# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

from copy import deepcopy
import re

import numpy as np

from .constants import FIFF
from ..utils import (logger, verbose, _validate_type, fill_doc, _ensure_int,
                     _check_option)


def get_channel_types():
    """Return all known channel types.

    Returns
    -------
    channel_types : dict
        The keys contain the channel types, and the values contain the
        corresponding values in the info['chs'][idx] dictionary.
    """
    return dict(grad=dict(kind=FIFF.FIFFV_MEG_CH,
                          unit=FIFF.FIFF_UNIT_T_M),
                mag=dict(kind=FIFF.FIFFV_MEG_CH,
                         unit=FIFF.FIFF_UNIT_T),
                ref_meg=dict(kind=FIFF.FIFFV_REF_MEG_CH),
                eeg=dict(kind=FIFF.FIFFV_EEG_CH),
                stim=dict(kind=FIFF.FIFFV_STIM_CH),
                eog=dict(kind=FIFF.FIFFV_EOG_CH),
                emg=dict(kind=FIFF.FIFFV_EMG_CH),
                ecg=dict(kind=FIFF.FIFFV_ECG_CH),
                resp=dict(kind=FIFF.FIFFV_RESP_CH),
                misc=dict(kind=FIFF.FIFFV_MISC_CH),
                exci=dict(kind=FIFF.FIFFV_EXCI_CH),
                ias=dict(kind=FIFF.FIFFV_IAS_CH),
                syst=dict(kind=FIFF.FIFFV_SYST_CH),
                seeg=dict(kind=FIFF.FIFFV_SEEG_CH),
                bio=dict(kind=FIFF.FIFFV_BIO_CH),
                chpi=dict(kind=[FIFF.FIFFV_QUAT_0, FIFF.FIFFV_QUAT_1,
                                FIFF.FIFFV_QUAT_2, FIFF.FIFFV_QUAT_3,
                                FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5,
                                FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G,
                                FIFF.FIFFV_HPI_ERR, FIFF.FIFFV_HPI_MOV]),
                dipole=dict(kind=FIFF.FIFFV_DIPOLE_WAVE),
                gof=dict(kind=FIFF.FIFFV_GOODNESS_FIT),
                ecog=dict(kind=FIFF.FIFFV_ECOG_CH),
                hbo=dict(kind=FIFF.FIFFV_FNIRS_CH,
                         coil_type=FIFF.FIFFV_COIL_FNIRS_HBO),
                hbr=dict(kind=FIFF.FIFFV_FNIRS_CH,
                         coil_type=FIFF.FIFFV_COIL_FNIRS_HBR))


_first_rule = {
    FIFF.FIFFV_MEG_CH: 'meg',
    FIFF.FIFFV_REF_MEG_CH: 'ref_meg',
    FIFF.FIFFV_EEG_CH: 'eeg',
    FIFF.FIFFV_STIM_CH: 'stim',
    FIFF.FIFFV_EOG_CH: 'eog',
    FIFF.FIFFV_EMG_CH: 'emg',
    FIFF.FIFFV_ECG_CH: 'ecg',
    FIFF.FIFFV_RESP_CH: 'resp',
    FIFF.FIFFV_MISC_CH: 'misc',
    FIFF.FIFFV_EXCI_CH: 'exci',
    FIFF.FIFFV_IAS_CH: 'ias',
    FIFF.FIFFV_SYST_CH: 'syst',
    FIFF.FIFFV_SEEG_CH: 'seeg',
    FIFF.FIFFV_BIO_CH: 'bio',
    FIFF.FIFFV_QUAT_0: 'chpi',
    FIFF.FIFFV_QUAT_1: 'chpi',
    FIFF.FIFFV_QUAT_2: 'chpi',
    FIFF.FIFFV_QUAT_3: 'chpi',
    FIFF.FIFFV_QUAT_4: 'chpi',
    FIFF.FIFFV_QUAT_5: 'chpi',
    FIFF.FIFFV_QUAT_6: 'chpi',
    FIFF.FIFFV_HPI_G: 'chpi',
    FIFF.FIFFV_HPI_ERR: 'chpi',
    FIFF.FIFFV_HPI_MOV: 'chpi',
    FIFF.FIFFV_DIPOLE_WAVE: 'dipole',
    FIFF.FIFFV_GOODNESS_FIT: 'gof',
    FIFF.FIFFV_ECOG_CH: 'ecog',
    FIFF.FIFFV_FNIRS_CH: 'fnirs',
}
# How to reduce our categories in channel_type (originally)
_second_rules = {
    'meg': ('unit', {FIFF.FIFF_UNIT_T_M: 'grad',
                     FIFF.FIFF_UNIT_T: 'mag'}),
    'fnirs': ('coil_type', {FIFF.FIFFV_COIL_FNIRS_HBO: 'hbo',
                            FIFF.FIFFV_COIL_FNIRS_HBR: 'hbr'}),
}


def channel_type(info, idx):
    """Get channel type.

