"""Representation of an IHM mmCIF file as a set of Python classes.

   Generally class names correspond to mmCIF table names and class
   attributes to mmCIF attributes (with prefixes like `pdbx_` stripped).
   For example, the data item _entity.details is found in the
   :class:`Entity` class, as the `details` member.

   Ordinals and IDs are generally not used in this representation (instead,
   pointers to objects are used).
"""

import itertools
import numbers
import re
import sys
import urllib.request
import json
import collections
from . import util

__version__ = '2.7'


class __UnknownValue:
    # Represent the mmCIF 'unknown' special value

    def __str__(self):
        return '?'
    __repr__ = __str__

    def __bool__(self):
        return False

    # Needs to be hashable so that classes like Software (that might
    # use unknown values as attributes) are hashable
    def __hash__(self):
        return 0

    # Unknown value is a singleton and should only compare equal to itself
    def __eq__(self, other):
        return self is other

    def __lt__(self, other):
        return False
    __gt__ = __lt__
    __le__ = __ge__ = __eq__


#: A value that isn't known. Note that this is distinct from a value that
#: is deliberately omitted, which is represented by Python None.
unknown = __UnknownValue()


def _remove_identical(gen):
    """Return only unique objects from `gen`.
       Objects that are identical are only returned once, although multiple
       non-identical objects that compare equal may be returned."""
    seen_objs = {}
    for obj in gen:
        if id(obj) in seen_objs:
            continue
        seen_objs[id(obj)] = None
        yield obj


class System:
    """Top-level class representing a complete modeled system.

       :param str title: Title (longer text description) of the system.
       :param str id: Unique identifier for this system in the mmCIF file.
       :param str model_details: Detailed description of the system, like an
                                 abstract.
       :param databases: If this system is part of one or more official
              databases (e.g. PDB, SwissModel), details of
              the database identifiers.
       :type databases: sequence of :class:`Database`
    """

    structure_determination_methodology = "integrative"

    def __init__(self, title=None, id='model', model_details=None,
                 databases=[]):
        self.id = id
        self.title = title
        self.model_details = model_details
        self.databases = []
        self.databases.extend(databases)

        #: Information about data processing and entry status.
        #: See :class:`DatabaseStatus`.
        self.database_status = DatabaseStatus()

        #: List of plain text comments. These will be added to the top of
        #: the mmCIF file.
        self.comments = []

        #: List of all software used in the modeling. See :class:`Software`.
        self.software = []

        #: List of all authors of this system, as a list of strings (last name
        #: followed by initials, e.g. "Smith, A.J."). When writing out a file,
        #: if this list is empty, the set of all citation authors (see
        #: :class:`Citation`) is used instead.
        self.authors = []

        #: List of all grants that supported this work. See :class:`Grant`.
        self.grants = []

        #: List of all citations. See :class:`Citation`.
        self.citations = []

        #: All entities used in the system. See :class:`Entity`.
        self.entities = []

        #: All asymmetric units used in the system. See :class:`AsymUnit`.
        self.asym_units = []

        #: Collections (if any) to which this entry belongs.
        #: These are used to group depositions of related entries.
        #: See :class:`Collection`.
        self.collections = []

        #: Revision/update history. See :class:`Revision`.
        self.revisions = []

        #: Information on usage of the data. See :class:`DataUsage`.
        self.data_usage = []

        #: All orphaned chemical descriptors in the system.
        #: See :class:`ChemDescriptor`. This can be used to track descriptors
        #: that are not otherwise used - normally one is assigned to a
        #: :class:`ihm.restraint.CrossLinkRestraint`.
        self.orphan_chem_descriptors = []

        #: All orphaned assemblies in the system. See :class:`Assembly`.
        #: This can be used to keep track of all assemblies that are not
        #: otherwise used - normally one is assigned to a
        #: :class:`~ihm.model.Model`,
        #: :class:`ihm.protocol.Step`, or
        #: :class:`~ihm.restraint.Restraint`.
        self.orphan_assemblies = []

        #: The assembly of the entire system. By convention this is always
        #: the first assembly in the mmCIF file (assembly_id=1). Note that
        #: currently this isn't filled in on output until dumper.write()
        #: is called. See :class:`Assembly`.
        self.complete_assembly = Assembly((), name='Complete assembly',
                                          description='All known components')

        #: Locations of all extra resources.
        #: See :class:`~ihm.location.Location`.
        self.locations = []

        #: All orphaned datasets.
        #: This can be used to keep track of all datasets that are not
        #: otherwise used - normally a dataset is assigned to a
        #: :class:`~ihm.dataset.DatasetGroup`,
        #: :class:`~ihm.startmodel.StartingModel`,
        #: :class:`~ihm.restraint.Restraint`,
        #: :class:`~ihm.startmodel.Template`,
        #: or as the parent of another :class:`~ihm.dataset.Dataset`.
        #: See :class:`~ihm.dataset.Dataset`.
        self.orphan_datasets = []

        #: All orphaned groups of datasets.
        #: This can be used to keep track of all dataset groups that are not
        #: otherwise used - normally a group is assigned to a
        #: :class:`~ihm.protocol.Protocol`.
        #: See :class:`~ihm.dataset.DatasetGroup`.
        self.orphan_dataset_groups = []

        #: All orphaned representations of the system.
        #: This can be used to keep track of all representations that are not
        #: otherwise used - normally one is assigned to a
        #: :class:`~ihm.model.Model`.
        #: See :class:`~ihm.representation.Representation`.
        self.orphan_representations = []

        #: All orphaned starting models for the system.
        #: This can be used to keep track of all starting models that are not
        #: otherwise used - normally one is assigned to an
        #: :class:`ihm.representation.Segment`.
        #: See :class:`~ihm.startmodel.StartingModel`.
        self.orphan_starting_models = []

        #: All restraints on the system.
        #: See :class:`~ihm.restraint.Restraint`.
        self.restraints = []

        #: All restraint groups.
        #: See :class:`~ihm.restraint.RestraintGroup`.
        self.restraint_groups = []

        #: All orphaned modeling protocols.
        #: This can be used to keep track of all protocols that are not
        #: otherwise used - normally a protocol is assigned to a
        #: :class:`~ihm.model.Model`.
        #: See :class:`~ihm.protocol.Protocol`.
        self.orphan_protocols = []

        #: All ensembles.
        #: See :class:`~ihm.model.Ensemble`.
        self.ensembles = []

        #: All ordered processes.
        #: See :class:`~ihm.model.OrderedProcess`.
        self.ordered_processes = []

        #: All state groups (collections of models).
        #: See :class:`~ihm.model.StateGroup`.
        self.state_groups = []

        #: All orphaned geometric objects.
        #: This can be used to keep track of all objects that are not
        #: otherwise used - normally an object is assigned to a
        #: :class:`~ihm.restraint.GeometricRestraint`.
        #: See :class:`~ihm.geometry.GeometricObject`.
        self.orphan_geometric_objects = []

        #: All orphaned features.
        #: This can be used to keep track of all features that are not
        #: otherwise used - normally a feature is assigned to a
        #: :class:`~ihm.restraint.GeometricRestraint`.
        #: See :class:`~ihm.restraint.Feature`.
        self.orphan_features = []

        #: All orphaned pseudo sites.
        #: This can be used to keep track of all pseudo sites that are not
        #: otherwise used - normally a site is used in a
        #: :class:`~ihm.restraint.PseudoSiteFeature` or a
        #: :class:`~ihm.restraint.CrossLinkPseudoSite`.
        self.orphan_pseudo_sites = []

        #: Contains the fluorescence (FLR) part.
        #: See :class:`~ihm.flr.FLRData`.
        self.flr_data = []

        #: All multi-state schemes
        #: See :class:`~ihm.multi_state_scheme.MultiStateScheme`.
        self.multi_state_schemes = []

        self._orphan_centers = []
        self._orphan_dataset_transforms = []
        self._orphan_geometric_transforms = []
        self._orphan_relaxation_times = []
        self._orphan_repos = []
        self._orphan_chem_comps = []

    _database_status = property(lambda self: self.database_status._map)

    def _make_complete_assembly(self):
        """Fill in the complete assembly with all asym units"""
        # Clear out any existing components
        self.complete_assembly[:] = []

        # Include all asym units
        for asym in self.asym_units:
            self.complete_assembly.append(asym)

    def _all_models(self):
        """Iterate over all Models in the system"""
        # todo: raise an error if a model is present in multiple groups
        for group in self._all_model_groups():
            seen_models = {}
            for model in group:
                if model in seen_models:
                    continue
                seen_models[model] = None
                yield group, model

    def update_locations_in_repositories(self, repos):
        """Update all :class:`~ihm.location.Location` objects in the system
           that lie within a checked-out :class:`~ihm.location.Repository`
           to point to that repository.

           This is intended for the use case where the current working
           directory is a checkout of a repository which is archived somewhere
           with a DOI. Locations can then be simply constructed pointing to
           local files, and retroactively updated with this method to point
           to the DOI if appropriate.

