from __future__ import with_statement, print_function
import sys, os
import tempfile
import warnings
import numpy
from numpy import arange, array
import fitsio

import unittest

if sys.version_info > (3,0,0):
    stype=(str,bytes)
else:
    stype=str

try:
    xrange=xrange
except:
    xrange=range

def test():
    suite_warnings = unittest.TestLoader().loadTestsFromTestCase(TestWarnings)
    res1=unittest.TextTestRunner(verbosity=2).run(suite_warnings).wasSuccessful()

    suite = unittest.TestLoader().loadTestsFromTestCase(TestReadWrite)
    res2=unittest.TextTestRunner(verbosity=2).run(suite).wasSuccessful()

    if not res1 or not res2:
        sys.exit(1)

class TestWarnings(unittest.TestCase):
    """
    tests of warnings

    TODO: write test cases for bad column size
    """
    def setUp(self):
        pass

    def testNonStandardKeyValue(self):
        fname=tempfile.mktemp(prefix='fitsio-TestWarning-',suffix='.fits')

        im=numpy.zeros( (3,3) )
        with warnings.catch_warnings(record=True) as w:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write(im)
                # now write a key with a non-standard value
                value={'test':3}
                fits[-1].write_key("odd",value)
            
            assert len(w) == 1
            assert issubclass(w[-1].category, fitsio.FITSRuntimeWarning)
        
class TestReadWrite(unittest.TestCase):
    def setUp(self):



        nvec = 2
        ashape=(21,21)
        Sdtype = 'S6'
        # all currently available types, scalar, 1-d and 2-d array columns
        dtype=[('u1scalar','u1'),
               ('i1scalar','i1'),
               ('b1scalar','?'),
               ('u2scalar','u2'),
               ('i2scalar','i2'),
               ('u4scalar','u4'),
               ('i4scalar','<i4'), # mix the byte orders a bit, test swapping
               ('i8scalar','i8'),
               ('f4scalar','f4'),
               ('f8scalar','>f8'),
               ('c8scalar','c8'), # complex, two 32-bit
               ('c16scalar','c16'), # complex, two 32-bit

               ('u1vec','u1',nvec),
               ('i1vec','i1',nvec),
               ('b1vec','?',nvec),
               ('u2vec','u2',nvec),
               ('i2vec','i2',nvec),
               ('u4vec','u4',nvec),
               ('i4vec','i4',nvec),
               ('i8vec','i8',nvec),
               ('f4vec','f4',nvec),
               ('f8vec','f8',nvec),
               ('c8vec','c8',nvec),
               ('c16vec','c16',nvec),
 
               ('u1arr','u1',ashape),
               ('i1arr','i1',ashape),
               ('b1arr','?',ashape),
               ('u2arr','u2',ashape),
               ('i2arr','i2',ashape),
               ('u4arr','u4',ashape),
               ('i4arr','i4',ashape),
               ('i8arr','i8',ashape),
               ('f4arr','f4',ashape),
               ('f8arr','f8',ashape),
               ('c8arr','c8',ashape),
               ('c16arr','c16',ashape),

               ('Sscalar',Sdtype),
               ('Svec',   Sdtype, nvec),
               ('Sarr',   Sdtype, ashape)]

        dtype2=[('index','i4'),
                ('x','f8'),
                ('y','f8')]

        nrows=4
        data=numpy.zeros(nrows, dtype=dtype)

        dtypes=['u1','i1','u2','i2','u4','i4','i8','f4','f8','c8','c16']
        for t in dtypes:
            if t in ['c8','c16']:
                data[t+'scalar'] = [complex(i+1,(i+1)*2) for i in xrange(nrows)]
                vname=t+'vec'
                for row in xrange(nrows):
                    for i in xrange(nvec):
                        index=(row+1)*(i+1)
                        data[vname][row,i] = complex(index,index*2)
                aname=t+'arr'
                for row in xrange(nrows):
                    for i in xrange(ashape[0]):
                        for j in xrange(ashape[1]):
                            index=(row+1)*(i+1)*(j+1)
                            data[aname][row,i,j] = complex(index,index*2)

            else:
                data[t+'scalar'] = 1 + numpy.arange(nrows, dtype=t)
                data[t+'vec'] = 1 + numpy.arange(nrows*nvec,dtype=t).reshape(nrows,nvec)
                arr = 1 + numpy.arange(nrows*ashape[0]*ashape[1],dtype=t)
                data[t+'arr'] = arr.reshape(nrows,ashape[0],ashape[1])

        for t in ['b1']:
            data[t+'scalar'] = (numpy.arange(nrows) % 2 == 0).astype('?')
            data[t+'vec'] = (numpy.arange(nrows*nvec) % 2 == 0).astype('?').reshape(nrows,nvec)
            arr = (numpy.arange(nrows*ashape[0]*ashape[1]) % 2 == 0).astype('?')
            data[t+'arr'] = arr.reshape(nrows,ashape[0],ashape[1])


        # strings get padded when written to the fits file.  And the way I do
        # the read, I read all bytes (ala mrdfits) so the spaces are preserved.
        # 
        # so we need to pad out the strings with blanks so we can compare

        data['Sscalar'] = ['%-6s' % s for s in ['hello','world','good','bye']]
        data['Svec'][:,0] = '%-6s' % 'hello'
        data['Svec'][:,1] = '%-6s' % 'world'

        s = 1 + numpy.arange(nrows*ashape[0]*ashape[1])
        s = ['%-6s' % el for el in s]
        data['Sarr'] = numpy.array(s).reshape(nrows,ashape[0],ashape[1])

        self.data = data

        # use a dict list so we can have comments
        self.keys = [{'name':'test1','value':35},
                     {'name':'test2','value':'stuff','comment':'this is a string keyword'},
                     {'name':'dbl', 'value':23.299843,'comment':"this is a double keyword"},
                     {'name':'lng','value':3423432,'comment':'this is a long keyword'}]

        # a second extension using the convenience function
        nrows2=10
        data2 = numpy.zeros(nrows2, dtype=dtype2)
        data2['index'] = numpy.arange(nrows2,dtype='i4')
        data2['x'] = numpy.arange(nrows2,dtype='f8')
        data2['y'] = numpy.arange(nrows2,dtype='f8')
        self.data2 = data2



        #
        # ascii table
        #

        nvec = 2
        ashape = (2,3)
        Sdtype = 'S6'

        # we support writing i2, i4, i8, f4 f8, but when reading cfitsio always
        # reports their types as i4 and f8, so can't really use i8 and we are
        # forced to read all floats as f8 precision

        adtype=[('i2scalar','i2'),
                ('i4scalar','i4'),
                #('i8scalar','i8'),
                ('f4scalar','f4'),
                ('f8scalar','f8'),
                ('Sscalar',Sdtype)]
        nrows=4
        try:
            tdt = numpy.dtype(adtype, align=True)
        except TypeError: # older numpy may not understand `align` argument
            tdt = numpy.dtype(adtype)
        adata=numpy.zeros(nrows, dtype=tdt)

        adata['i2scalar'][:] = -32222  + numpy.arange(nrows,dtype='i2')
        adata['i4scalar'][:] = -1353423423 + numpy.arange(nrows,dtype='i4')
        #adata['i8scalar'][:] = -9223372036854775807 + numpy.arange(nrows,dtype='i8')
        adata['f4scalar'][:] = -2.55555555555555555555555e35 + numpy.arange(nrows,dtype='f4')*1.e35
        adata['f8scalar'][:] = -2.55555555555555555555555e110 + numpy.arange(nrows,dtype='f8')*1.e110
        adata['Sscalar'] = ['hello','world','good','bye']

        self.ascii_data = adata




        #
        # for variable length columns
        #

        # all currently available types, scalar, 1-d and 2-d array columns
        dtype=[('u1scalar','u1'),
               ('u1obj','O'),
               ('i1scalar','i1'),
               ('i1obj','O'),
               ('u2scalar','u2'),
               ('u2obj','O'),
               ('i2scalar','i2'),
               ('i2obj','O'),
               ('u4scalar','u4'),
               ('u4obj','O'),
               ('i4scalar','<i4'), # mix the byte orders a bit, test swapping
               ('i4obj','O'),
               ('i8scalar','i8'),
               ('i8obj','O'),
               ('f4scalar','f4'),
               ('f4obj','O'),
               ('f8scalar','>f8'),
               ('f8obj','O'),

