# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larsoner@uw.edu>
#
# License: BSD (3-clause)

from copy import deepcopy
import contextlib
import os
from os import path as op

import numpy as np

from ._compute_forward import _compute_forwards
from ..io import read_info, _loc_to_coil_trans, _loc_to_eeg_loc, Info
from ..io.pick import _has_kit_refs, pick_types, pick_info
from ..io.constants import FIFF, FWD
from ..transforms import (_ensure_trans, transform_surface_to, apply_trans,
                          _get_trans, _print_coord_trans, _coord_frame_name,
                          Transform)
from ..utils import logger, verbose, warn, _pl
from ..parallel import check_n_jobs
from ..source_space import (_ensure_src, _filter_source_spaces,
                            _make_discrete_source_space, SourceSpaces)
from ..source_estimate import VolSourceEstimate
from ..surface import _normalize_vectors
from ..bem import read_bem_solution, _bem_find_surface, ConductorModel
from ..externals.six import string_types

from .forward import Forward, _merge_meg_eeg_fwds, convert_forward_solution


_accuracy_dict = dict(normal=FWD.COIL_ACCURACY_NORMAL,
                      accurate=FWD.COIL_ACCURACY_ACCURATE)
_extra_coil_def_fname = None


@verbose
def _read_coil_defs(verbose=None):
    """Read a coil definition file.

    Parameters
    ----------
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    res : list of dict
        The coils. It is a dictionary with valid keys:
        'cosmag' | 'coil_class' | 'coord_frame' | 'rmag' | 'type' |
        'chname' | 'accuracy'.
        cosmag contains the direction of the coils and rmag contains the
        position vector.

    Notes
    -----
    The global variable "_extra_coil_def_fname" can be used to prepend
    additional definitions. These are never added to the registry.
    """
    coil_dir = op.join(op.split(__file__)[0], '..', 'data')
    coils = list()
    if _extra_coil_def_fname is not None:
        coils += _read_coil_def_file(_extra_coil_def_fname, use_registry=False)
    coils += _read_coil_def_file(op.join(coil_dir, 'coil_def.dat'))
    return coils


# Typically we only have 1 or 2 coil def files, but they can end up being
# read a lot. Let's keep a list of them and just reuse them:
_coil_registry = {}


def _read_coil_def_file(fname, use_registry=True):
    """Read a coil def file."""
    if not use_registry or fname not in _coil_registry:
        big_val = 0.5
        coils = list()
        with open(fname, 'r') as fid:
            lines = fid.readlines()
        lines = lines[::-1]
        while len(lines) > 0:
            line = lines.pop()
            if line[0] != '#':
                vals = np.fromstring(line, sep=' ')
                assert len(vals) in (6, 7)  # newer numpy can truncate comment
                start = line.find('"')
                end = len(line.strip()) - 1
                assert line.strip()[end] == '"'
                desc = line[start:end]
                npts = int(vals[3])
                coil = dict(coil_type=vals[1], coil_class=vals[0], desc=desc,
                            accuracy=vals[2], size=vals[4], base=vals[5])
                # get parameters of each component
                rmag = list()
                cosmag = list()
                w = list()
                for p in range(npts):
                    # get next non-comment line
                    line = lines.pop()
                    while(line[0] == '#'):
                        line = lines.pop()
                    vals = np.fromstring(line, sep=' ')
                    assert len(vals) == 7
                    # Read and verify data for each integration point
                    w.append(vals[0])
                    rmag.append(vals[[1, 2, 3]])
                    cosmag.append(vals[[4, 5, 6]])
                w = np.array(w)
                rmag = np.array(rmag)
                cosmag = np.array(cosmag)
                size = np.sqrt(np.sum(cosmag ** 2, axis=1))
                if np.any(np.sqrt(np.sum(rmag ** 2, axis=1)) > big_val):
                    raise RuntimeError('Unreasonable integration point')
                if np.any(size <= 0):
                    raise RuntimeError('Unreasonable normal')
                cosmag /= size[:, np.newaxis]
                coil.update(dict(w=w, cosmag=cosmag, rmag=rmag))
                coils.append(coil)
        if use_registry:
            _coil_registry[fname] = coils
    if use_registry:
        coils = deepcopy(_coil_registry[fname])
    logger.info('%d coil definition%s read', len(coils), _pl(coils))
    return coils


def _create_meg_coil(coilset, ch, acc, do_es):
    """Create a coil definition using templates, transform if necessary."""
    # Also change the coordinate frame if so desired
    if ch['kind'] not in [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH]:
        raise RuntimeError('%s is not a MEG channel' % ch['ch_name'])