           For each Location, if it points to a local file that is below the
           `root` of one of the `repos`, update it to point to that repository.
           If is under multiple roots, pick the one that gives the shortest
           path. For example, if run in a subdirectory `foo` of a repository
           archived as `repo.zip`, the local path `simple.pdb` will
           be updated to be `repo-top/foo/simple.pdb` in `repo.zip`::

               l = ihm.location.InputFileLocation("simple.pdb")
               system.locations.append(l)

               r = ihm.location.Repository(doi='1.2.3.4',
                         url='https://example.com/repo.zip',)
                         top_directory="repo-top", root="..")
               system.update_locations_in_repositories([r])
        """
        import ihm.location
        for loc in self._all_locations():
            if isinstance(loc, ihm.location.FileLocation):
                ihm.location.Repository._update_in_repos(loc, repos)

    def report(self, fh=sys.stdout):
        """Print a summary report of this system. This can be used to
           more easily spot errors or inconsistencies. It will also warn
           about missing data that may not be technically required for a
           compliant mmCIF file, but is usually expected to be present.

           :param file fh: The file handle to print the report to, if not
                  standard output.
        """
        import ihm.report
        r = ihm.report.Reporter(self, fh)
        r.report()

    def _all_restraints(self):
        """Iterate over all Restraints in the system.
           Duplicates may be present."""
        def _all_restraints_in_groups():
            for rg in self.restraint_groups:
                for r in rg:
                    yield r
        return itertools.chain(self.restraints, _all_restraints_in_groups())

    def _all_chem_descriptors(self):
        """Iterate over all ChemDescriptors in the system.
           Duplicates may be present."""
        return itertools.chain(
            self.orphan_chem_descriptors,
            (restraint.linker for restraint in self._all_restraints()
                if hasattr(restraint, 'linker') and restraint.linker),
            (itertools.chain.from_iterable(
                f._all_flr_chemical_descriptors() for f in self.flr_data)))

    def _all_model_groups(self, only_in_states=True):
        """Iterate over all ModelGroups in the system.
           If only_in_states is True, only return ModelGroups referenced
           by a State object; otherwise, also include ModelGroups referenced
           by an OrderedProcess or Ensemble."""
        # todo: raise an error if a modelgroup is present in multiple states
        seen_model_groups = []
        for state_group in self.state_groups:
            for state in state_group:
                for model_group in state:
                    seen_model_groups.append(model_group)
                    yield model_group
        for mssc in self._all_multi_state_scheme_connectivities():
            for model_group in mssc.begin_state:
                if model_group not in seen_model_groups:
                    seen_model_groups.append(model_group)
                    yield model_group
            if mssc.end_state:
                for model_group in mssc.end_state:
                    if model_group not in seen_model_groups:
                        seen_model_groups.append(model_group)
                        yield model_group
        if not only_in_states:
            for ensemble in self.ensembles:
                if ensemble.model_group:
                    yield ensemble.model_group
                for ss in ensemble.subsamples:
                    if ss.model_group:
                        yield ss.model_group
            for proc in self.ordered_processes:
                for step in proc.steps:
                    for edge in step:
                        yield edge.group_begin
                        yield edge.group_end

    def _all_representations(self):
        """Iterate over all Representations in the system.
           This includes all Representations referenced from other objects,
           plus any orphaned Representations. Duplicates are filtered out."""
        return _remove_identical(itertools.chain(
            self.orphan_representations,
            (model.representation for group, model in self._all_models()
                if model.representation)))

    def _all_segments(self):
        for representation in self._all_representations():
            for segment in representation:
                yield segment

    def _all_starting_models(self):
        """Iterate over all StartingModels in the system.
           This includes all StartingModels referenced from other objects, plus
           any orphaned StartingModels. Duplicates are filtered out."""
        return _remove_identical(itertools.chain(
            self.orphan_starting_models,
            (segment.starting_model for segment in self._all_segments()
                if segment.starting_model)))

    def _all_protocols(self):
        """Iterate over all Protocols in the system.
           This includes all Protocols referenced from other objects, plus
           any orphaned Protocols. Duplicates are filtered out."""
        return _remove_identical(itertools.chain(
            self.orphan_protocols,
            (model.protocol for group, model in self._all_models()
                if model.protocol)))

    def _all_protocol_steps(self):
        for protocol in self._all_protocols():
            for step in protocol.steps:
                yield step

    def _all_analysis_steps(self):
        for protocol in self._all_protocols():
            for analysis in protocol.analyses:
                for step in analysis.steps:
                    yield step

    def _all_assemblies(self):
        """Iterate over all Assemblies in the system.
           This includes all Assemblies referenced from other objects, plus
           any orphaned Assemblies. Duplicates may be present."""
        return itertools.chain(
            # Complete assembly is always first
            (self.complete_assembly,),
            self.orphan_assemblies,
            (model.assembly for group, model in self._all_models()
             if model.assembly),
            (step.assembly for step in self._all_protocol_steps()
             if step.assembly),
            (step.assembly for step in self._all_analysis_steps()
             if step.assembly),
            (restraint.assembly
             for restraint in self._all_restraints() if restraint.assembly))

    def _all_dataset_groups(self):
        """Iterate over all DatasetGroups in the system.
           This includes all DatasetGroups referenced from other objects, plus
           any orphaned groups. Duplicates may be present."""
        return itertools.chain(
            self.orphan_dataset_groups,
            (step.dataset_group for step in self._all_protocol_steps()
             if step.dataset_group),
            (step.dataset_group for step in self._all_analysis_steps()
             if step.dataset_group),
            (rt.dataset_group for rt in self._all_relaxation_times()
             if rt.dataset_group),
            (kr.dataset_group for kr in self._all_kinetic_rates()
             if kr.dataset_group),
            (mssc.dataset_group for mssc in
             self._all_multi_state_scheme_connectivities()
             if mssc.dataset_group))

    def _all_templates(self):
        """Iterate over all Templates in the system."""
        for startmodel in self._all_starting_models():
            for template in startmodel.templates:
                yield template

    def _all_datasets_except_parents(self):
        """Iterate over all Datasets except those referenced only
           as the parent of another Dataset. Duplicates may be present."""
        def _all_datasets_in_groups():
            for dg in self._all_dataset_groups():
                for d in dg:
                    yield d
        return itertools.chain(
            self.orphan_datasets,
            _all_datasets_in_groups(),
            (sm.dataset for sm in self._all_starting_models()
             if sm.dataset),
            (restraint.dataset for restraint in self._all_restraints()
             if restraint.dataset),
            (template.dataset for template in self._all_templates()
             if template.dataset))

    def _all_datasets(self):
        """Iterate over all Datasets in the system.
           This includes all Datasets referenced from other objects, plus
           any orphaned datasets. Duplicates may be present."""
        def _all_datasets_and_parents(d):
            for p in d.parents:
                # Handle transformed datasets
                if hasattr(p, 'dataset'):
                    pd = p.dataset
                else:
                    pd = p
                for alld in _all_datasets_and_parents(pd):
                    yield alld
            yield d
        for d in self._all_datasets_except_parents():
            for alld in _all_datasets_and_parents(d):
                yield alld

    def _all_densities(self):
        for ensemble in self.ensembles:
            for density in ensemble.densities:
                yield density

    def _all_locations(self):
        """Iterate over all Locations in the system.
           This includes all Locations referenced from other objects, plus
           any referenced from the top-level system.
           Duplicates may be present."""
        def _all_ensemble_locations():
            for ensemble in self.ensembles:
                if ensemble.file:
                    yield ensemble.file
                for ss in ensemble.subsamples:
                    if ss.file:
                        yield ss.file
        return itertools.chain(
            self.locations,
            (dataset.location for dataset in self._all_datasets()
                if hasattr(dataset, 'location') and dataset.location),
            _all_ensemble_locations(),
            (density.file for density in self._all_densities()
                if density.file),
            (sm.script_file for sm in self._all_starting_models()
                if sm.script_file),
            (template.alignment_file for template in self._all_templates()
                if template.alignment_file),
            (step.script_file for step in self._all_protocol_steps()
                if step.script_file),
            (step.script_file for step in self._all_analysis_steps()
                if step.script_file),
            (rt.external_file for rt in self._all_relaxation_times()
                if rt.external_file),
            (kr.external_file for kr in self._all_kinetic_rates()
                if kr.external_file))

    def _all_geometric_objects(self):
        """Iterate over all GeometricObjects in the system.
           This includes all GeometricObjects referenced from other objects,
           plus any referenced from the top-level system.
           Duplicates may be present."""
        return itertools.chain(
            self.orphan_geometric_objects,
            (restraint.geometric_object
             for restraint in self._all_restraints()
             if hasattr(restraint, 'geometric_object')
             and restraint.geometric_object))

