"""
=====================
Visualize Evoked data
=====================

In this tutorial we focus on the plotting functions of :class:`mne.Evoked`.
"""
import os.path as op
import numpy as np
import matplotlib.pyplot as plt

import mne

# sphinx_gallery_thumbnail_number = 9

###############################################################################
# First we read the evoked object from a file. Check out
# :ref:`tut_epoching_and_averaging` to get to this stage from raw data.
data_path = mne.datasets.sample.data_path()
fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
evoked = mne.read_evokeds(fname, baseline=(None, 0), proj=True)
print(evoked)

###############################################################################
# Notice that ``evoked`` is a list of :class:`evoked <mne.Evoked>` instances.
# You can read only one of the categories by passing the argument ``condition``
# to :func:`mne.read_evokeds`. To make things more simple for this tutorial, we
# read each instance to a variable.
evoked_l_aud = evoked[0]
evoked_r_aud = evoked[1]
evoked_l_vis = evoked[2]
evoked_r_vis = evoked[3]

###############################################################################
# Let's start with a simple one. We plot event related potentials / fields
# (ERP/ERF). The bad channels are not plotted by default. Here we explicitly
# set the ``exclude`` parameter to show the bad channels in red. All plotting
# functions of MNE-python return a handle to the figure instance. When we have
# the handle, we can customise the plots to our liking.
fig = evoked_l_aud.plot(exclude=(), time_unit='s')

###############################################################################
# All plotting functions of MNE-python return a handle to the figure instance.
# When we have the handle, we can customise the plots to our liking. For
# example, we can get rid of the empty space with a simple function call.
fig.tight_layout()

###############################################################################
# Now we will make it a bit fancier and only use MEG channels. Many of the
# MNE-functions include a ``picks`` parameter to include a selection of
# channels. ``picks`` is simply a list of channel indices that you can easily
# construct with :func:`mne.pick_types`. See also :func:`mne.pick_channels` and
# :func:`mne.pick_channels_regexp`.
# Using ``spatial_colors=True``, the individual channel lines are color coded
# to show the sensor positions - specifically, the x, y, and z locations of
# the sensors are transformed into R, G and B values.
picks = mne.pick_types(evoked_l_aud.info, meg=True, eeg=False, eog=False)
evoked_l_aud.plot(spatial_colors=True, gfp=True, picks=picks, time_unit='s')

###############################################################################
# Notice the legend on the left. The colors would suggest that there may be two
# separate sources for the signals. This wasn't obvious from the first figure.
# Try painting the slopes with left mouse button. It should open a new window
# with topomaps (scalp plots) of the average over the painted area. There is
# also a function for drawing topomaps separately.
evoked_l_aud.plot_topomap(time_unit='s')

###############################################################################
# By default the topomaps are drawn from evenly spread out points of time over
# the evoked data. We can also define the times ourselves.
times = np.arange(0.05, 0.151, 0.05)
evoked_r_aud.plot_topomap(times=times, ch_type='mag', time_unit='s')

###############################################################################
# Or we can automatically select the peaks.
evoked_r_aud.plot_topomap(times='peaks', ch_type='mag', time_unit='s')

###############################################################################
# You can take a look at the documentation of :func:`mne.Evoked.plot_topomap`
# or simply write ``evoked_r_aud.plot_topomap?`` in your python console to
# see the different parameters you can pass to this function. Most of the
# plotting functions also accept ``axes`` parameter. With that, you can
# customise your plots even further. First we create a set of matplotlib
# axes in a single figure and plot all of our evoked categories next to each
# other.
fig, ax = plt.subplots(1, 5, figsize=(8, 2))
kwargs = dict(times=0.1, show=False, vmin=-300, vmax=300, time_unit='s')
evoked_l_aud.plot_topomap(axes=ax[0], colorbar=True, **kwargs)
evoked_r_aud.plot_topomap(axes=ax[1], colorbar=False, **kwargs)
evoked_l_vis.plot_topomap(axes=ax[2], colorbar=False, **kwargs)
evoked_r_vis.plot_topomap(axes=ax[3], colorbar=False, **kwargs)
for ax, title in zip(ax[:4], ['Aud/L', 'Aud/R', 'Vis/L', 'Vis/R']):
    ax.set_title(title)
plt.show()