    # Simple linear search from the coil definitions
    for coil in coilset:
        if coil['coil_type'] == (ch['coil_type'] & 0xFFFF) and \
                coil['accuracy'] == acc:
            break
    else:
        raise RuntimeError('Desired coil definition not found '
                           '(type = %d acc = %d)' % (ch['coil_type'], acc))

    # Apply a coordinate transformation if so desired
    coil_trans = _loc_to_coil_trans(ch['loc'])

    # Create the result
    res = dict(chname=ch['ch_name'], coil_class=coil['coil_class'],
               accuracy=coil['accuracy'], base=coil['base'], size=coil['size'],
               type=ch['coil_type'], w=coil['w'], desc=coil['desc'],
               coord_frame=FIFF.FIFFV_COORD_DEVICE, rmag_orig=coil['rmag'],
               cosmag_orig=coil['cosmag'], coil_trans_orig=coil_trans,
               r0=coil_trans[:3, 3],
               rmag=apply_trans(coil_trans, coil['rmag']),
               cosmag=apply_trans(coil_trans, coil['cosmag'], False))
    if do_es:
        r0_exey = (np.dot(coil['rmag'][:, :2], coil_trans[:3, :2].T) +
                   coil_trans[:3, 3])
        res.update(ex=coil_trans[:3, 0], ey=coil_trans[:3, 1],
                   ez=coil_trans[:3, 2], r0_exey=r0_exey)
    return res


def _create_eeg_el(ch, t=None):
    """Create an electrode definition, transform coords if necessary."""
    if ch['kind'] != FIFF.FIFFV_EEG_CH:
        raise RuntimeError('%s is not an EEG channel. Cannot create an '
                           'electrode definition.' % ch['ch_name'])
    if t is None:
        t = Transform('head', 'head')  # identity, no change
    if t.from_str != 'head':
        raise RuntimeError('Inappropriate coordinate transformation')

    r0ex = _loc_to_eeg_loc(ch['loc'])
    if r0ex.shape[1] == 1:  # no reference
        w = np.array([1.])
    else:  # has reference
        w = np.array([1., -1.])

    # Optional coordinate transformation
    r0ex = apply_trans(t['trans'], r0ex.T)

    # The electrode location
    cosmag = r0ex.copy()
    _normalize_vectors(cosmag)
    res = dict(chname=ch['ch_name'], coil_class=FWD.COILC_EEG, w=w,
               accuracy=_accuracy_dict['normal'], type=ch['coil_type'],
               coord_frame=t['to'], rmag=r0ex, cosmag=cosmag)
    return res


def _create_meg_coils(chs, acc, t=None, coilset=None, do_es=False):
    """Create a set of MEG coils in the head coordinate frame."""
    acc = _accuracy_dict[acc] if isinstance(acc, string_types) else acc
    coilset = _read_coil_defs(verbose=False) if coilset is None else coilset
    coils = [_create_meg_coil(coilset, ch, acc, do_es) for ch in chs]
    _transform_orig_meg_coils(coils, t, do_es=do_es)
    return coils


def _transform_orig_meg_coils(coils, t, do_es=True):
    """Transform original (device) MEG coil positions."""
    if t is None:
        return
    for coil in coils:
        coil_trans = np.dot(t['trans'], coil['coil_trans_orig'])
        coil.update(
            coord_frame=t['to'], r0=coil_trans[:3, 3],
            rmag=apply_trans(coil_trans, coil['rmag_orig']),
            cosmag=apply_trans(coil_trans, coil['cosmag_orig'], False))
        if do_es:
            r0_exey = (np.dot(coil['rmag_orig'][:, :2],
                              coil_trans[:3, :2].T) + coil_trans[:3, 3])
            coil.update(ex=coil_trans[:3, 0], ey=coil_trans[:3, 1],
                        ez=coil_trans[:3, 2], r0_exey=r0_exey)


def _create_eeg_els(chs):
    """Create a set of EEG electrodes in the head coordinate frame."""
    return [_create_eeg_el(ch) for ch in chs]