               ('u1vec','u1',nvec),
               ('i1vec','i1',nvec),
               ('u2vec','u2',nvec),
               ('i2vec','i2',nvec),
               ('u4vec','u4',nvec),
               ('i4vec','i4',nvec),
               ('i8vec','i8',nvec),
               ('f4vec','f4',nvec),
               ('f8vec','f8',nvec),
 
               ('u1arr','u1',ashape),
               ('i1arr','i1',ashape),
               ('u2arr','u2',ashape),
               ('i2arr','i2',ashape),
               ('u4arr','u4',ashape),
               ('i4arr','i4',ashape),
               ('i8arr','i8',ashape),
               ('f4arr','f4',ashape),
               ('f8arr','f8',ashape),

               ('Sscalar',Sdtype),
               ('Sobj','O'),
               ('Svec',   Sdtype, nvec),
               ('Sarr',   Sdtype, ashape)]

        dtype2=[('index','i4'),
                ('x','f8'),
                ('y','f8')]

        nrows=4
        data=numpy.zeros(nrows, dtype=dtype)

        for t in ['u1','i1','u2','i2','u4','i4','i8','f4','f8']:
            data[t+'scalar'] = 1 + numpy.arange(nrows, dtype=t)
            data[t+'vec'] = 1 + numpy.arange(nrows*nvec,dtype=t).reshape(nrows,nvec)
            arr = 1 + numpy.arange(nrows*ashape[0]*ashape[1],dtype=t)
            data[t+'arr'] = arr.reshape(nrows,ashape[0],ashape[1])

            for i in xrange(nrows):
                data[t+'obj'][i] = data[t+'vec'][i]


        # strings get padded when written to the fits file.  And the way I do
        # the read, I real all bytes (ala mrdfits) so the spaces are preserved.
        # 
        # so for comparisons, we need to pad out the strings with blanks so we
        # can compare

        data['Sscalar'] = ['%-6s' % s for s in ['hello','world','good','bye']]
        data['Svec'][:,0] = '%-6s' % 'hello'
        data['Svec'][:,1] = '%-6s' % 'world'

        s = 1 + numpy.arange(nrows*ashape[0]*ashape[1])
        s = ['%-6s' % el for el in s]
        data['Sarr'] = numpy.array(s).reshape(nrows,ashape[0],ashape[1])

        for i in xrange(nrows):
            data['Sobj'][i] = data['Sscalar'][i].rstrip()

        self.vardata = data

        #
        # for bitcol columns
        #
        nvec = 2
        ashape=(21,21)

        dtype=[('b1vec','?',nvec),

               ('b1arr','?',ashape)]

        nrows=4
        data=numpy.zeros(nrows, dtype=dtype)

        for t in ['b1']:
            data[t+'vec'] = (numpy.arange(nrows*nvec) % 2 == 0).astype('?').reshape(nrows,nvec)
            arr = (numpy.arange(nrows*ashape[0]*ashape[1]) % 2 == 0).astype('?')
            data[t+'arr'] = arr.reshape(nrows,ashape[0],ashape[1])

        self.bdata = data



    def testHeaderWriteRead(self):
        """
        Test a basic header write and read
        """

        fname=tempfile.mktemp(prefix='fitsio-HeaderWrite-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                data=numpy.zeros(10)
                header={
                    'x':35,
                    'y':88.215,
                    'funky':'35-8', # test old bug when strings look 
                                    #like expressions
                    'name':'J. Smith',
                    'und':None,
                    'binop':'25-3', # test string with binary operation in it
                    'unders':'1_000_000', # test string with underscore
                }
                fits.write_image(data, header=header)

                rh = fits[0].read_header()
                self.check_header(header, rh)

            with fitsio.FITS(fname) as fits:
                rh = fits[0].read_header()
                self.check_header(header, rh)

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testHeaderContinue(self):
        """
        Test a header with CONTINUE keys
        """
        fname=tempfile.mktemp(prefix='fitsio-HeaderContinue-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                data=numpy.zeros(10)
                header = [                          
                    "SVALUE  = 'This is a long string value &' ",
                    "CONTINUE  'extending&   '   ",
                    "CONTINUE  ' over 3 lines.'     / and a comment ",
                    "TEST    = 10 / another key",
                    ]
                fits.write_image(data, header=header)

                rh = fits[0].read_header()
                assert rh.keys().count('CONTINUE') == 2
                
            with fitsio.FITS(fname) as fits:
                rh = fits[0].read_header()
                assert rh.keys().count('CONTINUE') == 2

        finally:
            if os.path.exists(fname):
                os.remove(fname)

        fname=tempfile.mktemp(prefix='fitsio-HeaderContinue-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                data=numpy.zeros(10)
                header = [
                    # This is a snippet from a real DES FITS header, which (I guess incorrectly)
                    # puts an = sign after the CONTINUE.  This didn't used to work.
                    "OBSERVER= 'Ross Cawthon(RM), Ricardo Ogando(OBS1), Rutu Das (OBS1) Michael &'",
                    "CONTINUE= '        '           /   '&' / Observer name(s)",
                    ]
                numpy.testing.assert_warns(fitsio.FITSRuntimeWarning,
                                           fits.write_image, data, header=header)

                # The CONTINUE= line gets converted to a normal CONTINUE, so no warning on reads.
                # There would be a warning if the file being read has CONTINUE=, but that would
                # be harder to test explicitly, since fitsio won't write that file...
                rh = fits[0].read_header()
                assert rh.keys().count('CONTINUE') == 1

            with fitsio.FITS(fname) as fits:
                rh = fits[0].read_header()
                assert rh.keys().count('CONTINUE') == 1

        finally:
            if os.path.exists(fname):
                os.remove(fname)


 
    def testImageWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits')
        dtypes=['u1','i1','u2','i2','<u4','i4','i8','>f4','f8']
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note mixing up byte orders a bit
                for dtype in dtypes:
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)
                    header={'DTYPE':dtype,'NBYTES':data.dtype.itemsize}
                    fits.write_image(data, header=header)
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "images")

                    rh = fits[-1].read_header()
                    self.check_header(header, rh)

            with fitsio.FITS(fname) as fits:
                for i in xrange(len(dtypes)):
                    self.assertEqual(fits[i].is_compressed(), False, "not compressed")