    def _all_features(self):
        """Iterate over all Features in the system.
           This includes all Features referenced from other objects,
           plus any referenced from the top-level system.
           Duplicates may be present."""
        def _all_restraint_features():
            for r in self._all_restraints():
                if hasattr(r, '_all_features'):
                    for feature in r._all_features:
                        if feature:
                            yield feature
        return itertools.chain(self.orphan_features, _all_restraint_features())

    def _all_pseudo_sites(self):
        """Iterate over all PseudoSites in the system.
           This includes all PseudoSites referenced from other objects,
           plus any referenced from the top-level system.
           Duplicates may be present."""
        def _all_restraint_sites():
            for r in self._all_restraints():
                if hasattr(r, 'cross_links'):
                    for xl in r.cross_links:
                        if xl.pseudo1:
                            for x in xl.pseudo1:
                                yield x.site
                        if xl.pseudo2:
                            for x in xl.pseudo2:
                                yield x.site
        return itertools.chain(self.orphan_pseudo_sites,
                               _all_restraint_sites(),
                               (f.site for f in self._all_features()
                                if hasattr(f, 'site') and f.site))

    def _all_software(self):
        """Iterate over all Software in the system.
           This includes all Software referenced from other objects, plus
           any referenced from the top-level system.
           Duplicates may be present."""
        return (itertools.chain(
            self.software,
            (sm.software for sm in self._all_starting_models()
             if sm.software),
            (step.software for step in self._all_protocol_steps()
             if step.software),
            (step.software for step in self._all_analysis_steps()
             if step.software),
            (r.software for r in self._all_restraints()
             if hasattr(r, 'software') and r.software)))

    def _all_citations(self):
        """Iterate over all Citations in the system.
           This includes all Citations referenced from other objects, plus
           any referenced from the top-level system.
           Duplicates are filtered out."""
        return _remove_identical(itertools.chain(
            self.citations,
            (software.citation for software in self._all_software()
             if software.citation),
            (restraint.fitting_method_citation_id
             for restraint in self._all_restraints()
             if hasattr(restraint, 'fitting_method_citation_id')
             and restraint.fitting_method_citation_id)))

    def _all_entity_ranges(self):
        """Iterate over all Entity ranges in the system (these may be
           :class:`Entity`, :class:`AsymUnit`, :class:`EntityRange` or
           :class:`AsymUnitRange` objects).
           Note that we don't include self.entities or self.asym_units here,
           as we only want ranges that were actually used.
           Duplicates may be present."""
        return (itertools.chain(
            (sm.asym_unit for sm in self._all_starting_models()),
            (seg.asym_unit for seg in self._all_segments()),
            (comp for a in self._all_assemblies() for comp in a),
            (comp for f in self._all_features()
                for comp in f._all_entities_or_asyms()),
            (d.asym_unit for d in self._all_densities())))

    def _all_multi_state_schemes(self):
        for mss in self.multi_state_schemes:
            yield mss

    def _all_multi_state_scheme_connectivities(self):
        """Iterate over all multi-state scheme connectivities"""
        for mss in self.multi_state_schemes:
            for mssc in mss.get_connectivities():
                yield mssc

    def _all_kinetic_rates(self):
        """Iterate over all kinetic rates within multi-state schemes"""
        return _remove_identical(itertools.chain(
            (mssc.kinetic_rate for mssc in
             self._all_multi_state_scheme_connectivities()
             if mssc.kinetic_rate),
            (c.kinetic_rate for f in
             self.flr_data for c in f.kinetic_rate_fret_analysis_connections
             if self.flr_data)))

    def _all_relaxation_times(self):
        """Iterate over all relaxation times.
        This includes relaxation times from
        :class:`ihm.multi_state_scheme.MultiStateScheme`
        and those assigned to connectivities in
        :class:`ihm.multi_state_scheme.Connectivity`"""
        seen_relaxation_times = []
        for mss in self._all_multi_state_schemes():
            for rt in mss.get_relaxation_times():
                if rt in seen_relaxation_times:
                    continue
                seen_relaxation_times.append(rt)
                yield rt
        for mssc in self._all_multi_state_scheme_connectivities():
            if mssc.relaxation_time:
                rt = mssc.relaxation_time
                if rt in seen_relaxation_times:
                    continue
                seen_relaxation_times.append(rt)
                yield rt
        # Get the relaxation times from the
        # flr.RelaxationTimeFRETAnalysisConnection objects
        if self.flr_data:
            for f in self.flr_data:
                for c in f.relaxation_time_fret_analysis_connections:
                    rt = c.relaxation_time
                    if rt in seen_relaxation_times:
                        continue
                    seen_relaxation_times.append(rt)
                    yield rt
        for rt in self._orphan_relaxation_times:
            if rt in seen_relaxation_times:
                continue
            seen_relaxation_times.append(rt)
            yield rt

    def _before_write(self):
        """Do any setup necessary before writing out to a file"""
        # Here, we initialize all RestraintGroups by removing any assigned ID
        for g in self.restraint_groups:
            util._remove_id(g)
        # Fill in complete assembly
        self._make_complete_assembly()

    def _check_after_write(self):
        """Make sure everything was successfully written"""
        # Here, we check that all RestraintGroups were successfully dumped"""
        for g in self.restraint_groups:
            if len(g) > 0 and not hasattr(g, '_id'):
                raise TypeError(
                    "RestraintGroup(%s) contains an unsupported combination "
                    "of Restraints. Due to limitations of the underlying "
                    "dictionary, all objects in a RestraintGroup must be of "
                    "the same type, and only certain types (currently only "
                    "DerivedDistanceRestraint or PredictedContactRestraint) "
                    "can be grouped." % g)


class DatabaseStatus:
    """Information about data processing and entry status.
       This information is usually accessed via :attr:`System.database_status`.
    """
    def __init__(self):
        self._map = {}

    status_code = property(lambda self: self._map['status_code'],
                           doc="The status of the entry, e.g. released.")
    deposit_site = property(lambda self: self._map['deposit_site'],
                            doc="The site where the file was deposited.")
    process_site = property(lambda self: self._map['process_site'],
                            doc="The site where the file was processed.")
    recvd_initial_deposition_date = property(
        lambda self:
        util._get_iso_date(self._map['recvd_initial_deposition_date']),
        doc="The date of initial deposition.")


class Database:
    """Information about a System that is part of an official database.

       If a :class:`System` is part of one or more official databases
       (e.g. PDB, SwissModel), this class contains details of the
       database identifiers. It should be passed to the :class:`System`
       constructor.

       :param str id: Abbreviated name of the database (e.g. PDB).
       :param str code: Identifier from the database (e.g. 1abc).
       :param str doi: Digital Object Identifier of the database entry.
       :param str accession: Extended accession code of the database entry.
       """
    def __init__(self, id, code, doi=None, accession=None):
        self.id, self.code = id, code
        self.doi, self.accession = doi, accession


class Software:
    """Software used as part of the modeling protocol.

       :param str name: The name of the software.
       :param str classification: The major function of the software, for
              example 'model building', 'sample preparation',
              'data collection'.
       :param str description: A longer text description of the software.
       :param str location: Place where the software can be found (e.g. URL).
       :param str type: Type of software (program/package/library/other).
       :param str version: The version used.
       :param citation: Publication describing the software.
       :type citation: :class:`Citation`

       Generally these objects are added to :attr:`System.software` or
       passed to :class:`ihm.startmodel.StartingModel`,
       :class:`ihm.protocol.Step`,
       :class:`ihm.analysis.Step`, or
       :class:`ihm.restraint.PredictedContactRestraint` objects.
    """
    def __init__(self, name, classification, description, location,
                 type='program', version=None, citation=None):
        self.name = name
        self.classification = classification
        self.description = description
        self.location = location
        self.type = type
        self.version = version
        self.citation = citation

    def __str__(self):
        return "<ihm.Software(%s)>" % repr(self.name)

    # Software compares equal if the names and versions are the same
    def _eq_vals(self):
        return (self.name, self.version)

    def __eq__(self, other):
        return self._eq_vals() == other._eq_vals()

    def __hash__(self):
        return hash(self._eq_vals())


class Grant:
    """Information on funding support for the modeling.
       See :attr:`System.grants`.

       :param str funding_organization: The name of the organization providing
              the funding, e.g. "National Institutes of Health".
       :param str country: The country that hosts the funding organization,
              e.g. "United States".
       :param str grant_number: Identifying information for the grant, e.g.
              "1R01GM072999-01".
    """
    def __init__(self, funding_organization, country, grant_number):
        self.funding_organization = funding_organization
        self.country = country
        self.grant_number = grant_number


class Citation:
    """A publication that describes the modeling.

       Generally citations are added to :attr:`System.citations` or
       passed to :class:`ihm.Software` or
       :class:`ihm.restraint.EM3DRestraint` objects.