@verbose
def _setup_bem(bem, bem_extra, neeg, mri_head_t, allow_none=False,
               verbose=None):
    """Set up a BEM for forward computation, making a copy and modifying."""
    if allow_none and bem is None:
        return None
    logger.info('')
    if isinstance(bem, string_types):
        logger.info('Setting up the BEM model using %s...\n' % bem_extra)
        bem = read_bem_solution(bem)
    else:
        if not isinstance(bem, ConductorModel):
            raise TypeError('bem must be a string or ConductorModel')
        bem = bem.copy()
    if bem['is_sphere']:
        logger.info('Using the sphere model.\n')
        if len(bem['layers']) == 0 and neeg > 0:
            raise RuntimeError('Spherical model has zero shells, cannot use '
                               'with EEG data')
        if bem['coord_frame'] != FIFF.FIFFV_COORD_HEAD:
            raise RuntimeError('Spherical model is not in head coordinates')
    else:
        if bem['surfs'][0]['coord_frame'] != FIFF.FIFFV_COORD_MRI:
            raise RuntimeError(
                'BEM is in %s coordinates, should be in MRI'
                % (_coord_frame_name(bem['surfs'][0]['coord_frame']),))
        if neeg > 0 and len(bem['surfs']) == 1:
            raise RuntimeError('Cannot use a homogeneous model in EEG '
                               'calculations')
        logger.info('Employing the head->MRI coordinate transform with the '
                    'BEM model.')
        # fwd_bem_set_head_mri_t: Set the coordinate transformation
        bem['head_mri_t'] = _ensure_trans(mri_head_t, 'head', 'mri')
        logger.info('BEM model %s is now set up' % op.split(bem_extra)[1])
        logger.info('')
    return bem


@verbose
def _prep_meg_channels(info, accurate=True, exclude=(), ignore_ref=False,
                       head_frame=True, do_es=False, do_picking=True,
                       verbose=None):
    """Prepare MEG coil definitions for forward calculation.

    Parameters
    ----------
    info : instance of Info
        The measurement information dictionary
    accurate : bool
        If true (default) then use `accurate` coil definitions (more
        integration points)
    exclude : list of str | str
        List of channels to exclude. If 'bads', exclude channels in
        info['bads']
    ignore_ref : bool
        If true, ignore compensation coils
    head_frame : bool
        If True (default), use head frame coords. Otherwise, use device frame.
    do_es : bool
        If True, compute and store ex, ey, ez, and r0_exey.
    do_picking : bool
        If True, pick info and return it.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    megcoils : list of dict
        Information for each prepped MEG coil
    compcoils : list of dict
        Information for each prepped MEG coil
    megnames : list of str
        Name of each prepped MEG coil
    meginfo : instance of Info
        Information subselected for just the set of MEG coils
    """
    accuracy = 'accurate' if accurate else 'normal'
    info_extra = 'info'
    megnames, megcoils, compcoils = [], [], []

    # Find MEG channels
    picks = pick_types(info, meg=True, eeg=False, ref_meg=False,
                       exclude=exclude)

    # Make sure MEG coils exist
    nmeg = len(picks)
    if nmeg <= 0:
        raise RuntimeError('Could not find any MEG channels')

    # Get channel info and names for MEG channels
    megchs = [info['chs'][pick] for pick in picks]
    megnames = [info['ch_names'][p] for p in picks]
    logger.info('Read %3d MEG channels from %s'
                % (len(picks), info_extra))

    # Get MEG compensation channels
    if not ignore_ref:
        picks = pick_types(info, meg=False, ref_meg=True, exclude=exclude)
        ncomp = len(picks)
        if (ncomp > 0):
            compchs = pick_info(info, picks)['chs']
            logger.info('Read %3d MEG compensation channels from %s'
                        % (ncomp, info_extra))
            # We need to check to make sure these are NOT KIT refs
            if _has_kit_refs(info, picks):
                raise NotImplementedError(
                    'Cannot create forward solution with KIT reference '
                    'channels. Consider using "ignore_ref=True" in '
                    'calculation')
    else:
        ncomp = 0

    # Make info structure to allow making compensator later
    ncomp_data = len(info['comps'])
    ref_meg = True if not ignore_ref else False
    picks = pick_types(info, meg=True, ref_meg=ref_meg, exclude=exclude)