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testImageWriteEmpty(self):
        """
        Test a basic image write, with no data and just a header, then reading back in to
        check the values
        """
        fname=tempfile.mktemp(prefix='fitsio-ImageWriteEmpty-',suffix='.fits')
        try:
            data=None
            header={'EXPTIME':120, 'OBSERVER':'Beatrice Tinsley','INSTRUME':'DECam','FILTER':'r'}
            with fitsio.FITS(fname,'rw',clobber=True, ignore_empty=True) as fits:
                for extname in ['CCD1','CCD2','CCD3','CCD4','CCD5','CCD6','CCD7','CCD8']:
                    fits.write_image(data, header=header)
                    rdata = fits[-1].read()
                    rh = fits[-1].read_header()
                    self.check_header(header, rh)
        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testImageWriteReadFromDims(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-ImageWriteFromDims-',suffix='.fits')
        dtypes=['u1','i1','u2','i2','<u4','i4','i8','>f4','f8']
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note mixing up byte orders a bit
                for dtype in dtypes:
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)

                    fits.create_image_hdu(dims=data.shape,
                                          dtype=data.dtype)

                    fits[-1].write(data)
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "images")

            with fitsio.FITS(fname) as fits:
                for i in xrange(len(dtypes)):
                    self.assertEqual(fits[i].is_compressed(), False, "not compressed")

        finally:
            if os.path.exists(fname):
                os.remove(fname)
 
    def testImageWriteReadFromDimsChunks(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-ImageWriteFromDims-',suffix='.fits')
        dtypes=['u1','i1','u2','i2','<u4','i4','i8','>f4','f8']
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note mixing up byte orders a bit
                for dtype in dtypes:
                    data = numpy.arange(5*3,dtype=dtype).reshape(5,3)

                    fits.create_image_hdu(dims=data.shape,
                                          dtype=data.dtype)

                    chunk1 = data[0:2, :]
                    chunk2 = data[2: , :]

                    #
                    # first using scalar pixel offset
                    #

                    fits[-1].write(chunk1)

                    start=chunk1.size
                    fits[-1].write(chunk2, start=start)

                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "images")


                    # 
                    # now using sequence, easier to calculate
                    #

                    fits.create_image_hdu(dims=data.shape,
                                          dtype=data.dtype)

                    # first using pixel offset
                    fits[-1].write(chunk1)

                    start=[2,0]
                    fits[-1].write(chunk2, start=start)

                    rdata2 = fits[-1].read()

                    self.compare_array(data, rdata2, "images")


            with fitsio.FITS(fname) as fits:
                for i in xrange(len(dtypes)):
                    self.assertEqual(fits[i].is_compressed(), False, "not compressed")

        finally:
            if os.path.exists(fname):
                os.remove(fname)
 

    def testImageSlice(self):
        fname=tempfile.mktemp(prefix='fitsio-ImageSlice-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note mixing up byte orders a bit
                for dtype in ['u1','i1','u2','i2','<u4','i4','i8','>f4','f8']:
                    data = numpy.arange(16*20,dtype=dtype).reshape(16,20)
                    header={'DTYPE':dtype,'NBYTES':data.dtype.itemsize}
                    fits.write_image(data, header=header)
                    rdata = fits[-1][4:12, 9:17]

                    self.compare_array(data[4:12,9:17], rdata, "images")

                    rh = fits[-1].read_header()
                    self.check_header(header, rh)

        finally:
            if os.path.exists(fname):
                os.remove(fname)


    def testRiceTileCompressedWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """
        nrows=30
        ncols=100
        tile_dims=[5,10]
        compress='rice'
        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits.fz')
        dtypes = ['u1','i1','u2','i2','u4','i4','f4','f8']

        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note i8 not supported for compressed!

                for dtype in dtypes:
                    data = numpy.arange(nrows*ncols,dtype=dtype).reshape(nrows,ncols)
                    fits.write_image(data, compress=compress)
                    #fits.reopen()
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata,
                                       "%s compressed images ('%s')" % (compress,dtype))


                    fits.write_image(data, compress=compress, tile_dims=tile_dims)
                    #fits.reopen()
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata,
                                       ("%s tile dims compressed images "
                                        "('%s')" % (compress,dtype)))

            with fitsio.FITS(fname) as fits:
                for ii in xrange(len(dtypes)):
                    i=ii+1
                    self.assertEqual(fits[i].is_compressed(), True, "is compressed")

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testPLIOTileCompressedWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        compress='plio'
        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits.fz')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note i8 not supported for compressed!
                # also no writing unsigned, need to address
                dtypes = ['u1','i1','u2','i2','i4','f4','f8']

                for dtype in dtypes:
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)
                    fits.write_image(data, compress=compress)
                    #fits.reopen()
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "%s compressed images ('%s')" % (compress,dtype))

        finally:
            if os.path.exists(fname):
                os.remove(fname)
 
    def testGZIPTileCompressedWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        compress='gzip'
        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits.fz')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note i8 not supported for compressed!
                dtypes = ['u1','i1',     'i2','u4','i4','f4','f8']

                for dtype in dtypes:
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)
                    fits.write_image(data, compress=compress)
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "%s compressed images ('%s')" % (compress,dtype))

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testGZIP2TileCompressedWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        compress='gzip_2'
        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits.fz')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note i8 not supported for compressed!
                dtypes = ['u1','i1',     'i2','u4','i4','f4','f8']

                for dtype in dtypes:
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)
                    fits.write_image(data, compress=compress)
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "%s compressed images ('%s')" % (compress,dtype))

        finally:
            if os.path.exists(fname):
                os.remove(fname)
 
    def testHCompressTileCompressedWriteRead(self):
        """
        Test a basic image write, data and a header, then reading back in to
        check the values
        """

        compress='hcompress'
        fname=tempfile.mktemp(prefix='fitsio-ImageWrite-',suffix='.fits.fz')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                # note i8 not supported for compressed!
                dtypes = ['u1','i1','u2','i2','u4','i4','f4','f8']

                for dtype in dtypes:
                    if (dtype == 'u2') and ('SKIP_HCOMPRESS_U2_TEST' in os.environ):
                        continue
                    data = numpy.arange(5*20,dtype=dtype).reshape(5,20)
                    fits.write_image(data, compress=compress)
                    #fits.reopen()
                    rdata = fits[-1].read()

                    self.compare_array(data, rdata, "%s compressed images ('%s')" % (compress,dtype))

        finally:
            if os.path.exists(fname):
                os.remove(fname)
 


    def testWriteKeyDict(self):
        """
        test that write_key works using a standard key dict
        """

        fname=tempfile.mktemp(prefix='fitsio-WriteKeyDict-',suffix='.fits')
        nrows=3
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                im=numpy.zeros( (10,10), dtype='i2' )
                fits.write(im)

                keydict = {
                    'name':'test',
                    'value':35,
                    'comment':'keydict test',
                }
                fits[-1].write_key(**keydict)

                h = fits[-1].read_header()

                self.assertEqual(h['test'],keydict['value'])
                self.assertEqual(h.get_comment('test'),keydict['comment'])

        finally:
            if os.path.exists(fname):
                os.remove(fname)



    def testMoveByName(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-MoveByName-',suffix='.fits')
        nrows=3
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                data1=numpy.zeros(nrows,dtype=[('ra','f8'),('dec','f8')])
                data1['ra'] = numpy.random.random(nrows)
                data1['dec'] = numpy.random.random(nrows)
                fits.write_table(data1, extname='mytable')

                fits[-1].write_key("EXTVER", 1)

                data2=numpy.zeros(nrows,dtype=[('ra','f8'),('dec','f8')])
                data2['ra'] = numpy.random.random(nrows)
                data2['dec'] = numpy.random.random(nrows)

                fits.write_table(data2, extname='mytable')
                fits[-1].write_key("EXTVER", 2)

                hdunum1=fits.movnam_hdu('mytable',extver=1)
                self.assertEqual(hdunum1,2)
                hdunum2=fits.movnam_hdu('mytable',extver=2)
                self.assertEqual(hdunum2,3)