    Parameters
    ----------
    info : instance of Info
        A measurement info object.
    idx : int
        Index of channel.

    Returns
    -------
    type : str
        Type of channel. Will be one of::

            {'grad', 'mag', 'eeg', 'stim', 'eog', 'emg', 'ecg', 'ref_meg',
             'resp', 'exci', 'ias', 'syst', 'misc', 'seeg', 'bio', 'chpi',
             'dipole', 'gof', 'ecog', 'hbo', 'hbr'}

    """
    # This is faster than the original _channel_type_old now in test_pick.py
    # because it uses (at most!) two dict lookups plus one conditional
    # to get the channel type string.
    ch = info['chs'][idx]
    try:
        first_kind = _first_rule[ch['kind']]
    except KeyError:
        raise ValueError('Unknown channel type (%s) for channel "%s"'
                         % (ch['kind'], ch["ch_name"]))
    if first_kind in _second_rules:
        key, second_rule = _second_rules[first_kind]
        first_kind = second_rule[ch[key]]
    return first_kind


def pick_channels(ch_names, include, exclude=[], ordered=False):
    """Pick channels by names.

    Returns the indices of the good channels in ch_names.

    Parameters
    ----------
    ch_names : list of string
        List of channels.
    include : list of string
        List of channels to include (if empty include all available).

        .. note:: This is to be treated as a set. The order of this list
           is not used or maintained in ``sel``.

    exclude : list of string
        List of channels to exclude (if empty do not exclude any channel).
        Defaults to [].
    ordered : bool
        If true (default False), treat ``include`` as an ordered list
        rather than a set, and any channels from ``include`` are missing
        in ``ch_names`` an error will be raised.

        .. versionadded:: 0.18

    See Also
    --------
    pick_channels_regexp, pick_types

    Returns
    -------
    sel : array of int
        Indices of good channels.
    """
    if len(np.unique(ch_names)) != len(ch_names):
        raise RuntimeError('ch_names is not a unique list, picking is unsafe')
    _check_excludes_includes(include)
    _check_excludes_includes(exclude)
    if not ordered:
        if not isinstance(include, set):
            include = set(include)
        if not isinstance(exclude, set):
            exclude = set(exclude)
        sel = []
        for k, name in enumerate(ch_names):
            if (len(include) == 0 or name in include) and name not in exclude:
                sel.append(k)
    else:
        if not isinstance(include, list):
            include = list(include)
        if len(include) == 0:
            include = list(ch_names)
        if not isinstance(exclude, list):
            exclude = list(exclude)
        sel, missing = list(), list()
        for name in include:
            if name in ch_names:
                if name not in exclude:
                    sel.append(ch_names.index(name))
            else:
                missing.append(name)
        if len(missing):
            raise ValueError('Missing channels from ch_names required by '
                             'include:\n%s' % (missing,))
    return np.array(sel, int)


def pick_channels_regexp(ch_names, regexp):
    """Pick channels using regular expression.

    Returns the indices of the good channels in ch_names.

    Parameters
    ----------
    ch_names : list of string
        List of channels

    regexp : string
        The regular expression. See python standard module for regular
        expressions.

    Returns
    -------
    sel : array of int
        Indices of good channels.

    See Also
    --------
    pick_channels

    Examples
    --------
    >>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG ...1')
    [0]
    >>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG *')
    [0, 1, 2]
    """
    r = re.compile(regexp)
    return [k for k, name in enumerate(ch_names) if r.match(name)]


def _triage_meg_pick(ch, meg):
    """Triage an MEG pick type."""
    if meg is True:
        return True
    elif ch['unit'] == FIFF.FIFF_UNIT_T_M:
        if meg == 'grad':
            return True
        elif meg == 'planar1' and ch['ch_name'].endswith('2'):
            return True
        elif meg == 'planar2' and ch['ch_name'].endswith('3'):
            return True
    elif (meg == 'mag' and ch['unit'] == FIFF.FIFF_UNIT_T):
        return True
    return False


def _triage_fnirs_pick(ch, fnirs):
    """Triage an fNIRS pick type."""
    if fnirs is True:
        return True
    elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO and fnirs == 'hbo':
        return True
    elif ch['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBR and fnirs == 'hbr':
        return True
    return False