    # Create coil descriptions with transformation to head or device frame
    templates = _read_coil_defs()

    if head_frame:
        _print_coord_trans(info['dev_head_t'])
        transform = info['dev_head_t']
    else:
        transform = None

    megcoils = _create_meg_coils(megchs, accuracy, transform, templates,
                                 do_es=do_es)

    if ncomp > 0:
        logger.info('%d compensation data sets in %s' % (ncomp_data,
                                                         info_extra))
        compcoils = _create_meg_coils(compchs, 'normal', transform, templates,
                                      do_es=do_es)

    # Check that coordinate frame is correct and log it
    if head_frame:
        assert megcoils[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
        logger.info('MEG coil definitions created in head coordinates.')
    else:
        assert megcoils[0]['coord_frame'] == FIFF.FIFFV_COORD_DEVICE
        logger.info('MEG coil definitions created in device coordinate.')

    out = (megcoils, compcoils, megnames)
    if do_picking:
        out = out + (pick_info(info, picks) if nmeg > 0 else None,)
    return out


@verbose
def _prep_eeg_channels(info, exclude=(), verbose=None):
    """Prepare EEG electrode definitions for forward calculation.

    Parameters
    ----------
    info : instance of Info
        The measurement information dictionary
    exclude : list of str | str
        List of channels to exclude. If 'bads', exclude channels in
        info['bads']
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    eegels : list of dict
        Information for each prepped EEG electrode
    eegnames : list of str
        Name of each prepped EEG electrode
    """
    eegnames, eegels = [], []
    info_extra = 'info'

    # Find EEG electrodes
    picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
                       exclude=exclude)

    # Make sure EEG electrodes exist
    neeg = len(picks)
    if neeg <= 0:
        raise RuntimeError('Could not find any EEG channels')

    # Get channel info and names for EEG channels
    eegchs = pick_info(info, picks)['chs']
    eegnames = [info['ch_names'][p] for p in picks]
    logger.info('Read %3d EEG channels from %s' % (len(picks), info_extra))

    # Create EEG electrode descriptions
    eegels = _create_eeg_els(eegchs)
    logger.info('Head coordinate coil definitions created.')

    return eegels, eegnames


@verbose
def _prepare_for_forward(src, mri_head_t, info, bem, mindist, n_jobs,
                         bem_extra='', trans='', info_extra='',
                         meg=True, eeg=True, ignore_ref=False,
                         allow_bem_none=False, verbose=None):
    """Prepare for forward computation."""
    # Read the source locations
    logger.info('')
    # let's make a copy in case we modify something
    src = _ensure_src(src).copy()
    nsource = sum(s['nuse'] for s in src)
    if nsource == 0:
        raise RuntimeError('No sources are active in these source spaces. '
                           '"do_all" option should be used.')
    logger.info('Read %d source spaces a total of %d active source locations'
                % (len(src), nsource))
    # Delete some keys to clean up the source space:
    for key in ['working_dir', 'command_line']:
        if key in src.info:
            del src.info[key]

    # Read the MRI -> head coordinate transformation
    logger.info('')
    _print_coord_trans(mri_head_t)

    # make a new dict with the relevant information
    arg_list = [info_extra, trans, src, bem_extra, meg, eeg, mindist,
                n_jobs, verbose]
    cmd = 'make_forward_solution(%s)' % (', '.join([str(a) for a in arg_list]))
    mri_id = dict(machid=np.zeros(2, np.int32), version=0, secs=0, usecs=0)

    info = Info(chs=info['chs'], comps=info['comps'],
                dev_head_t=info['dev_head_t'], mri_file=trans, mri_id=mri_id,
                meas_file=info_extra, meas_id=None, working_dir=os.getcwd(),
                command_line=cmd, bads=info['bads'], mri_head_t=mri_head_t)
    info._update_redundant()
    info._check_consistency()
    logger.info('')

    megcoils, compcoils, megnames, meg_info = [], [], [], []
    eegels, eegnames = [], []

    if meg and len(pick_types(info, ref_meg=False, exclude=[])) > 0:
        megcoils, compcoils, megnames, meg_info = \
            _prep_meg_channels(info, ignore_ref=ignore_ref)
    if eeg and len(pick_types(info, meg=False, eeg=True, ref_meg=False,
                              exclude=[])) > 0:
        eegels, eegnames = _prep_eeg_channels(info)

    # Check that some channels were found
    if len(megcoils + eegels) == 0:
        raise RuntimeError('No MEG or EEG channels found.')