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testExtVer(self):
        """
        Test using extname and extver, all combinations I can think of
        """

        fname=tempfile.mktemp(prefix='fitsio-ExtVer-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                img1=numpy.arange(2*3,dtype='i4').reshape(2,3) + 5
                img2=numpy.arange(2*3,dtype='i4').reshape(2,3) + 6
                img3=numpy.arange(2*3,dtype='i4').reshape(2,3) + 7

                nrows=3
                data1=numpy.zeros(nrows,dtype=[('num','i4'),('ra','f8'),('dec','f8')])
                data1['num'] = 1
                data1['ra'] = numpy.random.random(nrows)
                data1['dec'] = numpy.random.random(nrows)

                data2=numpy.zeros(nrows,dtype=[('num','i4'),('ra','f8'),('dec','f8')])
                data2['num'] = 2
                data2['ra'] = numpy.random.random(nrows)
                data2['dec'] = numpy.random.random(nrows)

                data3=numpy.zeros(nrows,dtype=[('num','i4'),('ra','f8'),('dec','f8')])
                data3['num'] = 3
                data3['ra'] = numpy.random.random(nrows)
                data3['dec'] = numpy.random.random(nrows)


                fits.write_image(img1, extname='myimage', extver=1)
                fits.write_table(data1)
                fits.write_table(data2,extname='mytable', extver=1)
                fits.write_image(img2, extname='myimage', extver=2)
                fits.write_table(data3, extname='mytable',extver=2)
                fits.write_image(img3)

                d1  = fits[1].read()
                d2  = fits['mytable'].read()
                d2b = fits['mytable',1].read()
                d3  = fits['mytable',2].read()


                for f in data1.dtype.names:
                    self.compare_rec(data1, d1, "data1")
                    self.compare_rec(data2, d2, "data2")
                    self.compare_rec(data2, d2b, "data2b")
                    self.compare_rec(data3, d3, "data3")

                dimg1  = fits[0].read()
                dimg1b = fits['myimage',1].read()
                dimg2  = fits['myimage',2].read()
                dimg3  = fits[5].read()

                self.compare_array(img1, dimg1,"img1")
                self.compare_array(img1, dimg1b,"img1b")
                self.compare_array(img2, dimg2,"img2")
                self.compare_array(img3, dimg3,"img3")


        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testVariableLengthColumns(self):
        """
        Write and read variable length columns
        """

        for vstorage in ['fixed','object']:
            fname=tempfile.mktemp(prefix='fitsio-VarCol-',suffix='.fits')
            try:
                with fitsio.FITS(fname,'rw',clobber=True,vstorage=vstorage) as fits:
                    fits.write(self.vardata)


                    # reading multiple columns
                    d = fits[1].read()
                    self.compare_rec_with_var(self.vardata,d,"read all test '%s'" % vstorage)

                    cols=['u2scalar','Sobj']
                    d = fits[1].read(columns=cols)
                    self.compare_rec_with_var(self.vardata,d,"read all test subcols '%s'" % vstorage)

                    # one at a time
                    for f in self.vardata.dtype.names:
                        d = fits[1].read_column(f)
                        if fitsio.fitslib.is_object(self.vardata[f]):
                            self.compare_object_array(self.vardata[f], d, 
                                                      "read all field '%s'" % f)

                    # same as above with slices
                    # reading multiple columns
                    d = fits[1][:]
                    self.compare_rec_with_var(self.vardata,d,"read all test '%s'" % vstorage)

                    d = fits[1][cols][:]
                    self.compare_rec_with_var(self.vardata,d,"read all test subcols '%s'" % vstorage)

                    # one at a time
                    for f in self.vardata.dtype.names:
                        d = fits[1][f][:]
                        if fitsio.fitslib.is_object(self.vardata[f]):
                            self.compare_object_array(self.vardata[f], d, 
                                                      "read all field '%s'" % f)

 

                    #
                    # now same with sub rows
                    #

                    # reading multiple columns
                    rows = numpy.array([0,2])
                    d = fits[1].read(rows=rows)
                    self.compare_rec_with_var(self.vardata,d,"read subrows test '%s'" % vstorage, 
                                              rows=rows)

                    d = fits[1].read(columns=cols, rows=rows)
                    self.compare_rec_with_var(self.vardata,d,"read subrows test subcols '%s'" % vstorage, 
                                              rows=rows)

                    # one at a time
                    for f in self.vardata.dtype.names:
                        d = fits[1].read_column(f,rows=rows)
                        if fitsio.fitslib.is_object(self.vardata[f]):
                            self.compare_object_array(self.vardata[f], d, 
                                                      "read subrows field '%s'" % f,
                                                      rows=rows)

                    # same as above with slices
                    # reading multiple columns
                    d = fits[1][rows]
                    self.compare_rec_with_var(self.vardata,d,"read subrows slice test '%s'" % vstorage, 
                                              rows=rows)
                    d = fits[1][2:4]
                    self.compare_rec_with_var(self.vardata,d,"read slice test '%s'" % vstorage, 
                                              rows=numpy.array([2,3]))

                    d = fits[1][cols][rows]
                    self.compare_rec_with_var(self.vardata,d,"read subcols subrows slice test '%s'" % vstorage, 
                                              rows=rows)
                    d = fits[1][cols][2:4]
                    self.compare_rec_with_var(self.vardata,d,"read subcols slice test '%s'" % vstorage, 
                                              rows=numpy.array([2,3]))

                    # one at a time
                    for f in self.vardata.dtype.names:
                        d = fits[1][f][rows]
                        if fitsio.fitslib.is_object(self.vardata[f]):
                            self.compare_object_array(self.vardata[f], d, 
                                                      "read subrows field '%s'" % f,
                                                      rows=rows)
                        d = fits[1][f][2:4]
                        if fitsio.fitslib.is_object(self.vardata[f]):
                            self.compare_object_array(self.vardata[f], d, 
                                                      "read slice field '%s'" % f,
                                                      rows=numpy.array([2,3]))




            finally:
                if os.path.exists(fname):
                    os.remove(fname)



    def testTableWriteRead(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableWrite-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    fits.write_table(self.data, header=self.keys, extname='mytable')
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"testing write does not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

                d = fits[1].read()
                self.compare_rec(self.data, d, "table read/write")

                h = fits[1].read_header()
                self.compare_headerlist_header(self.keys, h)

            # see if our convenience functions are working
            fitsio.write(fname, self.data2, 
                         extname="newext", 
                         header={'ra':335.2,'dec':-25.2})
            d = fitsio.read(fname, ext='newext')
            self.compare_rec(self.data2, d, "table data2")
            # now test read_column
            with fitsio.FITS(fname) as fits:

                for f in self.data.dtype.names:
                    d = fits[1].read_column(f)
                    self.compare_array(self.data[f], d, "table 1 single field read '%s'" % f)

                for f in self.data2.dtype.names:
                    d = fits['newext'].read_column(f)
                    self.compare_array(self.data2[f], d, "table 2 single field read '%s'" % f)

                # now list of columns
                for cols in [['u2scalar','f4vec','Sarr'],
                             ['f8scalar','u2arr','Sscalar']]:
                    d = fits[1].read(columns=cols)
                    for f in d.dtype.names: 
                        self.compare_array(self.data[f][:], d[f], "test column list %s" % f)


                    rows = [1,3]
                    d = fits[1].read(columns=cols, rows=rows)
                    for f in d.dtype.names: 
                        self.compare_array(self.data[f][rows], d[f], "test column list %s row subset" % f)