def _check_meg_type(meg, allow_auto=False):
    """Ensure a valid meg type."""
    if isinstance(meg, str):
        allowed_types = ['grad', 'mag', 'planar1', 'planar2']
        allowed_types += ['auto'] if allow_auto else []
        if meg not in allowed_types:
            raise ValueError('meg value must be one of %s or bool, not %s'
                             % (allowed_types, meg))


def _check_info_exclude(info, exclude):
    _validate_type(info, "info")
    info._check_consistency()
    if exclude is None:
        raise ValueError('exclude must be a list of strings or "bads"')
    elif exclude == 'bads':
        exclude = info.get('bads', [])
    elif not isinstance(exclude, (list, tuple)):
        raise ValueError('exclude must either be "bads" or a list of strings.'
                         ' If only one channel is to be excluded, use '
                         '[ch_name] instead of passing ch_name.')
    return exclude


def pick_types(info, meg=True, eeg=False, stim=False, eog=False, ecg=False,
               emg=False, ref_meg='auto', misc=False, resp=False, chpi=False,
               exci=False, ias=False, syst=False, seeg=False, dipole=False,
               gof=False, bio=False, ecog=False, fnirs=False, include=(),
               exclude='bads', selection=None):
    """Pick channels by type and names.

    Parameters
    ----------
    info : dict
        The measurement info.
    meg : bool | str
        If True include all MEG channels. If False include None
        If string it can be 'mag', 'grad', 'planar1' or 'planar2' to select
        only magnetometers, all gradiometers, or a specific type of
        gradiometer.
    eeg : bool
        If True include EEG channels.
    stim : bool
        If True include stimulus channels.
    eog : bool
        If True include EOG channels.
    ecg : bool
        If True include ECG channels.
    emg : bool
        If True include EMG channels.
    ref_meg : bool | str
        If True include CTF / 4D reference channels. If 'auto', the
        reference channels included if compensations are present
        and ``meg`` is not False. Can also be the string options allowed
        for the ``meg`` parameter.
    misc : bool
        If True include miscellaneous analog channels.
    resp : bool
        If True include response-trigger channel. For some MEG systems this
        is separate from the stim channel.
    chpi : bool
        If True include continuous HPI coil channels.
    exci : bool
        Flux excitation channel used to be a stimulus channel.
    ias : bool
        Internal Active Shielding data (maybe on Triux only).
    syst : bool
        System status channel information (on Triux systems only).
    seeg : bool
        Stereotactic EEG channels.
    dipole : bool
        Dipole time course channels.
    gof : bool
        Dipole goodness of fit channels.
    bio : bool
        Bio channels.
    ecog : bool
        Electrocorticography channels.
    fnirs : bool | str
        Functional near-infrared spectroscopy channels. If True include all
        fNIRS channels. If False (default) include none. If string it can be
        'hbo' (to include channels measuring oxyhemoglobin) or 'hbr' (to
        include channels measuring deoxyhemoglobin).
    include : list of string
        List of additional channels to include. If empty do not include any.
    exclude : list of string | str
        List of channels to exclude. If 'bads' (default), exclude channels
        in ``info['bads']``.
    selection : list of string
        Restrict sensor channels (MEG, EEG) to this list of channel names.

    Returns
    -------
    sel : array of int
        Indices of good channels.
    """
    # NOTE: Changes to this function's signature should also be changed in
    # PickChannelsMixin
    exclude = _check_info_exclude(info, exclude)
    nchan = info['nchan']
    pick = np.zeros(nchan, dtype=np.bool)

    _check_meg_type(ref_meg, allow_auto=True)
    _check_meg_type(meg)
    if isinstance(ref_meg, str) and ref_meg == 'auto':
        ref_meg = ('comps' in info and info['comps'] is not None and
                   len(info['comps']) > 0 and meg is not False)

    for param in (eeg, stim, eog, ecg, emg, misc, resp, chpi, exci,
                  ias, syst, seeg, dipole, gof, bio, ecog):
        if not isinstance(param, bool):
            w = ('Parameters for all channel types (with the exception '
                 'of "meg", "ref_meg" and "fnirs") must be of type bool, '
                 'not {0}.')
            raise ValueError(w.format(type(param)))

    param_dict = dict(eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg,
                      misc=misc, resp=resp, chpi=chpi, exci=exci,
                      ias=ias, syst=syst, seeg=seeg, dipole=dipole,
                      gof=gof, bio=bio, ecog=ecog)
    # avoid triage if possible
    if isinstance(meg, bool):
        for key in ('grad', 'mag'):
            param_dict[key] = meg
    if isinstance(fnirs, bool):
        for key in ('hbo', 'hbr'):
            param_dict[key] = fnirs
    for k in range(nchan):
        ch_type = channel_type(info, k)
        try:
            pick[k] = param_dict[ch_type]
        except KeyError:  # not so simple
            assert ch_type in ('grad', 'mag', 'hbo', 'hbr', 'ref_meg')
            if ch_type in ('grad', 'mag'):
                pick[k] = _triage_meg_pick(info['chs'][k], meg)
            elif ch_type == 'ref_meg':
                pick[k] = _triage_meg_pick(info['chs'][k], ref_meg)
            else:  # ch_type in ('hbo', 'hbr')
                pick[k] = _triage_fnirs_pick(info['chs'][k], fnirs)