    # pick out final info
    info = pick_info(info, pick_types(info, meg=meg, eeg=eeg, ref_meg=False,
                                      exclude=[]))

    # Transform the source spaces into the appropriate coordinates
    # (will either be HEAD or MRI)
    for s in src:
        transform_surface_to(s, 'head', mri_head_t)
    logger.info('Source spaces are now in %s coordinates.'
                % _coord_frame_name(s['coord_frame']))

    # Prepare the BEM model
    bem = _setup_bem(bem, bem_extra, len(eegnames), mri_head_t,
                     allow_none=allow_bem_none)

    # Circumvent numerical problems by excluding points too close to the skull
    if bem is not None and not bem['is_sphere']:
        inner_skull = _bem_find_surface(bem, 'inner_skull')
        _filter_source_spaces(inner_skull, mindist, mri_head_t, src, n_jobs)
        logger.info('')

    rr = np.concatenate([s['rr'][s['vertno']] for s in src])
    if len(rr) < 1:
        raise RuntimeError('No points left in source space after excluding '
                           'points close to inner skull.')

    # deal with free orientations:
    source_nn = np.tile(np.eye(3), (len(rr), 1))
    update_kwargs = dict(nchan=len(info['ch_names']), nsource=len(rr),
                         info=info, src=src, source_nn=source_nn,
                         source_rr=rr, surf_ori=False, mri_head_t=mri_head_t)
    return megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, \
        info, update_kwargs, bem


@verbose
def make_forward_solution(info, trans, src, bem, meg=True, eeg=True,
                          mindist=0.0, ignore_ref=False, n_jobs=1,
                          verbose=None):
    """Calculate a forward solution for a subject.

    Parameters
    ----------
    info : instance of mne.Info | str
        If str, then it should be a filename to a Raw, Epochs, or Evoked
        file with measurement information. If dict, should be an info
        dict (such as one from Raw, Epochs, or Evoked).
    trans : dict | str | None
        Either a transformation filename (usually made using mne_analyze)
        or an info dict (usually opened using read_trans()).
        If string, an ending of `.fif` or `.fif.gz` will be assumed to
        be in FIF format, any other ending will be assumed to be a text
        file with a 4x4 transformation matrix (like the `--trans` MNE-C
        option). Can be None to use the identity transform.
    src : str | instance of SourceSpaces
        If string, should be a source space filename. Can also be an
        instance of loaded or generated SourceSpaces.
    bem : dict | str
        Filename of the BEM (e.g., "sample-5120-5120-5120-bem-sol.fif") to
        use, or a loaded sphere model (dict).
    meg : bool
        If True (Default), include MEG computations.
    eeg : bool
        If True (Default), include EEG computations.
    mindist : float
        Minimum distance of sources from inner skull surface (in mm).
    ignore_ref : bool
        If True, do not include reference channels in compensation. This
        option should be True for KIT files, since forward computation
        with reference channels is not currently supported.
    n_jobs : int
        Number of jobs to run in parallel.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fwd : instance of Forward
        The forward solution.

    See Also
    --------
    convert_forward_solution

    Notes
    -----
    The ``--grad`` option from MNE-C (to compute gradients) is not implemented
    here.

    To create a fixed-orientation forward solution, use this function
    followed by :func:`mne.convert_forward_solution`.
    """
    # Currently not (sup)ported:
    # 1. --grad option (gradients of the field, not used much)
    # 2. --fixed option (can be computed post-hoc)
    # 3. --mricoord option (probably not necessary)

    # read the transformation from MRI to HEAD coordinates
    # (could also be HEAD to MRI)
    mri_head_t, trans = _get_trans(trans)
    if isinstance(bem, ConductorModel):
        bem_extra = 'instance of ConductorModel'
    else:
        bem_extra = bem
    if not isinstance(info, (Info, string_types)):
        raise TypeError('info should be an instance of Info or string')
    if isinstance(info, string_types):
        info_extra = op.split(info)[1]
        info = read_info(info, verbose=False)
    else:
        info_extra = 'instance of Info'
    n_jobs = check_n_jobs(n_jobs)