       :param str pmid: The PubMed ID.
       :param str title: Full title of the publication.
       :param str journal: Abbreviated journal name.
       :param volume: Journal volume as int for a plain number or str for
                      journals adding a label to the number (e.g. "46(W1)" for
                      a web server issue).
       :param page_range: The page (int) or page range (as a 2-element
              int tuple). Using str also works for labelled page numbers.
       :param int year: Year of publication.
       :param authors: All authors in order, as a list of strings (last name
              followed by initials, e.g. "Smith, A.J.").
       :param str doi: Digital Object Identifier of the publication.
       :param bool is_primary: Denotes the most pertinent publication for the
              modeling itself (as opposed to a method or piece of software used
              in the protocol). Only one such publication is allowed, and it
              is assigned the ID "primary" in the mmCIF file.
    """
    def __init__(self, pmid, title, journal, volume, page_range, year, authors,
                 doi, is_primary=False):
        self.title, self.journal, self.volume = title, journal, volume
        self.page_range, self.year = page_range, year
        self.pmid, self.doi = pmid, doi
        self.authors = authors if authors is not None else []
        self.is_primary = is_primary

    @classmethod
    def from_pubmed_id(cls, pubmed_id, is_primary=False):
        """Create a Citation from just a PubMed ID.
           This is done by querying NCBI's web API, so requires network access.

           :param int pubmed_id: The PubMed identifier.
           :param bool is_primary: Denotes the most pertinent publication for
                  the modeling itself; see :class:`Citation` for more info.
           :return: A new Citation for the given identifier.
           :rtype: :class:`Citation`
        """
        def get_doi(ref):
            for art_id in ref['articleids']:
                if art_id['idtype'] == 'doi':
                    return art_id['value']

        def get_page_range(ref):
            rng = ref['pages'].split('-')
            if len(rng) == 2 and len(rng[1]) < len(rng[0]):
                # map ranges like "2730-43" to 2730,2743 not 2730, 43
                rng[1] = rng[0][:len(rng[0]) - len(rng[1])] + rng[1]
            # Handle one page or empty page range
            if len(rng) == 1:
                rng = rng[0]
            if rng == '':
                rng = None
            return rng

        url = ('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi'
               '?db=pubmed&retmode=json&rettype=abstract&id=%s' % pubmed_id)
        fh = urllib.request.urlopen(url)
        j = json.load(fh)
        fh.close()
        ref = j['result'][str(pubmed_id)]
        authors = [x['name'] for x in ref['authors']
                   if x['authtype'] == 'Author']

        # PubMed authors are usually of the form "Lastname AB" but PDB uses
        # "Lastname, A.B." so map one to the other if possible
        r = re.compile(r'(^\w+.*?)\s+(\w+)$')

        def auth_sub(m):
            return m.group(1) + ", " + "".join(initial + "."
                                               for initial in m.group(2))
        authors = [r.sub(auth_sub, auth) for auth in authors]

        return cls(pmid=pubmed_id, title=ref['title'],
                   journal=ref['source'],
                   volume=ref['volume'] or None,
                   page_range=get_page_range(ref),
                   year=ref['pubdate'].split()[0],
                   authors=authors, doi=get_doi(ref),
                   is_primary=is_primary)


class ChemComp:
    """A chemical component from which :class:`Entity` objects are constructed.
       Usually these are amino acids (see :class:`LPeptideChemComp`) or
       nucleic acids (see :class:`DNAChemComp` and :class:`RNAChemComp`),
       but non-polymers such as ligands or water (see
       :class:`NonPolymerChemComp` and :class:`WaterChemComp`) and saccharides
       (see :class:`SaccharideChemComp`) are also supported.

       For standard amino and nucleic acids, it is generally easier to use
       a :class:`Alphabet` and refer to the components with their one-letter
       (amino acids, RNA) or two-letter (DNA) codes.

       :param str id: A globally unique identifier for this component (usually
              three letters).
       :param str code: A shorter identifier (usually one letter) that only
              needs to be unique in the entity.
       :param str code_canonical: Canonical version of `code` (which need not
              be unique).
       :param str name: A longer human-readable name for the component.
       :param str formula: The chemical formula. This is a space-separated
              list of the element symbols in the component, each followed
              by an optional count (if omitted, 1 is assumed). The formula
              is terminated with the formal charge (if not zero). The element
              list should be sorted alphabetically, unless carbon is present,
              in which case C and H precede the rest of the elements. For
              example, water would be "H2 O" and arginine (with +1 formal
              charge) "C6 H15 N4 O2 1".
       :param str ccd: The chemical component dictionary (CCD) where
              this component is defined. Can be "core" for the wwPDB CCD
              (https://www.wwpdb.org/data/ccd), "ma" for the ModelArchive CCD,
              or "local" for a novel component that is defined in the mmCIF
              file itself. If unspecified, defaults to "core" unless
              ``descriptors`` is given in which case it defaults to "local".
              This information is essentially ignored by python-ihm (since
              the IHM dictionary has no support for custom CCDs) but is used
              by python-modelcif.
       :param list descriptors: When ``ccd`` is "local", this can be one or
              more descriptor objects that describe the chemistry. python-ihm
              does not define any, but python-modelcif does.

       For example, glycine would have
       ``id='GLY', code='G', code_canonical='G'`` while selenomethionine would
       use ``id='MSE', code='MSE', code_canonical='M'``, guanosine (RNA)
       ``id='G', code='G', code_canonical='G'``, and deoxyguanosine (DNA)
       ``id='DG', code='DG', code_canonical='G'``.
    """

    type = 'other'

    _element_mass = {'H': 1.008, 'C': 12.011, 'N': 14.007, 'O': 15.999,
                     'P': 30.974, 'S': 32.060, 'Se': 78.971, 'Fe': 55.845,
                     'Ac': 227.028, 'Ag': 107.868, 'Al': 26.982, 'Ar': 39.948,
                     'As': 74.922, 'Au': 196.966, 'B': 10.81, 'Ba': 137.327,
                     'Be': 9.012, 'Bi': 208.98, 'Br': 79.904, 'Ca': 40.078,
                     'Cd': 112.414, 'Ce': 140.116, 'Cl': 35.453, 'Co': 58.933,
                     'Cr': 51.996, 'Cs': 132.905, 'Cu': 63.546, 'Dy': 162.5,
                     'Er': 167.259, 'Eu': 151.964, 'F': 18.998, 'Ga': 69.723,
                     'Gd': 157.25, 'Ge': 72.53, 'He': 4.003, 'Hf': 178.486,
                     'Hg': 200.592, 'Ho': 164.93, 'I': 126.904, 'In': 114.818,
                     'Ir': 192.217, 'K': 39.098, 'Kr': 83.798, 'La': 138.905,
                     'Li': 6.938, 'Lu': 174.967, 'Mg': 24.305, 'Mn': 54.938,
                     'Mo': 95.95, 'Na': 22.99, 'Nb': 92.906, 'Nd': 144.242,
                     'Ne': 20.180, 'Ni': 58.693, 'Np': 237.0, 'Os': 190.23,
                     'Pa': 231.036, 'Pb': 207.2, 'Pd': 106.42, 'Pr': 140.908,
                     'Pt': 195.084, 'Ra': 226.025, 'Rb': 85.468, 'Re': 186.207,
                     'Rh': 102.906, 'Ru': 101.07, 'Sb': 121.760, 'Sc': 44.956,
                     'Si': 28.086, 'Sm': 150.36, 'Sn': 118.710, 'Sr': 87.62,
                     'Ta': 180.948, 'Tb': 158.925, 'Te': 127.6, 'Th': 232.038,
                     'Ti': 47.867, 'Tl': 204.383, 'Tm': 168.934, 'U': 238.029,
                     'V': 50.942, 'W': 183.84, 'Xe': 131.293, 'Y': 88.906,
                     'Yb': 173.045, 'Zn': 65.38, 'Zr': 91.224}

    def __init__(self, id, code, code_canonical, name=None, formula=None,
                 ccd=None, descriptors=None):
        self.id = id
        self.code, self.code_canonical, self.name = code, code_canonical, name
        self.formula = formula
        self.ccd, self.descriptors = ccd, descriptors

    def __str__(self):
        return ('<%s.%s(%s)>'
                % (self.__class__.__module__, self.__class__.__name__,
                   self.id))

    def __get_weight(self):
        # Calculate weight from formula
        if self.formula in (None, unknown):
            return
        spl = self.formula.split()
        # Remove formal charge if present
        if len(spl) > 0 and spl[-1].isdigit():
            del spl[-1]
        r = re.compile(r'(\D+)(\d*)$')
        weight = 0.
        for s in spl:
            m = r.match(s)
            if m is None:
                raise ValueError("Bad formula fragment: %s" % s)
            emass = self._element_mass.get(m.group(1), None)
            if emass:
                weight += emass * (int(m.group(2)) if m.group(2) else 1)
            elif m.group(1) != 'X':
                # If element is unknown, weight is unknown too
                # Element 'X' is used for GLX/ASX and has zero weight
                return None
        return weight

    formula_weight = property(
        __get_weight,
        doc="Formula weight (dalton). This is calculated automatically from "
            "the chemical formula and known atomic masses.")