    # restrict channels to selection if provided
    if selection is not None:
        # the selection only restricts these types of channels
        sel_kind = [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH,
                    FIFF.FIFFV_EEG_CH]
        for k in np.where(pick)[0]:
            if (info['chs'][k]['kind'] in sel_kind and
                    info['ch_names'][k] not in selection):
                pick[k] = False

    myinclude = [info['ch_names'][k] for k in range(nchan) if pick[k]]
    myinclude += include

    if len(myinclude) == 0:
        sel = np.array([], int)
    else:
        sel = pick_channels(info['ch_names'], myinclude, exclude)

    return sel


@verbose
def pick_info(info, sel=(), copy=True, verbose=None):
    """Restrict an info structure to a selection of channels.

    Parameters
    ----------
    info : dict
        Info structure from evoked or raw data.
    sel : list of int | None
        Indices of channels to include. If None, all channels
        are included.
    copy : bool
        If copy is False, info is modified inplace.
    %(verbose)s

    Returns
    -------
    res : dict
        Info structure restricted to a selection of channels.
    """
    # avoid circular imports
    from .meas_info import _bad_chans_comp

    info._check_consistency()
    info = info.copy() if copy else info
    if sel is None:
        return info
    elif len(sel) == 0:
        raise ValueError('No channels match the selection.')
    n_unique = len(np.unique(np.arange(len(info['ch_names']))[sel]))
    if n_unique != len(sel):
        raise ValueError('Found %d / %d unique names, sel is not unique'
                         % (n_unique, len(sel)))

    # make sure required the compensation channels are present
    if len(info.get('comps', [])) > 0:
        ch_names = [info['ch_names'][idx] for idx in sel]
        _, comps_missing = _bad_chans_comp(info, ch_names)
        if len(comps_missing) > 0:
            logger.info('Removing %d compensators from info because '
                        'not all compensation channels were picked.'
                        % (len(info['comps']),))
            info['comps'] = []
    info['chs'] = [info['chs'][k] for k in sel]
    info._update_redundant()
    info['bads'] = [ch for ch in info['bads'] if ch in info['ch_names']]

    if 'comps' in info:
        comps = deepcopy(info['comps'])
        for c in comps:
            row_idx = [k for k, n in enumerate(c['data']['row_names'])
                       if n in info['ch_names']]
            row_names = [c['data']['row_names'][i] for i in row_idx]
            rowcals = c['rowcals'][row_idx]
            c['rowcals'] = rowcals
            c['data']['nrow'] = len(row_names)
            c['data']['row_names'] = row_names
            c['data']['data'] = c['data']['data'][row_idx]
        info['comps'] = comps
    info._check_consistency()
    return info


def _has_kit_refs(info, picks):
    """Determine if KIT ref channels are chosen.

    This is currently only used by make_forward_solution, which cannot
    run when KIT reference channels are included.
    """
    for p in picks:
        if info['chs'][p]['coil_type'] == FIFF.FIFFV_COIL_KIT_REF_MAG:
            return True
    return False


def pick_channels_evoked(orig, include=[], exclude='bads'):
    """Pick channels from evoked data.

    Parameters
    ----------
    orig : Evoked object
        One evoked dataset.
    include : list of string, (optional)
        List of channels to include (if empty, include all available).
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in orig.info['bads']. Defaults to 'bads'.

    Returns
    -------
    res : instance of Evoked
        Evoked data restricted to selected channels. If include and
        exclude are empty it returns orig without copy.
    """
    if len(include) == 0 and len(exclude) == 0:
        return orig

    exclude = _check_excludes_includes(exclude, info=orig.info,
                                       allow_bads=True)
    sel = pick_channels(orig.info['ch_names'], include=include,
                        exclude=exclude)

    if len(sel) == 0:
        raise ValueError('Warning : No channels match the selection.')

    res = deepcopy(orig)
    #
    #   Modify the measurement info
    #
    res.info = pick_info(res.info, sel)
    #
    #   Create the reduced data set
    #
    res.data = res.data[sel, :]

    return res


@verbose
def pick_channels_forward(orig, include=[], exclude=[], ordered=False,
                          copy=True, verbose=None):
    """Pick channels from forward operator.