###############################################################################
# Notice that we created five axes, but had only four categories. The fifth
# axes was used for drawing the colorbar. You must provide room for it when you
# create this kind of custom plots or turn the colorbar off with
# ``colorbar=False``. That's what the warnings are trying to tell you. Also, we
# used ``show=False`` for the three first function calls. This prevents the
# showing of the figure prematurely. The behavior depends on the mode you are
# using for your python session. See http://matplotlib.org/users/shell.html for
# more information.
#
# We can combine the two kinds of plots in one figure using the
# :func:`mne.Evoked.plot_joint` method of Evoked objects. Called as-is
# (``evoked.plot_joint()``), this function should give an informative display
# of spatio-temporal dynamics.
# You can directly style the time series part and the topomap part of the plot
# using the ``topomap_args`` and ``ts_args`` parameters. You can pass key-value
# pairs as a python dictionary. These are then passed as parameters to the
# topomaps (:func:`mne.Evoked.plot_topomap`) and time series
# (:func:`mne.Evoked.plot`) of the joint plot.
# For an example of specific styling using these ``topomap_args`` and
# ``ts_args`` arguments, here, topomaps at specific time points
# (90 and 200 ms) are shown, sensors are not plotted (via an argument
# forwarded to `plot_topomap`), and the Global Field Power is shown:
ts_args = dict(gfp=True, time_unit='s')
topomap_args = dict(sensors=False, time_unit='s')
evoked_r_aud.plot_joint(title='right auditory', times=[.09, .20],
                        ts_args=ts_args, topomap_args=topomap_args)

###############################################################################
# Sometimes, you may want to compare two or more conditions at a selection of
# sensors, or e.g. for the Global Field Power. For this, you can use the
# function :func:`mne.viz.plot_compare_evokeds`. The easiest way is to create
# a  Python dictionary, where the keys are condition names and the values are
# :class:`mne.Evoked` objects. If you provide lists of :class:`mne.Evoked`
# objects, such as those for multiple subjects, the grand average is plotted,
# along with a confidence interval band - this can be used to contrast
# conditions for a whole experiment.
# First, we load in the evoked objects into a dictionary, setting the keys to
# '/'-separated tags (as we can do with event_ids for epochs). Then, we plot
# with :func:`mne.viz.plot_compare_evokeds`.
# The plot is styled with dict arguments, again using "/"-separated tags.
# We plot a MEG channel with a strong auditory response.
#
# For move advanced plotting using :func:`mne.viz.plot_compare_evokeds`.
# See also :ref:`sphx_glr_auto_tutorials_plot_metadata_epochs.py`.
conditions = ["Left Auditory", "Right Auditory", "Left visual", "Right visual"]
evoked_dict = dict()
for condition in conditions:
    evoked_dict[condition.replace(" ", "/")] = mne.read_evokeds(
        fname, baseline=(None, 0), proj=True, condition=condition)
print(evoked_dict)

colors = dict(Left="Crimson", Right="CornFlowerBlue")
linestyles = dict(Auditory='-', visual='--')
pick = evoked_dict["Left/Auditory"].ch_names.index('MEG 1811')

mne.viz.plot_compare_evokeds(evoked_dict, picks=pick, colors=colors,
                             linestyles=linestyles, split_legend=True)

###############################################################################
# We can also plot the activations as images. The time runs along the x-axis
# and the channels along the y-axis. The amplitudes are color coded so that
# the amplitudes from negative to positive translates to shift from blue to
# red. White means zero amplitude. You can use the ``cmap`` parameter to define
# the color map yourself. The accepted values include all matplotlib colormaps.
evoked_r_aud.plot_image(picks=picks, time_unit='s')

###############################################################################
# Finally we plot the sensor data as a topographical view. In the simple case
# we plot only left auditory responses, and then we plot them all in the same
# figure for comparison. Click on the individual plots to open them bigger.
title = 'MNE sample data\n(condition : %s)'
evoked_l_aud.plot_topo(title=title % evoked_l_aud.comment,
                       background_color='k', color=['white'])
mne.viz.plot_evoked_topo(evoked, title=title % 'Left/Right Auditory/Visual',
                         background_color='w')

###############################################################################
# We can also plot the activations as arrow maps on top of the topoplot.
# The arrows represent an estimation of the current flow underneath the MEG
# sensors. Here, sample number 175 corresponds to the time of the maximum
# sensor space activity.
evoked_l_aud_mag = evoked_l_aud.copy().pick_types(meg='mag')
mne.viz.plot_arrowmap(evoked_l_aud_mag.data[:, 175], evoked_l_aud_mag.info)

###############################################################################
# Visualizing field lines in 3D
# -----------------------------
# We now compute the field maps to project MEG and EEG data to the MEG helmet
# and scalp surface.
#
# To do this, we need coregistration information. See
# :ref:`tut_forward` for more details. Here we just illustrate usage.

subjects_dir = data_path + '/subjects'
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'

maps = mne.make_field_map(evoked_l_aud, trans=trans_fname, subject='sample',
                          subjects_dir=subjects_dir, n_jobs=1)

# Finally, explore several points in time
field_map = evoked_l_aud.plot_field(maps, time=.1)

###############################################################################
# .. note::
#     If trans_fname is set to None then only MEG estimates can be visualized.