    # Report the setup
    logger.info('Source space          : %s' % src)
    logger.info('MRI -> head transform : %s' % trans)
    logger.info('Measurement data      : %s' % info_extra)
    if isinstance(bem, ConductorModel) and bem['is_sphere']:
        logger.info('Sphere model      : origin at %s mm'
                    % (bem['r0'],))
        logger.info('Standard field computations')
    else:
        logger.info('Conductor model   : %s' % bem_extra)
        logger.info('Accurate field computations')
    logger.info('Do computations in %s coordinates',
                _coord_frame_name(FIFF.FIFFV_COORD_HEAD))
    logger.info('Free source orientations')

    megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, info, \
        update_kwargs, bem = _prepare_for_forward(
            src, mri_head_t, info, bem, mindist, n_jobs, bem_extra, trans,
            info_extra, meg, eeg, ignore_ref)
    del (src, mri_head_t, trans, info_extra, bem_extra, mindist,
         meg, eeg, ignore_ref)

    # Time to do the heavy lifting: MEG first, then EEG
    coil_types = ['meg', 'eeg']
    coils = [megcoils, eegels]
    ccoils = [compcoils, None]
    infos = [meg_info, None]
    megfwd, eegfwd = _compute_forwards(rr, bem, coils, ccoils,
                                       infos, coil_types, n_jobs)

    # merge forwards
    fwd = _merge_meg_eeg_fwds(_to_forward_dict(megfwd, megnames),
                              _to_forward_dict(eegfwd, eegnames),
                              verbose=False)
    logger.info('')

    # Don't transform the source spaces back into MRI coordinates (which is
    # done in the C code) because mne-python assumes forward solution source
    # spaces are in head coords.
    fwd.update(**update_kwargs)
    logger.info('Finished.')
    return fwd


def make_forward_dipole(dipole, bem, info, trans=None, n_jobs=1, verbose=None):
    """Convert dipole object to source estimate and calculate forward operator.

    The instance of Dipole is converted to a discrete source space,
    which is then combined with a BEM or a sphere model and
    the sensor information in info to form a forward operator.

    The source estimate object (with the forward operator) can be projected to
    sensor-space using :func:`mne.simulation.simulate_evoked`.

    .. note:: If the (unique) time points of the dipole object are unevenly
              spaced, the first output will be a list of single-timepoint
              source estimates.

    Parameters
    ----------
    dipole : instance of Dipole
        Dipole object containing position, orientation and amplitude of
        one or more dipoles. Multiple simultaneous dipoles may be defined by
        assigning them identical times.
    bem : str | dict
        The BEM filename (str) or a loaded sphere model (dict).
    info : instance of Info
        The measurement information dictionary. It is sensor-information etc.,
        e.g., from a real data file.
    trans : str | None
        The head<->MRI transform filename. Must be provided unless BEM
        is a sphere model.
    n_jobs : int
        Number of jobs to run in parallel (used in making forward solution).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fwd : instance of Forward
        The forward solution corresponding to the source estimate(s).
    stc : instance of VolSourceEstimate | list of VolSourceEstimate
        The dipoles converted to a discrete set of points and associated
        time courses. If the time points of the dipole are unevenly spaced,
        a list of single-timepoint source estimates are returned.

    See Also
    --------
    mne.simulation.simulate_evoked

    Notes
    -----
    .. versionadded:: 0.12.0
    """
    # Make copies to avoid mangling original dipole
    times = dipole.times.copy()
    pos = dipole.pos.copy()
    amplitude = dipole.amplitude.copy()
    ori = dipole.ori.copy()

    # Convert positions to discrete source space (allows duplicate rr & nn)
    # NB information about dipole orientation enters here, then no more
    sources = dict(rr=pos, nn=ori)
    # Dipole objects must be in the head frame
    sp = _make_discrete_source_space(sources, coord_frame='head')
    src = SourceSpaces([sp])  # dict with working_dir, command_line not nec

    # Forward operator created for channels in info (use pick_info to restrict)
    # Use defaults for most params, including min_dist
    fwd = make_forward_solution(info, trans, src, bem, n_jobs=n_jobs,
                                verbose=verbose)
    # Convert from free orientations to fixed (in-place)
    convert_forward_solution(fwd, surf_ori=False, force_fixed=True,
                             copy=False, use_cps=False, verbose=None)