    # Equal if all identifiers are the same
    def __eq__(self, other):
        return ((self.code, self.code_canonical, self.id, self.type) ==
                (other.code, other.code_canonical, other.id, other.type))

    def __hash__(self):
        return hash((self.code, self.code_canonical, self.id, self.type))


class PeptideChemComp(ChemComp):
    """A single peptide component. Usually :class:`LPeptideChemComp` is used
       instead (except for glycine) to specify chirality.
       See :class:`ChemComp` for a description of the parameters."""
    type = 'peptide linking'


class LPeptideChemComp(PeptideChemComp):
    """A single peptide component with (normal) L- chirality.
       See :class:`ChemComp` for a description of the parameters."""
    type = 'L-peptide linking'


class DPeptideChemComp(PeptideChemComp):
    """A single peptide component with (unusual) D- chirality.
       See :class:`ChemComp` for a description of the parameters."""
    type = 'D-peptide linking'


class DNAChemComp(ChemComp):
    """A single DNA component.
       See :class:`ChemComp` for a description of the parameters."""
    type = 'DNA linking'


class RNAChemComp(ChemComp):
    """A single RNA component.
       See :class:`ChemComp` for a description of the parameters."""
    type = 'RNA linking'


class SaccharideChemComp(ChemComp):
    """A saccharide chemical component. Usually a subclass that specifies
       the chirality and linkage (e.g. :class:`LSaccharideBetaChemComp`)
       is used.

       :param str id: A globally unique identifier for this component.
       :param str name: A longer human-readable name for the component.
       :param str formula: The chemical formula. See :class:`ChemComp` for
              more details.
       :param str ccd: The chemical component dictionary (CCD) where
              this component is defined. See :class:`ChemComp` for
              more details.
       :param list descriptors: Information on the component's chemistry.
              See :class:`ChemComp` for more details.
    """
    type = "saccharide"

    def __init__(self, id, name=None, formula=None, ccd=None,
                 descriptors=None):
        super().__init__(
            id, id, id, name=name, formula=formula,
            ccd=ccd, descriptors=descriptors)


class LSaccharideChemComp(SaccharideChemComp):
    """A single saccharide component with L-chirality and unspecified linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "L-saccharide"


class LSaccharideAlphaChemComp(LSaccharideChemComp):
    """A single saccharide component with L-chirality and alpha linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "L-saccharide, alpha linking"


class LSaccharideBetaChemComp(LSaccharideChemComp):
    """A single saccharide component with L-chirality and beta linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "L-saccharide, beta linking"


class DSaccharideChemComp(SaccharideChemComp):
    """A single saccharide component with D-chirality and unspecified linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "D-saccharide"


class DSaccharideAlphaChemComp(DSaccharideChemComp):
    """A single saccharide component with D-chirality and alpha linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "D-saccharide, alpha linking"


class DSaccharideBetaChemComp(DSaccharideChemComp):
    """A single saccharide component with D-chirality and beta linkage.
       See :class:`SaccharideChemComp` for a description of the parameters."""
    type = "D-saccharide, beta linking"


class NonPolymerChemComp(ChemComp):
    """A non-polymer chemical component, such as a ligand or a non-standard
       residue (for crystal waters, use :class:`WaterChemComp`).

       :param str id: A globally unique identifier for this component.
       :param str code_canonical: Canonical one-letter identifier. This is
              used for non-standard residues and should be the one-letter code
              of the closest standard residue (or by default, 'X').
       :param str name: A longer human-readable name for the component.
       :param str formula: The chemical formula. See :class:`ChemComp` for
              more details.
       :param str ccd: The chemical component dictionary (CCD) where
              this component is defined. See :class:`ChemComp` for
              more details.
       :param list descriptors: Information on the component's chemistry.
              See :class:`ChemComp` for more details.
    """
    type = "non-polymer"

    def __init__(self, id, code_canonical='X', name=None, formula=None,
                 ccd=None, descriptors=None):
        super().__init__(
            id, id, code_canonical, name=name, formula=formula,
            ccd=ccd, descriptors=descriptors)


class WaterChemComp(NonPolymerChemComp):
    """The chemical component for crystal water.
    """
    def __init__(self):
        super().__init__('HOH', name='WATER', formula="H2 O")


class Alphabet:
    """A mapping from codes (usually one-letter, or two-letter for DNA) to
       chemical components.
       These classes can be used to construct sequences of components
       when creating an :class:`Entity`. They can also be used like a Python
       dict to get standard components, e.g.::

           a = ihm.LPeptideAlphabet()
           met = a['M']
           gly = a['G']

       See :class:`LPeptideAlphabet`, :class:`RNAAlphabet`,
       :class:`DNAAlphabet`.
    """
    def __getitem__(self, key):
        return self._comps[key]

    def __contains__(self, key):
        return key in self._comps

    keys = property(lambda self: self._comps.keys())
    values = property(lambda self: self._comps.values())
    items = property(lambda self: self._comps.items())


class LPeptideAlphabet(Alphabet):
    """A mapping from one-letter amino acid codes (e.g. H, M) to
       L-amino acids (as :class:`LPeptideChemComp` objects, except for achiral
       glycine which maps to :class:`PeptideChemComp`). Some other common
       modified residues are also included (e.g. MSE). For these their full
       name rather than a one-letter code is used.
    """
    _comps = dict([code, LPeptideChemComp(id, code, code, name,
                                          formula)]
                  for code, id, name, formula in [
                  ('A', 'ALA', 'ALANINE', 'C3 H7 N O2'),
                  ('C', 'CYS', 'CYSTEINE', 'C3 H7 N O2 S'),
                  ('D', 'ASP', 'ASPARTIC ACID', 'C4 H7 N O4'),
                  ('E', 'GLU', 'GLUTAMIC ACID', 'C5 H9 N O4'),
                  ('F', 'PHE', 'PHENYLALANINE', 'C9 H11 N O2'),
                  ('H', 'HIS', 'HISTIDINE', 'C6 H10 N3 O2 1'),
                  ('I', 'ILE', 'ISOLEUCINE', 'C6 H13 N O2'),
                  ('K', 'LYS', 'LYSINE', 'C6 H15 N2 O2 1'),
                  ('L', 'LEU', 'LEUCINE', 'C6 H13 N O2'),
                  ('M', 'MET', 'METHIONINE', 'C5 H11 N O2 S'),
                  ('N', 'ASN', 'ASPARAGINE', 'C4 H8 N2 O3'),
                  ('P', 'PRO', 'PROLINE', 'C5 H9 N O2'),
                  ('Q', 'GLN', 'GLUTAMINE', 'C5 H10 N2 O3'),
                  ('R', 'ARG', 'ARGININE', 'C6 H15 N4 O2 1'),
                  ('S', 'SER', 'SERINE', 'C3 H7 N O3'),
                  ('T', 'THR', 'THREONINE', 'C4 H9 N O3'),
                  ('V', 'VAL', 'VALINE', 'C5 H11 N O2'),
                  ('W', 'TRP', 'TRYPTOPHAN', 'C11 H12 N2 O2'),
                  ('Y', 'TYR', 'TYROSINE', 'C9 H11 N O3'),
                  ('B', 'ASX', 'ASP/ASN AMBIGUOUS', 'C4 H6 N O2 X2'),
                  ('Z', 'GLX', 'GLU/GLN AMBIGUOUS', 'C5 H8 N O2 X2'),
                  ('U', 'SEC', 'SELENOCYSTEINE', 'C3 H7 N O2 Se')])
    _comps['G'] = PeptideChemComp('GLY', 'G', 'G', name='GLYCINE',
                                  formula="C2 H5 N O2")