    Parameters
    ----------
    orig : dict
        A forward solution.
    include : list of string
        List of channels to include (if empty, include all available).
        Defaults to [].
    exclude : list of string | 'bads'
        Channels to exclude (if empty, do not exclude any). Defaults to [].
        If 'bads', then exclude bad channels in orig.
    ordered : bool
        If true (default False), treat ``include`` as an ordered list
        rather than a set.

        .. versionadded:: 0.18
    copy : bool
        If True (default), make a copy.

        .. versionadded:: 0.19
    %(verbose)s

    Returns
    -------
    res : dict
        Forward solution restricted to selected channels. If include and
        exclude are empty it returns orig without copy.
    """
    orig['info']._check_consistency()
    if len(include) == 0 and len(exclude) == 0:
        return orig.copy() if copy else orig
    exclude = _check_excludes_includes(exclude,
                                       info=orig['info'], allow_bads=True)

    # Allow for possibility of channel ordering in forward solution being
    # different from that of the M/EEG file it is based on.
    sel_sol = pick_channels(orig['sol']['row_names'], include=include,
                            exclude=exclude, ordered=ordered)
    sel_info = pick_channels(orig['info']['ch_names'], include=include,
                             exclude=exclude, ordered=ordered)

    fwd = deepcopy(orig) if copy else orig

    # Check that forward solution and original data file agree on #channels
    if len(sel_sol) != len(sel_info):
        raise ValueError('Forward solution and functional data appear to '
                         'have different channel names, please check.')

    #   Do we have something?
    nuse = len(sel_sol)
    if nuse == 0:
        raise ValueError('Nothing remains after picking')

    logger.info('    %d out of %d channels remain after picking'
                % (nuse, fwd['nchan']))

    #   Pick the correct rows of the forward operator using sel_sol
    fwd['sol']['data'] = fwd['sol']['data'][sel_sol, :]
    fwd['_orig_sol'] = fwd['_orig_sol'][sel_sol, :]
    fwd['sol']['nrow'] = nuse

    ch_names = [fwd['sol']['row_names'][k] for k in sel_sol]
    fwd['nchan'] = nuse
    fwd['sol']['row_names'] = ch_names

    # Pick the appropriate channel names from the info-dict using sel_info
    fwd['info']['chs'] = [fwd['info']['chs'][k] for k in sel_info]
    fwd['info']._update_redundant()
    fwd['info']['bads'] = [b for b in fwd['info']['bads'] if b in ch_names]

    if fwd['sol_grad'] is not None:
        fwd['sol_grad']['data'] = fwd['sol_grad']['data'][sel_sol, :]
        fwd['_orig_sol_grad'] = fwd['_orig_sol_grad'][sel_sol, :]
        fwd['sol_grad']['nrow'] = nuse
        fwd['sol_grad']['row_names'] = [fwd['sol_grad']['row_names'][k]
                                        for k in sel_sol]

    return fwd


def pick_types_forward(orig, meg=True, eeg=False, ref_meg=True, seeg=False,
                       ecog=False, include=[], exclude=[]):
    """Pick by channel type and names from a forward operator.

    Parameters
    ----------
    orig : dict
        A forward solution
    meg : bool or string
        If True include all MEG channels. If False include None
        If string it can be 'mag' or 'grad' to select only gradiometers
        or magnetometers.
    eeg : bool
        If True include EEG channels
    ref_meg : bool
        If True include CTF / 4D reference channels
    seeg : bool
        If True include stereotactic EEG channels
    ecog : bool
        If True include electrocorticography channels
    include : list of string
        List of additional channels to include. If empty do not include any.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any (default).
        If 'bads', exclude channels in orig['info']['bads'].

    Returns
    -------
    res : dict
        Forward solution restricted to selected channel types.
    """
    info = orig['info']
    sel = pick_types(info, meg, eeg, ref_meg=ref_meg, seeg=seeg, ecog=ecog,
                     include=include, exclude=exclude)
    if len(sel) == 0:
        raise ValueError('No valid channels found')
    include_ch_names = [info['ch_names'][k] for k in sel]

    return pick_channels_forward(orig, include_ch_names)


@fill_doc
def channel_indices_by_type(info, picks=None):
    """Get indices of channels by type.