    # Check for omissions due to proximity to inner skull in
    # make_forward_solution, which will result in an exception
    if fwd['src'][0]['nuse'] != len(pos):
        inuse = fwd['src'][0]['inuse'].astype(np.bool)
        head = ('The following dipoles are outside the inner skull boundary')
        msg = len(head) * '#' + '\n' + head + '\n'
        for (t, pos) in zip(times[np.logical_not(inuse)],
                            pos[np.logical_not(inuse)]):
            msg += '    t={:.0f} ms, pos=({:.0f}, {:.0f}, {:.0f}) mm\n'.\
                format(t * 1000., pos[0] * 1000.,
                       pos[1] * 1000., pos[2] * 1000.)
        msg += len(head) * '#'
        logger.error(msg)
        raise ValueError('One or more dipoles outside the inner skull.')

    # multiple dipoles (rr and nn) per time instant allowed
    # uneven sampling in time returns list
    timepoints = np.unique(times)
    if len(timepoints) > 1:
        tdiff = np.diff(timepoints)
        if not np.allclose(tdiff, tdiff[0]):
            warn('Unique time points of dipoles unevenly spaced: returned '
                 'stc will be a list, one for each time point.')
            tstep = -1.0
        else:
            tstep = tdiff[0]
    elif len(timepoints) == 1:
        tstep = 0.001

    # Build the data matrix, essentially a block-diagonal with
    # n_rows: number of dipoles in total (dipole.amplitudes)
    # n_cols: number of unique time points in dipole.times
    # amplitude with identical value of times go together in one col (others=0)
    data = np.zeros((len(amplitude), len(timepoints)))  # (n_d, n_t)
    row = 0
    for tpind, tp in enumerate(timepoints):
        amp = amplitude[np.in1d(times, tp)]
        data[row:row + len(amp), tpind] = amp
        row += len(amp)

    if tstep > 0:
        stc = VolSourceEstimate(data, vertices=fwd['src'][0]['vertno'],
                                tmin=timepoints[0],
                                tstep=tstep, subject=None)
    else:  # Must return a list of stc, one for each time point
        stc = []
        for col, tp in enumerate(timepoints):
            stc += [VolSourceEstimate(data[:, col][:, np.newaxis],
                                      vertices=fwd['src'][0]['vertno'],
                                      tmin=tp, tstep=0.001, subject=None)]
    return fwd, stc


def _to_forward_dict(fwd, names, fwd_grad=None,
                     coord_frame=FIFF.FIFFV_COORD_HEAD,
                     source_ori=FIFF.FIFFV_MNE_FREE_ORI):
    """Convert forward solution matrices to dicts."""
    assert names is not None
    if len(fwd) == 0:
        return None
    sol = dict(data=fwd.T, nrow=fwd.shape[1], ncol=fwd.shape[0],
               row_names=names, col_names=[])
    fwd = Forward(sol=sol, source_ori=source_ori, nsource=sol['ncol'],
                  coord_frame=coord_frame, sol_grad=None,
                  nchan=sol['nrow'], _orig_source_ori=source_ori,
                  _orig_sol=sol['data'].copy(), _orig_sol_grad=None)
    if fwd_grad is not None:
        sol_grad = dict(data=fwd_grad.T, nrow=fwd_grad.shape[1],
                        ncol=fwd_grad.shape[0], row_names=names,
                        col_names=[])
        fwd.update(dict(sol_grad=sol_grad),
                   _orig_sol_grad=sol_grad['data'].copy())
    return fwd


@contextlib.contextmanager
def use_coil_def(fname):
    """Use a custom coil definition file.

    Parameters
    ----------
    fname : str
        The filename of the coil definition file.

    Returns
    -------
    context : context manager
        The context for using the coil definition.

    Notes
    -----
    This is meant to be used a context manager such as:

    >>> with use_coil_def(my_fname):  # doctest:+SKIP
    ...     make_forward_solution(...)

    This allows using custom coil definitions with functions that require
    forward modeling.
    """
    global _extra_coil_def_fname
    _extra_coil_def_fname = fname
    yield
    _extra_coil_def_fname = None