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)

    def testTableFormatColumnSubset(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableWrite-',suffix='.fits')

        with fitsio.FITS(fname,'rw',clobber=True) as fits:
            data = numpy.empty(1, dtype=[('Z', 'f8'), ('Z_PERSON', 'f8')])
            data['Z'][:] = 1.0
            data['Z_PERSON'][:] = 1.0
            fits.write_table(data)
            fits.write_table(data)
            fits.write_table(data)
        try:
            with fitsio.FITS(fname,'r',clobber=True) as fits:
                # assert we do not have an extra row of 'Z'
                sz = str(fits[2]['Z_PERSON']).split('\n')
                s  = str(fits[2][('Z_PERSON', 'Z')]).split('\n')
                assert len(sz) == len(s) - 1
        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)

    def testTableWriteDictOfArraysScratch(self):
        """
        This version creating the table from the names and list
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableDict-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    d={}
                    for n in self.data.dtype.names:
                        d[n] = self.data[n]

                    fits.write(d)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname)
            self.compare_rec(self.data, d, "list of dicts, scratch")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)

    def testTableWriteDictOfArrays(self):
        """
        This version creating the table from the names and list
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableDict-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    fits.create_table_hdu(self.data, extname='mytable')

                    d={}
                    for n in self.data.dtype.names:
                        d[n] = self.data[n]

                    fits[-1].write(d)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname)
            self.compare_rec(self.data, d, "list of dicts")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)


    def testTableWriteDictOfArraysVar(self):
        """
        This version creating the table from the names and list
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableDictVar-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    d={}
                    for n in self.vardata.dtype.names:
                        d[n] = self.vardata[n]

                    fits.write(d)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname)
            self.compare_rec_with_var(self.vardata,d,"dict of arrays, var")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)


    def testTableWriteListOfArraysScratch(self):
        """
        This version creating the table from the names and list
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableListScratch-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    names = [n for n in self.data.dtype.names]
                    dlist = [self.data[n] for n in self.data.dtype.names]
                    fits.write(dlist, names=names)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname)
            self.compare_rec(self.data, d, "list of arrays, scratch")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)



    def testTableWriteListOfArrays(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableWriteList-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    fits.create_table_hdu(self.data, extname='mytable')

                    columns = [n for n in self.data.dtype.names]
                    dlist = [self.data[n] for n in self.data.dtype.names]
                    fits[-1].write(dlist, columns=columns)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname, ext='mytable')
            self.compare_rec(self.data, d, "list of arrays")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)


    def testTableWriteListOfArraysVar(self):
        """
        This version creating the table from the names and list
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableListScratch-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    names = [n for n in self.vardata.dtype.names]
                    dlist = [self.vardata[n] for n in self.vardata.dtype.names]
                    fits.write(dlist, names=names)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"write should not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            d = fitsio.read(fname)
            self.compare_rec_with_var(self.vardata,d,"list of arrays, var")

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)

    def testTableIter(self):
        """
        Test iterating over rows of a table
        """

        fname=tempfile.mktemp(prefix='fitsio-TableIter-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                try:
                    fits.write_table(self.data, header=self.keys, extname='mytable')
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"testing write does not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

            # one row at a time
            with fitsio.FITS(fname) as fits:
                hdu = fits["mytable"]
                i=0
                for row_data in hdu:
                    self.compare_rec(self.data[i], row_data, "table data")
                    i+=1

        finally:
            if os.path.exists(fname):
                #pass
                os.remove(fname)

    def testAsciiTableWriteRead(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-AsciiTableWrite-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                fits.write_table(self.ascii_data, table_type='ascii', header=self.keys, extname='mytable')
                
                # cfitsio always reports type as i4 and f8, period, even if if
                # written with higher precision.  Need to fix that somehow
                for f in self.ascii_data.dtype.names:
                    d = fits[1].read_column(f)
                    if d.dtype == numpy.float64:
                        # note we should be able to do 1.11e-16 in principle, but in practice
                        # we get more like 2.15e-16
                        self.compare_array_tol(self.ascii_data[f], d, 2.15e-16, "table field read '%s'" % f)
                    else:
                        self.compare_array(self.ascii_data[f], d, "table field read '%s'" % f)

                rows = [1,3]
                for f in self.ascii_data.dtype.names:
                    d = fits[1].read_column(f,rows=rows)
                    if d.dtype == numpy.float64:
                        self.compare_array_tol(self.ascii_data[f][rows], d, 2.15e-16, 
                                               "table field read subrows '%s'" % f)
                    else:
                        self.compare_array(self.ascii_data[f][rows], d, 
                                           "table field read subrows '%s'" % f)

                beg=1
                end=3
                for f in self.ascii_data.dtype.names:
                    d = fits[1][f][beg:end]
                    if d.dtype == numpy.float64:
                        self.compare_array_tol(self.ascii_data[f][beg:end], d, 2.15e-16, 
                                               "table field read slice '%s'" % f)
                    else:
                        self.compare_array(self.ascii_data[f][beg:end], d, 
                                           "table field read slice '%s'" % f)

                cols = ['i2scalar','f4scalar']
                for f in self.ascii_data.dtype.names:
                    data = fits[1].read(columns=cols)
                    for f in data.dtype.names:
                        d=data[f]
                        if d.dtype == numpy.float64:
                            self.compare_array_tol(self.ascii_data[f], d, 2.15e-16, "table subcol, '%s'" % f)
                        else:
                            self.compare_array(self.ascii_data[f], d, "table subcol, '%s'" % f)

                    data = fits[1][cols][:]
                    for f in data.dtype.names:
                        d=data[f]
                        if d.dtype == numpy.float64:
                            self.compare_array_tol(self.ascii_data[f], d, 2.15e-16, "table subcol, '%s'" % f)
                        else:
                            self.compare_array(self.ascii_data[f], d, "table subcol, '%s'" % f)

                rows=[1,3]
                for f in self.ascii_data.dtype.names:
                    data = fits[1].read(columns=cols,rows=rows)
                    for f in data.dtype.names:
                        d=data[f]
                        if d.dtype == numpy.float64:
                            self.compare_array_tol(self.ascii_data[f][rows], d, 2.15e-16, 
                                                   "table subcol, '%s'" % f)
                        else:
                            self.compare_array(self.ascii_data[f][rows], d, 
                                               "table subcol, '%s'" % f)

                    data = fits[1][cols][rows]
                    for f in data.dtype.names:
                        d=data[f]
                        if d.dtype == numpy.float64:
                            self.compare_array_tol(self.ascii_data[f][rows], d, 2.15e-16, 
                                                   "table subcol/row, '%s'" % f)
                        else:
                            self.compare_array(self.ascii_data[f][rows], d, 
                                               "table subcol/row, '%s'" % f)

                for f in self.ascii_data.dtype.names:

                    data = fits[1][cols][beg:end]
                    for f in data.dtype.names:
                        d=data[f]
                        if d.dtype == numpy.float64:
                            self.compare_array_tol(self.ascii_data[f][beg:end], d, 2.15e-16, 
                                                   "table subcol/slice, '%s'" % f)
                        else:
                            self.compare_array(self.ascii_data[f][beg:end], d, 
                                               "table subcol/slice, '%s'" % f)



        finally:
            if os.path.exists(fname):
                os.remove(fname)


    def testTableInsertColumn(self):
        """
        Insert a new column
        """

        fname=tempfile.mktemp(prefix='fitsio-TableInsertColumn-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                fits.write_table(self.data, header=self.keys, extname='mytable')

                d = fits[1].read()

                for n in d.dtype.names:
                    newname = n+'_insert'

                    fits[1].insert_column(newname, d[n])

                    newdata = fits[1][newname][:]

                    self.compare_array(d[n], newdata, "table single field insert and read '%s'" % n)