    # common non-standard L-amino acids
    _comps.update([id, LPeptideChemComp(id, id, canon, name, formula)]
                  for id, canon, name, formula in [
                  ('MSE', 'M', 'SELENOMETHIONINE', 'C5 H11 N O2 Se'),
                  ('UNK', 'X', 'UNKNOWN', 'C4 H9 N O2')])


class DPeptideAlphabet(Alphabet):
    """A mapping from D-amino acid codes (e.g. DHI, MED) to
       D-amino acids (as :class:`DPeptideChemComp` objects, except for achiral
       glycine which maps to :class:`PeptideChemComp`). See
       :class:`LPeptideAlphabet` for more details.
    """
    _comps = dict([code, DPeptideChemComp(code, code, canon, name, formula)]
                  for canon, code, name, formula in [
                  ('A', 'DAL', 'D-ALANINE', 'C3 H7 N O2'),
                  ('C', 'DCY', 'D-CYSTEINE', 'C3 H7 N O2 S'),
                  ('D', 'DAS', 'D-ASPARTIC ACID', 'C4 H7 N O4'),
                  ('E', 'DGL', 'D-GLUTAMIC ACID', 'C5 H9 N O4'),
                  ('F', 'DPN', 'D-PHENYLALANINE', 'C9 H11 N O2'),
                  ('H', 'DHI', 'D-HISTIDINE', 'C6 H10 N3 O2 1'),
                  ('I', 'DIL', 'D-ISOLEUCINE', 'C6 H13 N O2'),
                  ('K', 'DLY', 'D-LYSINE', 'C6 H14 N2 O2'),
                  ('L', 'DLE', 'D-LEUCINE', 'C6 H13 N O2'),
                  ('M', 'MED', 'D-METHIONINE', 'C5 H11 N O2 S'),
                  ('N', 'DSG', 'D-ASPARAGINE', 'C4 H8 N2 O3'),
                  ('P', 'DPR', 'D-PROLINE', 'C5 H9 N O2'),
                  ('Q', 'DGN', 'D-GLUTAMINE', 'C5 H10 N2 O3'),
                  ('R', 'DAR', 'D-ARGININE', 'C6 H15 N4 O2 1'),
                  ('S', 'DSN', 'D-SERINE', 'C3 H7 N O3'),
                  ('T', 'DTH', 'D-THREONINE', 'C4 H9 N O3'),
                  ('V', 'DVA', 'D-VALINE', 'C5 H11 N O2'),
                  ('W', 'DTR', 'D-TRYPTOPHAN', 'C11 H12 N2 O2'),
                  ('Y', 'DTY', 'D-TYROSINE', 'C9 H11 N O3')])
    _comps['G'] = PeptideChemComp('GLY', 'G', 'G', name='GLYCINE',
                                  formula="C2 H5 N O2")


class RNAAlphabet(Alphabet):
    """A mapping from one-letter nucleic acid codes (e.g. A) to
       RNA (as :class:`RNAChemComp` objects)."""
    _comps = dict([id, RNAChemComp(id, id, id, name, formula)]
                  for id, name, formula in [
                  ('A', "ADENOSINE-5'-MONOPHOSPHATE", 'C10 H14 N5 O7 P'),
                  ('C', "CYTIDINE-5'-MONOPHOSPHATE", 'C9 H14 N3 O8 P'),
                  ('G', "GUANOSINE-5'-MONOPHOSPHATE", 'C10 H14 N5 O8 P'),
                  ('U', "URIDINE-5'-MONOPHOSPHATE", 'C9 H13 N2 O9 P')])


class DNAAlphabet(Alphabet):
    """A mapping from two-letter nucleic acid codes (e.g. DA) to
       DNA (as :class:`DNAChemComp` objects)."""
    _comps = dict([code, DNAChemComp(code, code, canon, name, formula)]
                  for code, canon, name, formula in [
                      ('DA', 'A', "2'-DEOXYADENOSINE-5'-MONOPHOSPHATE",
                       'C10 H14 N5 O6 P'),
                      ('DC', 'C', "2'-DEOXYCYTIDINE-5'-MONOPHOSPHATE",
                       'C9 H14 N3 O7 P'),
                      ('DG', 'G', "2'-DEOXYGUANOSINE-5'-MONOPHOSPHATE",
                       'C10 H14 N5 O7 P'),
                      ('DT', 'T', "THYMIDINE-5'-MONOPHOSPHATE",
                       'C10 H15 N2 O8 P')])


class EntityRange:
    """Part of an entity. Usually these objects are created from
       an :class:`Entity`, e.g. to get a range covering residues 4 through
       7 in `entity` use::

           entity = ihm.Entity(sequence=...)
           rng = entity(4,7)
    """
    def __init__(self, entity, seq_id_begin, seq_id_end):
        if not entity.is_polymeric():
            raise TypeError("Can only create ranges for polymeric entities")
        self.entity = entity
        self.seq_id_range = (seq_id_begin, seq_id_end)
        util._check_residue_range(self.seq_id_range, self.entity)

    def __eq__(self, other):
        try:
            return (self.entity is other.entity
                    and self.seq_id_range == other.seq_id_range)
        except AttributeError:
            return False

    def __hash__(self):
        return hash((id(self.entity), self.seq_id_range))

    # Use same ID as the original entity
    _id = property(lambda self: self.entity._id)


class Atom:
    """A single atom in an entity or asymmetric unit. Usually these objects
       are created by calling :meth:`Residue.atom`.

       Note that this class does not store atomic coordinates of a given
       atom in a given model; for that, see :class:`ihm.model.Atom`.
    """

    __slots__ = ['residue', 'id']

    def __init__(self, residue, id):
        self.residue, self.id = residue, id

    entity = property(lambda self: self.residue.entity)
    asym = property(lambda self: self.residue.asym)
    seq_id = property(lambda self: self.residue.seq_id)


class Residue:
    """A single residue in an entity or asymmetric unit. Usually these objects
       are created by calling :meth:`Entity.residue` or
       :meth:`AsymUnit.residue`.
    """

    __slots__ = ['entity', 'asym', 'seq_id', '_range_id']

    def __init__(self, seq_id, entity=None, asym=None):
        self.entity = entity
        self.asym = asym
        if entity is None and asym:
            self.entity = asym.entity
        self.seq_id = seq_id
        if self.entity is not None and self.entity.is_polymeric():
            util._check_residue(self)

    def atom(self, atom_id):
        """Get a :class:`~ihm.Atom` in this residue with the given name."""
        return Atom(residue=self, id=atom_id)

    def _get_auth_seq_id(self):
        return self.asym._get_auth_seq_id_ins_code(self.seq_id)[0]
    auth_seq_id = property(_get_auth_seq_id,
                           doc="Author-provided seq_id; only makes sense "
                               "for asymmetric units")

    def _get_ins_code(self):
        return self.asym._get_auth_seq_id_ins_code(self.seq_id)[1]
    ins_code = property(_get_ins_code,
                        doc="Insertion code; only makes sense "
                            "for asymmetric units")

    def _get_comp(self):
        return self.entity.sequence[self.seq_id - 1]
    comp = property(_get_comp,
                    doc="Chemical component (residue type)")

    # Allow passing residues where a range is requested
    # (e.g. to ResidueFeature)
    seq_id_range = property(lambda self: (self.seq_id, self.seq_id))


class Entity:
    """Represent a CIF entity (with a unique sequence)

       :param sequence sequence: The primary sequence, as a sequence of
              :class:`ChemComp` objects, and/or codes looked up in `alphabet`.
       :param alphabet: The mapping from code to chemical components to use
              (it is not necessary to instantiate this class).
       :type alphabet: :class:`Alphabet`
       :param str description: A short text name for the sequence.
       :param str details: Longer text describing the sequence.
       :param source: The method by which the sample for this entity was
              produced.
       :type source: :class:`ihm.source.Source`
       :param references: Information about this entity stored in external
              databases (for example the sequence in UniProt)
       :type references: sequence of :class:`ihm.reference.Reference` objects

       The sequence for an entity can be specified explicitly as a list of
       chemical components, or (more usually) as a list or string of codes,
       or a mixture of both.
       For example::

           # Construct with a string of one-letter amino acid codes
           protein = ihm.Entity('AHMD')
           # Some less common amino acids (e.g. MSE) have three-letter codes
           protein_with_mse = ihm.Entity(['A', 'H', 'MSE', 'D'])

           # Can use a non-default alphabet to make DNA or RNA sequences
           dna = ihm.Entity(('DA', 'DC'), alphabet=ihm.DNAAlphabet)
           rna = ihm.Entity('AC', alphabet=ihm.RNAAlphabet)

           # Can pass explicit ChemComp objects by looking them up in Alphabets
           dna_al = ihm.DNAAlphabet()
           rna_al = ihm.RNAAlphabet()
           dna_rna_hybrid = ihm.Entity((dna_al['DG'], rna_al['C']))

           # For unusual components (e.g. modified residues or ligands),
           # new ChemComp objects can be constructed
           psu = ihm.RNAChemComp(id='PSU', code='PSU', code_canonical='U',
                                 name="PSEUDOURIDINE-5'-MONOPHOSPHATE",
                                 formula='C9 H13 N2 O9 P')
           rna_with_psu = ihm.Entity(('A', 'C', psu), alphabet=ihm.RNAAlphabet)

       For more examples, see the
       `ligands and water example <https://github.com/ihmwg/python-ihm/blob/main/examples/ligands_water.py>`_.