    Parameters
    ----------
    info : instance of Info
        A measurement info object.
    %(picks_all)s

    Returns
    -------
    idx_by_type : dict
        A dictionary that maps each channel type to a (possibly empty) list of
        channel indices.
    """
    idx_by_type = {key: list() for key in _PICK_TYPES_KEYS if
                   key not in ('meg', 'fnirs')}
    idx_by_type.update(mag=list(), grad=list(), hbo=list(), hbr=list())
    picks = _picks_to_idx(info, picks,
                          none='all', exclude=(), allow_empty=True)
    for k in picks:
        ch_type = channel_type(info, k)
        for key in idx_by_type.keys():
            if ch_type == key:
                idx_by_type[key].append(k)
    return idx_by_type


def pick_channels_cov(orig, include=[], exclude='bads'):
    """Pick channels from covariance matrix.

    Parameters
    ----------
    orig : Covariance
        A covariance.
    include : list of string, (optional)
        List of channels to include (if empty, include all available).
    exclude : list of string, (optional) | 'bads'
        Channels to exclude (if empty, do not exclude any). Defaults to 'bads'.

    Returns
    -------
    res : dict
        Covariance solution restricted to selected channels.
    """
    from ..cov import Covariance
    exclude = orig['bads'] if exclude == 'bads' else exclude
    sel = pick_channels(orig['names'], include=include, exclude=exclude)
    data = orig['data'][sel][:, sel] if not orig['diag'] else orig['data'][sel]
    names = [orig['names'][k] for k in sel]
    bads = [name for name in orig['bads'] if name in orig['names']]
    res = Covariance(
        data=data, names=names, bads=bads, projs=deepcopy(orig['projs']),
        nfree=orig['nfree'], eig=None, eigvec=None,
        method=orig.get('method', None), loglik=orig.get('loglik', None))
    return res


def _mag_grad_dependent(info):
    """Determine of mag and grad should be dealt with jointly."""
    # right now just uses SSS, could be computed / checked from cov
    # but probably overkill
    return any(ph.get('max_info', {}).get('sss_info', {}).get('in_order', 0)
               for ph in info.get('proc_history', []))


def _contains_ch_type(info, ch_type):
    """Check whether a certain channel type is in an info object.

    Parameters
    ----------
    info : instance of Info
        The measurement information.
    ch_type : str
        the channel type to be checked for

    Returns
    -------
    has_ch_type : bool
        Whether the channel type is present or not.
    """
    _validate_type(ch_type, 'str', "ch_type")

    meg_extras = ['mag', 'grad', 'planar1', 'planar2']
    fnirs_extras = ['hbo', 'hbr']
    valid_channel_types = sorted([key for key in _PICK_TYPES_KEYS
                                  if key != 'meg'] + meg_extras + fnirs_extras)
    _check_option('ch_type', ch_type, valid_channel_types)
    if info is None:
        raise ValueError('Cannot check for channels of type "%s" because info '
                         'is None' % (ch_type,))
    return any(ch_type == channel_type(info, ii)
               for ii in range(info['nchan']))


def _picks_by_type(info, meg_combined=False, ref_meg=False, exclude='bads'):
    """Get data channel indices as separate list of tuples.

    Parameters
    ----------
    info : instance of mne.measuerment_info.Info
        The info.
    meg_combined : bool | 'auto'
        Whether to return combined picks for grad and mag.
        Can be 'auto' to choose based on Maxwell filtering status.
    ref_meg : bool
        If True include CTF / 4D reference channels
    exclude : list of string | str
        List of channels to exclude. If 'bads' (default), exclude channels
        in info['bads'].

    Returns
    -------
    picks_list : list of tuples
        The list of tuples of picks and the type string.
    """
    _validate_type(ref_meg, bool, 'ref_meg')
    exclude = _check_info_exclude(info, exclude)
    if meg_combined == 'auto':
        meg_combined = _mag_grad_dependent(info)
    picks_list = []
    picks_list = {ch_type: list() for ch_type in _DATA_CH_TYPES_SPLIT}
    for k in range(info['nchan']):
        if info['chs'][k]['ch_name'] not in exclude:
            this_type = channel_type(info, k)
            try:
                picks_list[this_type].append(k)
            except KeyError:
                # This annoyance is due to differences in pick_types
                # and channel_type behavior
                if this_type == 'ref_meg':
                    ch = info['chs'][k]
                    if _triage_meg_pick(ch, ref_meg):
                        if ch['unit'] == FIFF.FIFF_UNIT_T:
                            picks_list['mag'].append(k)
                        elif ch['unit'] == FIFF.FIFF_UNIT_T_M:
                            picks_list['grad'].append(k)
                else:
                    pass  # not a data channel type
    picks_list = [(ch_type, np.array(picks_list[ch_type], int))
                  for ch_type in _DATA_CH_TYPES_SPLIT]
    assert _DATA_CH_TYPES_SPLIT[:2] == ('mag', 'grad')
    if meg_combined and len(picks_list[0][1]) and len(picks_list[1][1]):
        picks_list.insert(
            0, ('meg', np.unique(np.concatenate([picks_list.pop(0)[1],
                                                 picks_list.pop(0)[1]])))
        )
    picks_list = [p for p in picks_list if len(p[1])]
    return picks_list


def _check_excludes_includes(chs, info=None, allow_bads=False):
    """Ensure that inputs to exclude/include are list-like or "bads".