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testTableDeleteRowRange(self):
        """
        Insert a new column
        """

        fname=tempfile.mktemp(prefix='fitsio-TableDeleteRowRange-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)

            rowslice = slice(1,3)
            with fitsio.FITS(fname,'rw') as fits:
                fits[1].delete_rows(rowslice)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = self.data[ [0,3] ]
            self.compare_rec(compare_data, d, "delete row range")


        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testTableDeleteRows(self):
        """
        Insert a new column
        """

        fname=tempfile.mktemp(prefix='fitsio-TableDeleteRows-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)

            rows2delete = [1,3]
            with fitsio.FITS(fname,'rw') as fits:
                fits[1].delete_rows(rows2delete)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = self.data[ [0,2] ]
            self.compare_rec(compare_data, d, "delete rows")


        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testTableResize(self):
        """
        Insert a new column
        """

        fname=tempfile.mktemp(prefix='fitsio-TableResize-',suffix='.fits')
        try:

            #
            # shrink from back
            #
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)

            nrows = 2
            with fitsio.FITS(fname,'rw') as fits:
                fits[1].resize(nrows)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = self.data[0:nrows]
            self.compare_rec(compare_data, d, "shrink from back")


            #
            # shrink from front
            #
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)

            with fitsio.FITS(fname,'rw') as fits:
                fits[1].resize(nrows, front=True)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = self.data[nrows-self.data.size:]
            self.compare_rec(compare_data, d, "shrink from front")


            # These don't get zerod

            nrows = 10
            add_data = numpy.zeros(nrows-self.data.size,dtype=self.data.dtype)
            add_data['i1scalar'] = -128
            add_data['i1vec'] = -128
            add_data['i1arr'] = -128
            add_data['u2scalar'] = 32768
            add_data['u2vec'] = 32768
            add_data['u2arr'] = 32768
            add_data['u4scalar'] = 2147483648
            add_data['u4vec'] = 2147483648
            add_data['u4arr'] = 2147483648


            #
            # expand at the back
            #
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)
            with fitsio.FITS(fname,'rw') as fits:
                fits[1].resize(nrows)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = numpy.hstack( (self.data, add_data) )
            self.compare_rec(compare_data, d, "expand at the back")

            #
            # expand at the front
            #
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write_table(self.data)
            with fitsio.FITS(fname,'rw') as fits:
                fits[1].resize(nrows, front=True)

            with fitsio.FITS(fname) as fits:
                d = fits[1].read()

            compare_data = numpy.hstack( (add_data, self.data) )
            # These don't get zerod
            self.compare_rec(compare_data, d, "expand at the front")


        finally:
            if os.path.exists(fname):
                os.remove(fname)



    def testSlice(self):
        """
        Test reading by slice
        """

        fname=tempfile.mktemp(prefix='fitsio-TableAppend-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                # initial write
                fits.write_table(self.data)

                # test reading single columns
                for f in self.data.dtype.names:
                    d = fits[1][f][:]
                    self.compare_array(self.data[f], d, "test read all rows %s column subset" % f)

                # test reading row subsets
                rows = [1,3]
                for f in self.data.dtype.names:
                    d = fits[1][f][rows]
                    self.compare_array(self.data[f][rows], d, "test %s row subset" % f)
                for f in self.data.dtype.names:
                    d = fits[1][f][1:3]
                    self.compare_array(self.data[f][1:3], d, "test %s row slice" % f)

                # now list of columns
                cols=['u2scalar','f4vec','Sarr']
                d = fits[1][cols][:]
                for f in d.dtype.names: 
                    self.compare_array(self.data[f][:], d[f], "test column list %s" % f)


                cols=['u2scalar','f4vec','Sarr']
                d = fits[1][cols][rows]
                for f in d.dtype.names: 
                    self.compare_array(self.data[f][rows], d[f], "test column list %s row subset" % f)

                cols=['u2scalar','f4vec','Sarr']
                d = fits[1][cols][1:3]
                for f in d.dtype.names: 
                    self.compare_array(self.data[f][1:3], d[f], "test column list %s row slice" % f)



        finally:
            if os.path.exists(fname):
                os.remove(fname)




    def testTableAppend(self):
        """
        Test creating a table and appending new rows.
        """

        fname=tempfile.mktemp(prefix='fitsio-TableAppend-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                # initial write
                fits.write_table(self.data, header=self.keys, extname='mytable')
                # now append
                data2 = self.data.copy()
                data2['f4scalar'] = 3
                fits[1].append(data2)

                d = fits[1].read()
                self.assertEqual(d.size, self.data.size*2)

                self.compare_rec(self.data, d[0:self.data.size], "Comparing initial write")
                self.compare_rec(data2, d[self.data.size:], "Comparing appended data")

                h = fits[1].read_header()
                self.compare_headerlist_header(self.keys, h)

        finally:
            if os.path.exists(fname):
                os.remove(fname)



    def testTableSubsets(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-TableWrite-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                fits.write_table(self.data, header=self.keys, extname='mytable')


                rows = [1,3]
                d = fits[1].read(rows=rows)
                self.compare_rec_subrows(self.data, d, rows, "table subset")
                columns = ['i1scalar','f4arr']
                d = fits[1].read(columns=columns, rows=rows)

                for f in columns:
                    d = fits[1].read_column(f,rows=rows)
                    self.compare_array(self.data[f][rows], d, "row subset, multi-column '%s'" % f)
                for f in self.data.dtype.names:
                    d = fits[1].read_column(f,rows=rows)
                    self.compare_array(self.data[f][rows], d, "row subset, column '%s'" % f)

        finally:
            if os.path.exists(fname):
                os.remove(fname)



    def testGZWriteRead(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values

        this code all works, but the file is zere size when done!
        """

        fname=tempfile.mktemp(prefix='fitsio-GZTableWrite-',suffix='.fits.gz')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                fits.write_table(self.data, header=self.keys, extname='mytable')

                d = fits[1].read()
                self.compare_rec(self.data, d, "gzip write/read")

                h = fits[1].read_header()
                for entry in self.keys:
                    name=entry['name'].upper()
                    value=entry['value']
                    hvalue = h[name]
                    if isinstance(hvalue,str):
                        hvalue = hvalue.strip()
                    self.assertEqual(value,hvalue,"testing header key '%s'" % name)

                    if 'comment' in entry:
                        self.assertEqual(entry['comment'].strip(),
                                         h.get_comment(name).strip(),
                                         "testing comment for header key '%s'" % name)
            stat=os.stat(fname)
            self.assertNotEqual(stat.st_size, 0, "Making sure the data was flushed to disk")
        finally:
            if os.path.exists(fname):
                os.remove(fname)