       All entities should be stored in the top-level System object;
       see :attr:`System.entities`.
    """  # noqa: E501

    _force_polymer = None
    _hint_branched = None
    # Set to False to allow invalid seq_ids for residue or residue_range;
    # this is done, for example, when reading a file.
    _range_check = True

    def __get_type(self):
        if self.is_polymeric():
            return 'polymer'
        elif self.is_branched():
            return 'branched'
        else:
            return 'water' if self.sequence[0].code == 'HOH' else 'non-polymer'
    type = property(__get_type)

    def __get_src_method(self):
        if self.source:
            return self.source.src_method
        elif self.type == 'water':
            return 'nat'
        else:
            return 'man'

    def __set_src_method(self, val):
        raise TypeError("src_method is read-only; assign an appropriate "
                        "subclass of ihm.source.Source to source instead")
    src_method = property(__get_src_method, __set_src_method)

    def __get_weight(self):
        weight = 0.
        for s in self.sequence:
            w = s.formula_weight
            # If any component's weight is unknown, the total is too
            if w:
                weight += w
            else:
                return None
        return weight
    formula_weight = property(
        __get_weight,
        doc="Formula weight (dalton). This is calculated automatically "
            "from that of the chemical components.")

    def __init__(self, sequence, alphabet=LPeptideAlphabet,
                 description=None, details=None, source=None, references=[]):
        def get_chem_comp(s):
            if isinstance(s, ChemComp):
                return s
            else:
                return alphabet._comps[s]
        self.sequence = tuple(get_chem_comp(s) for s in sequence)
        self.description, self.details = description, details
        self.source = source
        self.references = []
        self.references.extend(references)

        #: String descriptors of branched chemical structure.
        #: These generally only make sense for oligosaccharide entities,
        #: and should be a list of :class:`~ihm.BranchDescriptor` objects.
        self.branch_descriptors = []

        #: Any links between components in a branched entity.
        #: This is a list of :class:`~ihm.BranchLink` objects.
        self.branch_links = []

    def __str__(self):
        return "<ihm.Entity(%s)>" % self.description

    def is_polymeric(self):
        """Return True iff this entity represents a polymer, such as an
           amino acid sequence or DNA/RNA chain (and not a ligand or water)"""
        return (self._force_polymer or
                (len(self.sequence) == 0 and not self._hint_branched) or
                len(self.sequence) > 1
                and any(isinstance(x, (PeptideChemComp, DNAChemComp,
                                       RNAChemComp)) for x in self.sequence))

    def is_branched(self):
        """Return True iff this entity is branched (generally
           an oligosaccharide)"""
        return ((len(self.sequence) > 1
                 and isinstance(self.sequence[0], SaccharideChemComp)) or
                (len(self.sequence) == 0 and self._hint_branched))

    def residue(self, seq_id):
        """Get a :class:`Residue` at the given sequence position"""
        return Residue(entity=self, seq_id=seq_id)

    # Entities are considered identical if they have the same sequence,
    # unless they are branched
    def __eq__(self, other):
        if not isinstance(other, Entity):
            return False
        if self.is_branched() or other.is_branched():
            return self is other
        else:
            return self.sequence == other.sequence

    def __hash__(self):
        if self.is_branched():
            return hash(id(self))
        else:
            return hash(self.sequence)

    def __call__(self, seq_id_begin, seq_id_end):
        return EntityRange(self, seq_id_begin, seq_id_end)

    def __get_seq_id_range(self):
        if self.is_polymeric() or self.is_branched():
            return (1, len(self.sequence))
        else:
            # Nonpolymers don't have the concept of seq_id
            return (None, None)
    seq_id_range = property(__get_seq_id_range, doc="Sequence range")


class AsymUnitRange:
    """Part of an asymmetric unit. Usually these objects are created from
       an :class:`AsymUnit`, e.g. to get a range covering residues 4 through
       7 in `asym` use::

           asym = ihm.AsymUnit(entity)
           rng = asym(4,7)
    """
    def __init__(self, asym, seq_id_begin, seq_id_end):
        if asym.entity is not None and not asym.entity.is_polymeric():
            raise TypeError("Can only create ranges for polymeric entities")
        self.asym = asym
        self.seq_id_range = (seq_id_begin, seq_id_end)
        util._check_residue_range(self.seq_id_range, self.entity)

    def __eq__(self, other):
        try:
            return (self.asym is other.asym
                    and self.seq_id_range == other.seq_id_range)
        except AttributeError:
            return False

    def __hash__(self):
        return hash((id(self.asym), self.seq_id_range))

    # Use same ID and entity as the original asym unit
    _id = property(lambda self: self.asym._id)
    _ordinal = property(lambda self: self.asym._ordinal)
    entity = property(lambda self: self.asym.entity)
    details = property(lambda self: self.asym.details)


class AsymUnitSegment:
    """An aligned part of an asymmetric unit.

       Usually these objects are created from
       an :class:`AsymUnit`, e.g. to get a segment covering residues 1 through
       3 in `asym` use::

           asym = ihm.AsymUnit(entity)
           seg = asym.segment('--ACG', 1, 3)
    """
    def __init__(self, asym, gapped_sequence, seq_id_begin, seq_id_end):
        self.asym = asym
        self.gapped_sequence = gapped_sequence
        self.seq_id_range = (seq_id_begin, seq_id_end)


class AsymUnit:
    """An asymmetric unit, i.e. a unique instance of an Entity that
       was modeled.

       Note that this class should not be used to describe crystal waters;
       for that, see :class:`ihm.WaterAsymUnit`.

       :param entity: The unique sequence of this asymmetric unit.
       :type entity: :class:`Entity`
       :param str details: Longer text description of this unit.
       :param auth_seq_id_map: Mapping from internal 1-based consecutive
              residue numbering (`seq_id`) to PDB "author-provided" numbering
              (`auth_seq_id` plus an optional `ins_code`). This can be either
              be an int offset, in which case
              ``auth_seq_id = seq_id + auth_seq_id_map`` with no insertion
              codes, or a mapping type (dict, list, tuple) in which case
              ``auth_seq_id = auth_seq_id_map[seq_id]`` with no insertion
              codes, or
              ``auth_seq_id, ins_code = auth_seq_id_map[seq_id]`` - i.e. the
              output of the mapping is either the author-provided number, or a
              2-element tuple containing that number and an insertion code.
              (Note that if a `list` or `tuple` is used for the mapping, the
              first element in the list or tuple does
              **not** correspond to the first residue and will never be used -
              since `seq_id` can never be zero.) The default if
              not specified, or not in the mapping, is for
              ``auth_seq_id == seq_id`` and for no insertion codes to be used.
       :param str id: User-specified ID (usually a string of one or more
              upper-case letters, e.g. A, B, C, AA). If not specified,
              IDs are automatically assigned alphabetically.
       :param str strand_id: PDB or "author-provided" strand/chain ID.
              If not specified, it will be the same as the regular ID.
       :param orig_auth_seq_id_map: Mapping from internal 1-based consecutive
              residue numbering (`seq_id`) to original "author-provided"
              numbering. This differs from `auth_seq_id_map` as the original
              numbering need not follow any defined scheme, while
              `auth_seq_id_map` must follow certain PDB-defined rules. This
              can be any mapping type (dict, list, tuple) in which case
              ``orig_auth_seq_id = orig_auth_seq_id_map[seq_id]``. If the
              mapping is None (the default), or a given `seq_id` cannot be
              found in the mapping, ``orig_auth_seq_id = auth_seq_id``.
              This mapping is only used in the various `scheme` tables, such
              as ``pdbx_poly_seq_scheme``.

       See :attr:`System.asym_units`.
    """

    number_of_molecules = 1

    def __init__(self, entity, details=None, auth_seq_id_map=0, id=None,
                 strand_id=None, orig_auth_seq_id_map=None):
        if (entity is not None and entity.type == 'water'
                and not isinstance(self, WaterAsymUnit)):
            raise TypeError("Use WaterAsymUnit instead for creating waters")
        self.entity, self.details = entity, details
        self.auth_seq_id_map = auth_seq_id_map
        self.orig_auth_seq_id_map = orig_auth_seq_id_map
        self.id = id
        self._strand_id = strand_id

        #: For branched entities read from files, mapping from provisional
        #: to final internal numbering (`seq_id`), or None if no mapping is
        #: necessary. See :meth:`ihm.model.Model.add_atom`.
        self.num_map = None

    def _get_auth_seq_id_ins_code(self, seq_id):
        if isinstance(self.auth_seq_id_map, numbers.Integral):
            return seq_id + self.auth_seq_id_map, None
        else:
            try:
                ret = self.auth_seq_id_map[seq_id]
                if isinstance(ret, (numbers.Integral, str)):
                    return ret, None
                else:
                    return ret
            except (KeyError, IndexError):
                return seq_id, None

    def _get_pdb_auth_seq_id_ins_code(self, seq_id):
        pdb_seq_num, ins_code = self._get_auth_seq_id_ins_code(seq_id)
        if self.orig_auth_seq_id_map is None:
            auth_seq_num = pdb_seq_num
        else:
            auth_seq_num = self.orig_auth_seq_id_map.get(seq_id, pdb_seq_num)
        return pdb_seq_num, auth_seq_num, ins_code

    def __call__(self, seq_id_begin, seq_id_end):
        return AsymUnitRange(self, seq_id_begin, seq_id_end)

    def residue(self, seq_id):
        """Get a :class:`Residue` at the given sequence position"""
        return Residue(asym=self, seq_id=seq_id)

    def segment(self, gapped_sequence, seq_id_begin, seq_id_end):
        """Get an object representing the alignment of part of this sequence.