    Parameters
    ----------
    chs : any input, should be list, tuple, set, string
        The channels passed to include or exclude.
    allow_bads : bool
        Allow the user to supply "bads" as a string for auto exclusion.

    Returns
    -------
    chs : list
        Channels to be excluded/excluded. If allow_bads, and chs=="bads",
        this will be the bad channels found in 'info'.
    """
    from .meas_info import Info
    if not isinstance(chs, (list, tuple, set, np.ndarray)):
        if allow_bads is True:
            if not isinstance(info, Info):
                raise ValueError('Supply an info object if allow_bads is true')
            elif chs != 'bads':
                raise ValueError('If chs is a string, it must be "bads"')
            else:
                chs = info['bads']
        else:
            raise ValueError(
                'include/exclude must be list, tuple, ndarray, or "bads". ' +
                'You provided type {}'.format(type(chs)))
    return chs


_PICK_TYPES_DATA_DICT = dict(
    meg=True, eeg=True, stim=False, eog=False, ecg=False, emg=False,
    misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False,
    seeg=True, dipole=False, gof=False, bio=False, ecog=True, fnirs=True)
_PICK_TYPES_KEYS = tuple(list(_PICK_TYPES_DATA_DICT.keys()) + ['ref_meg'])
_DATA_CH_TYPES_SPLIT = ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'hbo', 'hbr')
_DATA_CH_TYPES_ORDER_DEFAULT = ('mag', 'grad', 'eeg', 'eog', 'ecg', 'emg',
                                'ref_meg', 'misc', 'stim', 'resp',
                                'chpi', 'exci', 'ias', 'syst', 'seeg', 'bio',
                                'ecog', 'hbo', 'hbr', 'whitened')

# Valid data types, ordered for consistency, used in viz/evoked.
_VALID_CHANNEL_TYPES = ('eeg', 'grad', 'mag', 'seeg', 'eog', 'ecg', 'emg',
                        'dipole', 'gof', 'bio', 'ecog', 'hbo', 'hbr',
                        'misc')

_MEG_CH_TYPES_SPLIT = ('mag', 'grad', 'planar1', 'planar2')
_FNIRS_CH_TYPES_SPLIT = ('hbo', 'hbr')


def _pick_data_channels(info, exclude='bads', with_ref_meg=True):
    """Pick only data channels."""
    return pick_types(info, ref_meg=with_ref_meg, exclude=exclude,
                      **_PICK_TYPES_DATA_DICT)


def _pick_aux_channels(info, exclude='bads'):
    """Pick only auxiliary channels.

    Corresponds to EOG, ECG, EMG and BIO
    """
    return pick_types(info, meg=False, eog=True, ecg=True, emg=True, bio=True,
                      ref_meg=False, exclude=exclude)


def _pick_data_or_ica(info, exclude=()):
    """Pick only data or ICA channels."""
    if any(ch_name.startswith('ICA') for ch_name in info['ch_names']):
        picks = pick_types(info, exclude=exclude, misc=True)
    else:
        picks = _pick_data_channels(info, exclude=exclude, with_ref_meg=True)
    return picks


def _picks_to_idx(info, picks, none='data', exclude='bads', allow_empty=False,
                  with_ref_meg=True, return_kind=False):
    """Convert and check pick validity."""
    from .meas_info import Info
    picked_ch_type_or_generic = False
    #
    # None -> all, data, or data_or_ica (ndarray of int)
    #
    orig_picks = picks
    orig_repr = repr(orig_picks)
    if isinstance(info, Info):
        n_chan = info['nchan']
    else:
        info = _ensure_int(info, 'info', 'an int or Info')
        n_chan = info
    assert n_chan >= 0

    if picks is None:
        if isinstance(info, int):  # special wrapper for no real info
            picks = np.arange(n_chan)
            orig_repr += ', treated as range(%d)' % (n_chan,)
        else:
            picks = none  # let _picks_str_to_idx handle it
            orig_repr += ', treated as "%s"' % (none,)