    @unittest.skip("bzip2 is not supported with debian cfitsio package")
    def testBz2Read(self):
        '''
        Write a normal .fits file, run bzip2 on it, then read the bz2
        file and verify that it's the same as what we put in; we don't
        [currently support or] test *writing* bzip2.
        '''

        if 'SKIP_BZIP_TEST' in os.environ:
            if sys.version_info >= (2,7,0):
                self.skipTest("skipping bzip tests")
            else:
                # skipTest only works for python 2.7+
                # just return
                return

        fname=tempfile.mktemp(prefix='fitsio-BZ2TableWrite-',suffix='.fits')
        bzfname = fname + '.bz2'

        try:
            fits = fitsio.FITS(fname,'rw',clobber=True)
            fits.write_table(self.data, header=self.keys, extname='mytable')
            fits.close()
    
            os.system('bzip2 %s' % fname)
            f2 = fitsio.FITS(bzfname)
            d = f2[1].read()
            self.compare_rec(self.data, d, "bzip2 read")
    
            h = f2[1].read_header()
            for entry in self.keys:
                name=entry['name'].upper()
                value=entry['value']
                hvalue = h[name]
                if isinstance(hvalue,str):
                    hvalue = hvalue.strip()
                self.assertEqual(value,hvalue,"testing header key '%s'" % name)
                if 'comment' in entry:
                    self.assertEqual(entry['comment'].strip(),
                                     h.get_comment(name).strip(),
                                     "testing comment for header key '%s'" % name)
        except:
            import traceback
            traceback.print_exc()
            self.assertTrue(False, 'Exception in testing bzip2 reading')
        finally:
            if os.path.exists(fname):
                os.remove(fname)
            if os.path.exists(bzfname):
                os.remove(bzfname)
            pass
    def testChecksum(self):
        """
        Test a basic table write, data and a header, then reading back in to
        check the values
        """

        fname=tempfile.mktemp(prefix='fitsio-Checksum-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                fits.write_table(self.data, header=self.keys, extname='mytable')
                fits[1].write_checksum()
                fits[1].verify_checksum()
        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testTrimStrings(self):
        fname=tempfile.mktemp(prefix='fitsio-Trim-',suffix='.fits')
        dt=[('fval','f8'),('name','S15'),('vec','f4',2)]
        n=3
        data=numpy.zeros(n, dtype=dt)
        data['fval'] = numpy.random.random(n)
        data['vec'] = numpy.random.random(n*2).reshape(n,2)

        data['name'] = ['mike','really_long_name_to_fill','jan']

        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write(data)

            for onconstruct in [True,False]:
                if onconstruct:
                    ctrim=True
                    otrim=False
                else:
                    ctrim=False
                    otrim=True

                with fitsio.FITS(fname,'rw', trim_strings=ctrim) as fits:

                    if ctrim:
                        dread=fits[1][:]
                        self.compare_rec(
                            data,
                            dread,
                            "trimmed strings constructor",
                        )

                        dname=fits[1]['name'][:]
                        self.compare_array(
                            data['name'],
                            dname,
                            "trimmed strings col read, constructor",
                        )
                        dread=fits[1][ ['name'] ][:]
                        self.compare_array(
                            data['name'],
                            dread['name'],
                            "trimmed strings col read, constructor",
                        )



                    dread=fits[1].read(trim_strings=otrim)
                    self.compare_rec(
                        data,
                        dread,
                        "trimmed strings keyword",
                    )
                    dname=fits[1].read(columns='name', trim_strings=otrim)
                    self.compare_array(
                        data['name'],
                        dname,
                        "trimmed strings col keyword",
                    )
                    dread=fits[1].read(columns=['name'], trim_strings=otrim)
                    self.compare_array(
                        data['name'],
                        dread['name'],
                        "trimmed strings col keyword",
                    )



            # convenience function
            dread=fitsio.read(fname, trim_strings=True)
            self.compare_rec(
                data,
                dread,
                "trimmed strings convenience function",
            )
            dname=fitsio.read(fname, columns='name', trim_strings=True)
            self.compare_array(
                data['name'],
                dname,
                "trimmed strings col convenience function",
            )
            dread=fitsio.read(fname, columns=['name'], trim_strings=True)
            self.compare_array(
                data['name'],
                dread['name'],
                "trimmed strings col convenience function",
            )



        finally:
            if os.path.exists(fname):
                os.remove(fname)


    def testLowerUpper(self):
        fname=tempfile.mktemp(prefix='fitsio-LowerUpper-',suffix='.fits')
        dt=[('MyName','f8'),('StuffThings','i4'),('Blah','f4')]
        data=numpy.zeros(3, dtype=dt)
        data['MyName'] = numpy.random.random(data.size)
        data['StuffThings'] = numpy.random.random(data.size)
        data['Blah'] = numpy.random.random(data.size)

        lnames = [n.lower() for n in data.dtype.names]
        unames = [n.upper() for n in data.dtype.names]

        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write(data)

            for i in [1,2]:
                if i == 1:
                    lower=True
                    upper=False
                else:
                    lower=False
                    upper=True

                with fitsio.FITS(fname,'rw', lower=lower, upper=upper) as fits:
                    for rows in [None, [1,2]]:

                        d=fits[1].read(rows=rows)
                        self.compare_names(d.dtype.names,data.dtype.names,
                                           lower=lower,upper=upper)


                        d=fits[1].read(rows=rows, columns=['MyName','stuffthings'])
                        self.compare_names(d.dtype.names,data.dtype.names[0:2],
                                           lower=lower,upper=upper)

                        d = fits[1][1:2]
                        self.compare_names(d.dtype.names,data.dtype.names,
                                           lower=lower,upper=upper)

                        if rows is not None:
                            d = fits[1][rows]
                        else:
                            d = fits[1][:]
                        self.compare_names(d.dtype.names,data.dtype.names,
                                           lower=lower,upper=upper)

                        if rows is not None:
                            d = fits[1][['myname','stuffthings']][rows]
                        else:
                            d = fits[1][['myname','stuffthings']][:]
                        self.compare_names(d.dtype.names,data.dtype.names[0:2],
                                           lower=lower,upper=upper)

                # using overrides
                with fitsio.FITS(fname,'rw') as fits:
                    for rows in [None, [1,2]]:

                        d=fits[1].read(rows=rows, lower=lower, upper=upper)
                        self.compare_names(d.dtype.names,data.dtype.names,
                                           lower=lower,upper=upper)


                        d=fits[1].read(rows=rows, columns=['MyName','stuffthings'],
                                       lower=lower,upper=upper)
                        self.compare_names(d.dtype.names,data.dtype.names[0:2],
                                           lower=lower,upper=upper)



                for rows in [None, [1,2]]:
                    d=fitsio.read(fname, rows=rows, lower=lower, upper=upper)
                    self.compare_names(d.dtype.names,data.dtype.names,
                                       lower=lower,upper=upper)

                    d=fitsio.read(fname, rows=rows, columns=['MyName','stuffthings'],
                                  lower=lower, upper=upper)
                    self.compare_names(d.dtype.names,data.dtype.names[0:2],
                                       lower=lower,upper=upper)


        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testReadRaw(self):
        fname=tempfile.mktemp(prefix='fitsio-readraw-',suffix='.fits')

        dt=[('MyName','f8'),('StuffThings','i4'),('Blah','f4')]
        data=numpy.zeros(3, dtype=dt)
        data['MyName'] = numpy.random.random(data.size)
        data['StuffThings'] = numpy.random.random(data.size)
        data['Blah'] = numpy.random.random(data.size)