           :param str gapped_sequence: Sequence of the segment, including gaps.
           :param int seq_id_begin: Start of the segment.
           :param int seq_id_end: End of the segment.
        """
        # todo: cache so we return the same object for same parameters
        return AsymUnitSegment(self, gapped_sequence, seq_id_begin, seq_id_end)

    seq_id_range = property(lambda self: self.entity.seq_id_range,
                            doc="Sequence range")

    sequence = property(lambda self: self.entity.sequence,
                        doc="Primary sequence")

    strand_id = property(lambda self: self._strand_id or self._id,
                         doc="PDB or author-provided strand/chain ID")


class WaterAsymUnit(AsymUnit):
    """A collection of crystal waters, all with the same "chain" ID.

       :param int number: The number of water molecules in this unit.

       For more information on this class and the rest of the parameters,
       see :class:`AsymUnit`.

    """

    def __init__(self, entity, number, details=None, auth_seq_id_map=0,
                 id=None, strand_id=None, orig_auth_seq_id_map=None):
        if entity.type != 'water':
            raise TypeError(
                "WaterAsymUnit can only be used for water entities")
        super().__init__(
            entity, details=details, auth_seq_id_map=auth_seq_id_map,
            id=id, strand_id=strand_id,
            orig_auth_seq_id_map=orig_auth_seq_id_map)
        self.number = number
        self._water_sequence = [entity.sequence[0]] * number

    seq_id_range = property(lambda self: (1, self.number),
                            doc="Sequence range")

    sequence = property(lambda self: self._water_sequence,
                        doc="Primary sequence")

    number_of_molecules = property(lambda self: self.number,
                                   doc="Number of molecules")


class Assembly(list):
    """A collection of parts of the system that were modeled or probed
       together.

       :param sequence elements: Initial set of parts of the system.
       :param str name: Short text name of this assembly.
       :param str description: Longer text that describes this assembly.

       This is implemented as a simple list of asymmetric units (or parts of
       them), i.e. a list of :class:`AsymUnit` and/or :class:`AsymUnitRange`
       objects. An Assembly is typically assigned to one or more of

         - :class:`~ihm.model.Model`
         - :class:`ihm.protocol.Step`
         - :class:`ihm.analysis.Step`
         - :class:`~ihm.restraint.Restraint`

       See also :attr:`System.complete_assembly`
       and :attr:`System.orphan_assemblies`.

       Note that any duplicate assemblies will be pruned on output."""

    #: :class:`Assembly` that is the immediate parent in a hierarchy, or `None`
    parent = None

    def __init__(self, elements=(), name=None, description=None):
        super().__init__(elements)
        self.name, self.description = name, description

    def _signature(self):
        """Get a Python object that represents this Assembly. Notably, two
           Assemblies that cover the part of the system (even if the
           components are in a different order) will have the same signature.
           Signatures are also hashable, unlike the Assembly itself."""
        d = collections.defaultdict(list)
        for a in self:
            # a might be an AsymUnit or an AsymUnitRange
            asym = a.asym if hasattr(a, 'asym') else a
            d[asym].append(a.seq_id_range)
        ret = []
        # asyms might not have IDs yet, so just put them in a consistent order
        for asym in sorted(d.keys(), key=lambda x: id(x)):
            ranges = d[asym]
            # Non-polymers have no ranges
            if all(r == (None, None) for r in ranges):
                ret.append((asym, None))
            else:
                ret.append((asym, tuple(util._combine_ranges(d[asym]))))
        return tuple(ret)


class ChemDescriptor:
    """Description of a non-polymeric chemical component used in the
       experiment. For example, this might be a fluorescent probe or
       cross-linking agent. This class describes the chemical structure of
       the component, for example with a SMILES or INCHI descriptor, so that
       it is uniquely defined. A descriptor is typically assigned to a
       :class:`ihm.restraint.CrossLinkRestraint`.

       See :mod:`ihm.cross_linkers` for chemical descriptors of some
       commonly-used cross-linking agents.

       :param str auth_name: Author-provided name
       :param str chem_comp_id: If this chemical is listed in the Chemical
              Component Dictionary, its three-letter identifier
       :param str chemical_name: The systematic (IUPAC) chemical name
       :param str common_name: Common name for the component
       :param str smiles: SMILES string
       :param str smiles_canonical: Canonical SMILES string
       :param str inchi: IUPAC INCHI descriptor
       :param str inchi_key: Hashed INCHI key

       See also :attr:`System.orphan_chem_descriptors`.
    """
    def __init__(self, auth_name, chem_comp_id=None, chemical_name=None,
                 common_name=None, smiles=None, smiles_canonical=None,
                 inchi=None, inchi_key=None):
        self.auth_name, self.chem_comp_id = auth_name, chem_comp_id
        self.chemical_name, self.common_name = chemical_name, common_name
        self.smiles, self.smiles_canonical = smiles, smiles_canonical
        self.inchi, self.inchi_key = inchi, inchi_key


class Collection:
    """A collection of entries belonging to single deposition or group.
       These are used by the archive to group multiple related entries,
       e.g. all entries deposited as part of a given study, or all
       models for a genome. An entry (:class:`System`) can belong to
       multiple collections.

       :param str id: Unique identifier (assigned by the archive).
       :param str name: Short name for the collection.
       :param str details: Longer description of the collection.

       See also :attr:`System.collections`.
    """
    def __init__(self, id, name=None, details=None):
        self.id, self.name, self.details = id, name, details


class BranchDescriptor:
    """String descriptor of branched chemical structure.
       These generally only make sense for oligosaccharide entities.
       See :attr:`Entity.branch_descriptors`.

       :param str text: The value of this descriptor.
       :param str type: The type of the descriptor; one of
              "Glycam Condensed Core Sequence", "Glycam Condensed Sequence",
              "LINUCS", or "WURCS".
       :param str program: The name of the program or library used to compute
              the descriptor.
       :param str program_version: The version of the program or library
              used to compute the descriptor.
    """
    def __init__(self, text, type, program=None, program_version=None):
        self.text, self.type = text, type
        self.program, self.program_version = program, program_version


class BranchLink:
    """A link between components in a branched entity.
       These generally only make sense for oligosaccharide entities.
       See :attr:`Entity.branch_links`.

       :param int num1: 1-based index of the first component.
       :param str atom_id1: Name of the first atom in the linkage.
       :param str leaving_atom_id1: Name of the first leaving atom.
       :param int num2: 1-based index of the second component.
       :param str atom_id2: Name of the second atom in the linkage.
       :param str leaving_atom_id2: Name of the second leaving atom.
       :param str order: Bond order (e.g. sing, doub, trip).
       :param str details: More information about this link.
    """
    def __init__(self, num1, atom_id1, leaving_atom_id1, num2, atom_id2,
                 leaving_atom_id2, order=None, details=None):
        self.num1, self.atom_id1 = num1, atom_id1
        self.num2, self.atom_id2 = num2, atom_id2
        self.leaving_atom_id1 = leaving_atom_id1
        self.leaving_atom_id2 = leaving_atom_id2
        self.order, self.details = order, details


class DataUsage:
    """Information on how the data in the file can be used.

       Do not use this class itself, but one of its subclasses, either
       :class:`License` or :class:`Disclaimer`. DataUsage objects are
       stored in :data:`ihm.System.data_usage`.

       :param str details: Information about the data usage.
       :param str name: An optional well-known name for the usage.
       :param str url: An optional URL providing more information.
    """
    type = 'other'

    def __init__(self, details, name=None, url=None):
        self.details, self.name, self.url = details, name, url


class License(DataUsage):
    """A license describing how the data in the file can be used.
       See :class:`DataUsage` for more information."""
    type = 'license'


class Disclaimer(DataUsage):
    """A disclaimer relating to usage of the data in the file.
       See :class:`DataUsage` for more information."""
    type = 'disclaimer'


class Revision:
    """Represent part of the history of a :class:`System`.

       :param str data_content_type: The type of file that was changed.
       :param int major: Major version number.
       :param int minor: Minor version number.
       :param date: Release date.
       :type date: :class:`datetime.date`

       Generally these objects are added to :attr:`System.revisions`.
    """
    def __init__(self, data_content_type, minor, major, date):
        self.data_content_type = data_content_type
        self.minor, self.major = minor, major
        self.date = date
        #: More details of the changes, as :class:`RevisionDetails` objects
        self.details = []
        #: Collection of categories (as strings) updated with this revision
        self.groups = []
        #: Categories (as strings) updated with this revision
        self.categories = []
        #: Items (as strings) updated with this revision
        self.items = []


class RevisionDetails:
    """More information on the changes in a given :class:`Revision`.

       :param str provider: The provider (author, repository) of the revision.
       :param str type: Classification of the revision.
       :param str description: Additional details describing the revision.

      These objects are typically stored in :attr:`Revision.details`.
    """
    def __init__(self, provider, type, description):
        self.provider = provider
        self.type = type
        self.description = description
