,
    0.000120000000,
    0.000060000000,
    0.000030000000,
    0.000014990000,
    0.000007465700,
    0.000003702900,
    0.000001836600,
    0.000000910930,
    0.000000451810
))

STDOBSERV_Z2 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000606100000,
    0.001946000000,
    0.006450001000,
    0.020050010000,
    0.067850010000,
    0.207400000000,
    0.645600000000,
    1.385600000000,
    1.747060000000,
    1.772110000000,
    1.669200000000,
    1.287640000000,
    0.812950100000,
    0.465180000000,
    0.272000000000,
    0.158200000000,
    0.078249990000,
    0.042160000000,
    0.020300000000,
    0.008749999000,
    0.003900000000,
    0.002100000000,
    0.001650001000,
    0.001100000000,
    0.000800000000,
    0.000340000000,
    0.000190000000,
    0.000049999990,
    0.000020000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000
))

STDOBSERV_X10 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000000122200,
    0.000005958600,
    0.000159952000,
    0.002361600000,
    0.019109700000,
    0.084736000000,
    0.204492000000,
    0.314679000000,
    0.383734000000,
    0.370702000000,
    0.302273000000,
    0.195618000000,
    0.080507000000,
    0.016172000000,
    0.003816000000,
    0.037465000000,
    0.117749000000,
    0.236491000000,
    0.376772000000,
    0.529826000000,
    0.705224000000,
    0.878655000000,
    1.014160000000,
    1.118520000000,
    1.123990000000,
    1.030480000000,
    0.856297000000,
    0.647467000000,
    0.431567000000,
    0.268329000000,
    0.152568000000,
    0.081260600000,
    0.040850800000,
    0.019941300000,
    0.009576880000,
    0.004552630000,
    0.002174960000,
    0.001044760000,
    0.000508258000,
    0.000250969000,
    0.000126390000,
    0.000064525800,
    0.000033411700,
    0.000017611500,
    0.000009413630,
    0.000005093470,
    0.000002795310,
    0.000001553140
))

STDOBSERV_Y10 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000000013398,
    0.000000651100,
    0.000017364000,
    0.000253400000,
    0.002004400000,
    0.008756000000,
    0.021391000000,
    0.038676000000,
    0.062077000000,
    0.089456000000,
    0.128201000000,
    0.185190000000,
    0.253589000000,
    0.339133000000,
    0.460777000000,
    0.606741000000,
    0.761757000000,
    0.875211000000,
    0.961988000000,
    0.991761000000,
    0.997340000000,
    0.955552000000,
    0.868934000000,
    0.777405000000,
    0.658341000000,
    0.527963000000,
    0.398057000000,
    0.283493000000,
    0.179828000000,
    0.107633000000,
    0.060281000000,
    0.031800400000,
    0.015905100000,
    0.007748800000,
    0.003717740000,
    0.001768470000,
    0.000846190000,
    0.000407410000,
    0.000198730000,
    0.000098428000,
    0.000049737000,
    0.000025486000,
    0.000013249000,
    0.000007012800,
    0.000003764730,
    0.000002046130,
    0.000001128090,
    0.000000629700
))

STDOBSERV_Z10 = numpy.array((
    0.000000000000,
    0.000000000000,
    0.000000535027,
    0.000026143700,
    0.000704776000,
    0.010482200000,
    0.086010900000,
    0.389366000000,
    0.972542000000,
    1.553480000000,
    1.967280000000,
    1.994800000000,
    1.745370000000,
    1.317560000000,
    0.772125000000,
    0.415254000000,
    0.218502000000,
    0.112044000000,
    0.060709000000,
    0.030451000000,
    0.013676000000,
    0.003988000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000,
    0.000000000000
))

REFERENCE_ILLUM_A = numpy.array((
    3.59,
    4.75,
    6.15,
    7.83,
    9.80,
    12.09,
    14.72,
    17.69,
    21.01,
    24.68,
    28.71,
    33.10,
    37.82,
    42.88,
    48.25,
    53.92,
    59.87,
    66.07,
    72.50,
    79.14,
    85.95,
    92.91,
    100.00,
    107.18,
    114.43,
    121.72,
    129.03,
    136.33,
    143.60,
    150.81,
    157.95,
    164.99,
    171.92,
    178.72,
    185.38,
    191.88,
    198.20,
    204.34,
    210.29,
    216.04,
    221.58,
    226.91,
    232.02,
    236.91,
    241.57,
    246.01,
    250.21,
    254.19,
    257.95,
    261.47
))

REFERENCE_ILLUM_B = numpy.array((
    2.40,
    5.60,
    9.60,
    15.20,
    22.40,
    31.30,
    41.30,
    52.10,
    63.20,
    73.10,
    80.80,
    85.40,
    88.30,
    92.00,
    95.20,
    96.50,
    94.20,
    90.70,
    89.50,
    92.20,
    96.90,
    101.00,
    102.80,
    102.60,
    101.00,
    99.20,
    98.00,
    98.50,
    99.70,
    101.00,
    102.20,
    103.90,
    105.00,
    104.90,
    103.90,
    101.60,
    99.10,
    96.20,
    92.90,
    89.40,
    86.90,
    85.20,
    84.70,
    85.40,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00
))

REFERENCE_ILLUM_C = numpy.array((
    2.70,
    7.00,
    12.90,
    21.40,
    33.00,
    47.40,
    63.30,
    80.60,
    98.10,
    112.40,
    121.50,
    124.00,
    123.10,
    123.80,
    123.90,
    120.70,
    112.10,
    102.30,
    96.90,
    98.00,
    102.10,
    105.20,
    105.30,
    102.30,
    97.80,
    93.20,
    89.70,
    88.40,
    88.10,
    88.00,
    87.80,
    88.20,
    87.90,
    86.30,
    84.00,
    80.20,
    76.30,
    72.40,
    68.30,
    64.40,
    61.50,
    59.20,
    58.10,
    58.20,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00
))

