#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2017-2022 Python-geotiepoints developers
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""Tests for MODIS interpolators."""
import warnings

import numpy as np
from pyproj import Geod
import h5py
import os
import dask
import dask.array as da
import xarray as xr
import pytest
from .utils import CustomScheduler
from geotiepoints.modisinterpolator import (modis_1km_to_250m,
                                            modis_1km_to_500m,
                                            modis_5km_to_1km,
                                            modis_5km_to_500m,
                                            modis_5km_to_250m)
FILENAME_DATA = os.path.join(
    os.path.dirname(__file__), '../../testdata/modis_test_data.h5')


def _to_dask(arr):
    return da.from_array(arr, chunks=4096)


def _to_da(arr):
    return xr.DataArray(_to_dask(arr), dims=['y', 'x'])


def _load_h5_geo_vars(*var_names):
    h5f = h5py.File(FILENAME_DATA, 'r')
    return tuple(h5f[var_name] for var_name in var_names)


def load_1km_lonlat_as_numpy():
    lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
    return lon1[:], lat1[:]


def load_1km_lonlat_as_dask():
    lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
    return _to_dask(lon1), _to_dask(lat1)


def load_1km_lonlat_as_xarray_dask():
    lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
    return _to_da(lon1), _to_da(lat1)


def load_1km_lonlat_satz_as_xarray_dask():
    lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
    return _to_da(lon1), _to_da(lat1), _to_da(satz1)


def load_5km_lonlat_satz1_as_xarray_dask():
    lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
    lon5 = lon1[2::5, 2::5]
    lat5 = lat1[2::5, 2::5]
    satz5 = satz1[2::5, 2::5]
    return _to_da(lon5), _to_da(lat5), _to_da(satz5)


def load_l2_5km_lonlat_satz1_as_xarray_dask():
    lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
    lon5 = lon1[2::5, 2:-5:5]
    lat5 = lat1[2::5, 2:-5:5]
    satz5 = satz1[2::5, 2:-5:5]
    return _to_da(lon5), _to_da(lat5), _to_da(satz5)


def load_500m_lonlat_expected_as_xarray_dask():
    h5f = h5py.File(FILENAME_DATA, 'r')
    lon500 = _to_da(h5f['lon_500m'])
    lat500 = _to_da(h5f['lat_500m'])
    return lon500, lat500


def load_250m_lonlat_expected_as_xarray_dask():
    h5f = h5py.File(FILENAME_DATA, 'r')
    lon250 = _to_da(h5f['lon_250m'])
    lat250 = _to_da(h5f['lat_250m'])
    return lon250, lat250


def assert_geodetic_distance(
        lons_actual: np.ndarray,
        lats_actual: np.ndarray,
        lons_desired: np.ndarray,
        lats_desired: np.ndarray,
        max_distance_diff: float,
) -> None:
    """Check that the geodetic distance between two sets of coordinates is smaller than a threshold.

    Args:
        lons_actual: Longitude array produced by interpolation being tested.
        lats_actual: Latitude array produced by interpolation being tested.
        lons_desired: Longitude array of expected/truth coordinates.
        lats_desired: Latitude array of expected/truth coordinates.
        max_distance_diff: Limit of allowed distance difference in meters.

    """
    g = Geod(ellps="WGS84")
    _, _, dist = g.inv(lons_actual, lats_actual, lons_desired, lats_desired)
    np.testing.assert_array_less(
        dist, max_distance_diff,
        err_msg=f"Coordinates are greater than {max_distance_diff} geodetic "
                "meters from the expected coordinates.")


@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
@pytest.mark.parametrize(
    ("input_func", "exp_func", "interp_func", "dist_max", "exp_5km_warning"),
    [
        (load_1km_lonlat_satz_as_xarray_dask, load_500m_lonlat_expected_as_xarray_dask, modis_1km_to_500m, 5, False),
        (load_1km_lonlat_satz_as_xarray_dask, load_250m_lonlat_expected_as_xarray_dask, modis_1km_to_250m, 8.30, False),
        (load_5km_lonlat_satz1_as_xarray_dask, load_1km_lonlat_as_xarray_dask, modis_5km_to_1km, 25, False),
        (load_l2_5km_lonlat_satz1_as_xarray_dask, load_1km_lonlat_as_xarray_dask, modis_5km_to_1km, 110, False),
        (load_5km_lonlat_satz1_as_xarray_dask, load_500m_lonlat_expected_as_xarray_dask, modis_5km_to_500m,
         19500, True),
        (load_5km_lonlat_satz1_as_xarray_dask, load_250m_lonlat_expected_as_xarray_dask, modis_5km_to_250m,
         25800, True),
    ]
)
def test_sat_angle_based_interp(input_func, exp_func, interp_func, dist_max, exp_5km_warning):
    lon1, lat1, satz1 = input_func()
    lons_exp, lats_exp = exp_func()

    # when working with dask arrays, we shouldn't compute anything
    with dask.config.set(scheduler=CustomScheduler(0)), warnings.catch_warnings(record=True) as warns:
        lons, lats = interp_func(lon1, lat1, satz1)
    has_5km_warning = any("may result in poor quality" in str(w.message) for w in warns)
    if exp_5km_warning:
        assert has_5km_warning
    else:
        assert not has_5km_warning

    if hasattr(lons, "compute"):
        lons, lats = da.compute(lons, lats)
    assert_geodetic_distance(lons, lats, lons_exp, lats_exp, dist_max)
    assert not np.any(np.isnan(lons))
    assert not np.any(np.isnan(lats))


@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
def test_sat_angle_based_interp_nan_handling():
    # See GH #19
    lon1, lat1, satz1 = load_1km_lonlat_satz_as_xarray_dask()
    satz1 = _to_da(abs(np.linspace(-65.4, 65.4, 1354, dtype=np.float32)).repeat(20).reshape(-1, 20).T)
    lons, lats = modis_1km_to_500m(lon1, lat1, satz1)
    assert not np.any(np.isnan(lons.compute()))
    assert not np.any(np.isnan(lats.compute()))


@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
def test_poles_datum():
    orig_lon, lat1, satz1 = load_1km_lonlat_satz_as_xarray_dask()
    lon1 = orig_lon + 180
    lon1 = xr.where(lon1 > 180, lon1 - 360, lon1)

    lat5 = lat1[2::5, 2::5]
    lon5 = lon1[2::5, 2::5]
    satz5 = satz1[2::5, 2::5]
    lons, lats = modis_5km_to_1km(lon5, lat5, satz5)

    lons = lons + 180
    lons = xr.where(lons > 180, lons - 360, lons)
    assert_geodetic_distance(lons, lats, orig_lon, lat1, 25.0)