        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                fits.write(data)
                raw1 = fits.read_raw()

            with fitsio.FITS('mem://', 'rw') as fits:
                fits.write(data)
                raw2 = fits.read_raw()

            f = open(fname, 'rb')
            raw3 = f.read()
            f.close()

            self.assertEqual(raw1, raw2)
            self.assertEqual(raw1, raw3)
        except:
            import traceback
            traceback.print_exc()
            self.assertTrue(False, 'Exception in testing read_raw')

    def testTableBitcolReadWrite(self):
        """
        Test basic write/read with bitcols
        """

        fname=tempfile.mktemp(prefix='fitsio-TableWriteBitcol-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:
                try:
                    fits.write_table(self.bdata, extname='mytable', write_bitcols=True)
                    write_success=True
                except:
                    write_success=False

                self.assertTrue(write_success,"testing write does not raise an error")
                if not write_success:
                    self.skipTest("cannot test result if write failed")

                d=fits[1].read()
                self.compare_rec(self.bdata, d, "table read/write")

            # now test read_column
            with fitsio.FITS(fname) as fits:

                for f in self.bdata.dtype.names:
                    d = fits[1].read_column(f)
                    self.compare_array(self.bdata[f], d, "table 1 single field read '%s'" % f)

                # now list of columns
                for cols in [['b1vec','b1arr']]:
                    d = fits[1].read(columns=cols)
                    for f in d.dtype.names:
                        self.compare_array(self.bdata[f][:], d[f], "test column list %s" % f)

                    rows = [1,3]
                    d = fits[1].read(columns=cols, rows=rows)
                    for f in d.dtype.names:
                        self.compare_array(self.bdata[f][rows], d[f], "test column list %s row subset" % f)

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def testTableBitcolAppend(self):
        """
        Test creating a table with bitcol support and appending new rows.
        """

        fname=tempfile.mktemp(prefix='fitsio-TableAppendBitcol-',suffix='.fits')
        try:
            with fitsio.FITS(fname,'rw',clobber=True) as fits:

                # initial write
                fits.write_table(self.bdata, extname='mytable', write_bitcols=True)
                # now append
                bdata2 = self.bdata.copy()
                fits[1].append(bdata2)

                d = fits[1].read()
                self.assertEqual(d.size, self.bdata.size*2)

                self.compare_rec(self.bdata, d[0:self.data.size], "Comparing initial write")
                self.compare_rec(bdata2, d[self.data.size:], "Comparing appended data")

        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def compare_names(self, read_names, true_names, lower=False, upper=False):
        for nread,ntrue in zip(read_names,true_names):
            if lower:
                tname = ntrue.lower()
                mess="lower: '%s' vs '%s'" % (nread,tname)
            else:
                tname = ntrue.upper()
                mess="upper: '%s' vs '%s'" % (nread,tname)
            self.assertEqual(nread, tname, mess)

    def check_header(self, header, rh):
        for k in header:
            v = header[k]
            rv = rh[k]
            if isinstance(rv,str):
                v = v.strip()
                rv = rv.strip()
            self.assertEqual(v,rv,"testing equal key '%s'" % k)


    def compare_headerlist_header(self, header_list, header):
        """
        The first is a list of dicts, second a FITSHDR
        """
        for entry in header_list:
            name=entry['name'].upper()
            value=entry['value']
            hvalue = header[name]
            if isinstance(hvalue,str):
                hvalue = hvalue.strip()
            self.assertEqual(value,hvalue,"testing header key '%s'" % name)

            if 'comment' in entry:
                self.assertEqual(entry['comment'].strip(),
                                 header.get_comment(name).strip(),
                                 "testing comment for header key '%s'" % name)

    def compare_array_tol(self, arr1, arr2, tol, name):
        self.assertEqual(arr1.shape, arr2.shape,
                         "testing arrays '%s' shapes are equal: "
                         "input %s, read: %s" % (name, arr1.shape, arr2.shape))

        adiff = numpy.abs( (arr1-arr2)/arr1 )
        maxdiff = adiff.max()
        res=numpy.where(adiff  > tol)
        for i,w in enumerate(res):
            self.assertEqual(w.size,0,
                             "testing array '%s' dim %d are "
                             "equal within tolerance %e, found "
                             "max diff %e" % (name,i,tol,maxdiff))


    def compare_array(self, arr1, arr2, name):
        self.assertEqual(arr1.shape, arr2.shape,
                         "testing arrays '%s' shapes are equal: "
                         "input %s, read: %s" % (name, arr1.shape, arr2.shape))

        res=numpy.where(arr1 != arr2)
        for i,w in enumerate(res):
            self.assertEqual(w.size,0,"testing array '%s' dim %d are equal" % (name,i))

    def compare_rec(self, rec1, rec2, name):
        for f in rec1.dtype.names:
            self.assertEqual(rec1[f].shape, rec2[f].shape,
                             "testing '%s' field '%s' shapes are equal: "
                             "input %s, read: %s" % (name, f,rec1[f].shape, rec2[f].shape))

            res=numpy.where(rec1[f] != rec2[f])
            for w in res:
                self.assertEqual(w.size,0,"testing column %s" % f)

    def compare_rec_subrows(self, rec1, rec2, rows, name):
        for f in rec1.dtype.names:
            self.assertEqual(rec1[f][rows].shape, rec2[f].shape,
                             "testing '%s' field '%s' shapes are equal: "
                             "input %s, read: %s" % (name, f,rec1[f].shape, rec2[f].shape))

            res=numpy.where(rec1[f][rows] != rec2[f])
            for w in res:
                self.assertEqual(w.size,0,"testing column %s" % f)

            #self.assertEqual(2,3,"on purpose error")

    def compare_rec_with_var(self, rec1, rec2, name, rows=None):
        """

        First one *must* be the one with object arrays

        Second can have fixed length

        both should be same number of rows

        """

        if rows is None:
            rows = arange(rec2.size)
            self.assertEqual(rec1.size,rec2.size,
                             "testing '%s' same number of rows" % name)

        # rec2 may have fewer fields
        for f in rec2.dtype.names:

            # f1 will have the objects
            if fitsio.fitslib.is_object(rec1[f]):
                self.compare_object_array(rec1[f], rec2[f], 
                                          "testing '%s' field '%s'" % (name,f),
                                          rows=rows)
            else:                    
                self.compare_array(rec1[f][rows], rec2[f], 
                                   "testing '%s' num field '%s' equal" % (name,f))

    def compare_object_array(self, arr1, arr2, name, rows=None): 
        """
        The first must be object
        """
        if rows is None:
            rows = arange(arr1.size)

        for i,row in enumerate(rows):
            if isinstance(arr2[i],stype):
                self.assertEqual(arr1[row],arr2[i],
                                "%s str el %d equal" % (name,i))
            else:
                delement = arr2[i]
                orig = arr1[row]
                s=len(orig)
                self.compare_array(orig, delement[0:s], 
                                   "%s num el %d equal" % (name,i))

    def compare_rec_with_var_subrows(self, rec1, rec2, name, rows):
        """

        Second one must be the one with object arrays

        """
        for f in rec1.dtype.names:
            if fitsio.fitslib.is_object(rec2[f]):

                for i in xrange(rec2.size):
                    if isinstance(rec2[f][i],stype):
                        self.assertEqual(rec1[f][i],rec2[f][i],
                                        "testing '%s' str field '%s' el %d equal" % (name,f,i))
                    else:
                        delement = rec1[f][i]
                        orig = rec2[f][i]
                        s=orig.size
                        self.compare_array(orig, delement[0:s], 
                                           "testing '%s' num field '%s' el %d equal" % (name,f,i))
            else:                    
                self.compare_array(rec1[f], rec2[f], 
                                   "testing '%s' num field '%s' equal" % (name,f))





if __name__ == '__main__':
    test()