REFERENCE_ILLUM_D50 = numpy.array((
    17.92,
    20.98,
    23.91,
    25.89,
    24.45,
    29.83,
    49.25,
    56.45,
    59.97,
    57.76,
    74.77,
    87.19,
    90.56,
    91.32,
    95.07,
    91.93,
    95.70,
    96.59,
    97.11,
    102.09,
    100.75,
    102.31,
    100.00,
    97.74,
    98.92,
    93.51,
    97.71,
    99.29,
    99.07,
    95.75,
    98.90,
    95.71,
    98.24,
    103.06,
    99.19,
    87.43,
    91.66,
    92.94,
    76.89,
    86.56,
    92.63,
    78.27,
    57.72,
    82.97,
    78.31,
    79.59,
    73.44,
    63.95,
    70.81,
    74.48
))

REFERENCE_ILLUM_D65 = numpy.array((
    39.90,
    44.86,
    46.59,
    51.74,
    49.92,
    54.60,
    82.69,
    91.42,
    93.37,
    86.63,
    104.81,
    116.96,
    117.76,
    114.82,
    115.89,
    108.78,
    109.33,
    107.78,
    104.78,
    107.68,
    104.40,
    104.04,
    100.00,
    96.34,
    95.79,
    88.69,
    90.02,
    89.61,
    87.71,
    83.30,
    83.72,
    80.05,
    80.24,
    82.30,
    78.31,
    69.74,
    71.63,
    74.37,
    61.62,
    69.91,
    75.11,
    63.61,
    46.43,
    66.83,
    63.40,
    64.32,
    59.47,
    51.97,
    57.46,
    60.33
))

REFERENCE_ILLUM_E = numpy.array((
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
    100.00,
))

REFERENCE_ILLUM_F2 = numpy.array((
    0.00,
    0.00,
    0.00,
    0.00,
    1.18,
    1.84,
    3.44,
    3.85,
    4.19,
    5.06,
    11.81,
    6.63,
    7.19,
    7.54,
    7.65,
    7.62,
    7.28,
    7.05,
    7.16,
    8.04,
    10.01,
    16.64,
    16.16,
    18.62,
    22.79,
    18.66,
    16.54,
    13.80,
    10.95,
    8.40,
    6.31,
    4.68,
    3.45,
    2.55,
    1.89,
    1.53,
    1.10,
    0.88,
    0.68,
    0.56,
    0.51,
    0.47,
    0.46,
    0.40,
    0.27,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00
))

REFERENCE_ILLUM_F7 = numpy.array((
    0.00,
    0.00,
    0.00,
    0.00,
    2.56,
    3.84,
    6.15,
    7.37,
    7.71,
    9.15,
    17.52,
    12.00,
    13.08,
    13.71,
    13.95,
    13.82,
    13.43,
    13.08,
    12.78,
    12.44,
    12.26,
    17.05,
    12.58,
    12.83,
    16.75,
    12.67,
    12.19,
    11.60,
    11.12,
    10.76,
    10.11,
    10.02,
    9.87,
    7.27,
    5.83,
    5.04,
    4.12,
    3.46,
    2.73,
    2.25,
    1.90,
    1.62,
    1.45,
    1.17,
    0.81,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00
))

REFERENCE_ILLUM_F11 = numpy.array((
    0.00,
    0.00,
    0.00,
    0.00,
    0.91,
    0.46,
    1.29,
    1.59,
    2.46,
    4.49,
    12.13,
    7.19,
    6.72,
    5.46,
    5.66,
    14.96,
    4.72,
    1.47,
    0.89,
    1.18,
    39.59,
    32.61,
    2.83,
    1.67,
    11.28,
    12.73,
    7.33,
    55.27,
    13.18,
    12.26,
    2.07,
    3.58,
    2.48,
    1.54,
    1.46,
    2.00,
    1.35,
    5.58,
    0.57,
    0.23,
    0.24,
    0.20,
    0.32,
    0.16,
    0.09,
    0.00,
    0.00,
    0.00,
    0.00,
    0.00
))

REFERENCE_ILLUM_BLACKBODY = numpy.array((
    43.36,
    47.77,
    52.15,
    56.44,
    60.62,
    64.65,
    68.51,
    72.18,
    75.63,
    78.87,
    81.87,
    84.63,
    87.16,
    89.44,
    91.48,
    93.29,
    94.87,
    96.23,
    97.37,
    98.31,
    99.05,
    99.61,
    100.00,
    100.22,
    100.29,
    100.21,
    100.00,
    99.67,
    99.22,
    98.67,
    98.02,
    97.28,
    96.47,
    95.58,
    94.63,
    93.62,
    92.56,
    91.45,
    90.30,
    89.12,
    87.91,
    86.67,
    85.42,
    84.15,
    82.86,
    81.56,
    80.26,
    78.95,
    77.64,
    76.33
))

# This table is used to match up illuminants to spectral distributions above.
# It should correspond to a ColorObject.illuminant attribute.
REF_ILLUM_TABLE = {
    'a': REFERENCE_ILLUM_A,
    'b': REFERENCE_ILLUM_B,
    'c': REFERENCE_ILLUM_C,
    'd50': REFERENCE_ILLUM_D50,
    'd65': REFERENCE_ILLUM_D65,
    'e': REFERENCE_ILLUM_E,
    'f2': REFERENCE_ILLUM_F2,
    'f7': REFERENCE_ILLUM_F7,
    'f11': REFERENCE_ILLUM_F11,
    'blackbody': REFERENCE_ILLUM_BLACKBODY,
}