    #
    # slice
    #
    if isinstance(picks, slice):
        picks = np.arange(n_chan)[picks]

    #
    # -> ndarray of int (and make a copy)
    #
    picks = np.atleast_1d(picks)  # this works even for picks == 'something'
    picks = np.array([], dtype=int) if len(picks) == 0 else picks
    if picks.ndim != 1:
        raise ValueError('picks must be 1D, got %sD' % (picks.ndim,))
    if picks.dtype.char in ('S', 'U'):
        picks = _picks_str_to_idx(info, picks, exclude, with_ref_meg,
                                  return_kind, orig_repr, allow_empty)
        if return_kind:
            picked_ch_type_or_generic = picks[1]
            picks = picks[0]
    if picks.dtype.kind not in ['i', 'u']:
        raise TypeError('picks must be a list of int or list of str, got '
                        'a data type of %s' % (picks.dtype,))
    picks = picks.astype(int)

    #
    # ensure we have (optionally non-empty) ndarray of valid int
    #
    if len(picks) == 0 and not allow_empty:
        raise ValueError('No appropriate channels found for the given picks '
                         '(%r)' % (orig_picks,))
    if (picks < -n_chan).any():
        raise ValueError('All picks must be >= %d, got %r'
                         % (-n_chan, orig_picks))
    if (picks >= n_chan).any():
        raise ValueError('All picks must be < n_channels (%d), got %r'
                         % (n_chan, orig_picks))
    picks %= n_chan  # ensure positive
    if return_kind:
        return picks, picked_ch_type_or_generic
    return picks


def _picks_str_to_idx(info, picks, exclude, with_ref_meg, return_kind,
                      orig_repr, allow_empty):
    """Turn a list of str into ndarray of int."""
    # special case for _picks_to_idx w/no info: shouldn't really happen
    if isinstance(info, int):
        raise ValueError('picks as str can only be used when measurement '
                         'info is available')

    #
    # first: check our special cases
    #

    picks_generic = list()
    if len(picks) == 1:
        if picks[0] in ('all', 'data', 'data_or_ica'):
            if picks[0] == 'all':
                use_exclude = info['bads'] if exclude == 'bads' else exclude
                picks_generic = pick_channels(
                    info['ch_names'], info['ch_names'], exclude=use_exclude)
            elif picks[0] == 'data':
                picks_generic = _pick_data_channels(info, exclude=exclude,
                                                    with_ref_meg=with_ref_meg)
            elif picks[0] == 'data_or_ica':
                picks_generic = _pick_data_or_ica(info, exclude=exclude)
            if len(picks_generic) == 0 and orig_repr.startswith('None, ') and \
                    not allow_empty:
                raise ValueError('picks (%s) yielded no channels, consider '
                                 'passing picks explicitly' % (orig_repr,))

    #
    # second: match all to channel names
    #

    bad_name = None
    picks_name = list()
    for pick in picks:
        try:
            picks_name.append(info['ch_names'].index(pick))
        except ValueError:
            bad_name = pick
            break

    #
    # third: match all to types
    #
    bad_type = None
    picks_type = list()
    kwargs = dict(meg=False)
    meg, fnirs = set(), set()
    for pick in picks:
        if pick in _PICK_TYPES_KEYS:
            kwargs[pick] = True
        elif pick in _MEG_CH_TYPES_SPLIT:
            meg |= {pick}
        elif pick in _FNIRS_CH_TYPES_SPLIT:
            fnirs |= {pick}
        else:
            bad_type = pick
            break
    else:
        # triage MEG and FNIRS, which are complicated due to non-bool entries
        extra_picks = set()
        if len(meg) > 0 and not kwargs.get('meg', False):
            # easiest just to iterate
            for use_meg in meg:
                extra_picks |= set(pick_types(
                    info, meg=use_meg, ref_meg=False, exclude=exclude))
        if len(fnirs) > 0 and not kwargs.get('fnirs', False):
            # if it has two entries, it's both, otherwise it's just one
            kwargs['fnirs'] = True if len(fnirs) == 2 else list(fnirs)[0]
        picks_type = pick_types(info, exclude=exclude, **kwargs)
        if len(extra_picks) > 0:
            picks_type = sorted(set(picks_type) | set(extra_picks))

    #
    # finally: ensure we have exactly one usable list
    #
    all_picks = (picks_generic, picks_name, picks_type)
    any_found = [len(p) > 0 for p in all_picks]
    if sum(any_found) == 0:
        if not allow_empty:
            raise ValueError(
                'picks (%s) could not be interpreted as '
                'channel names (no channel "%s"), channel types (no '
                'type "%s"), or a generic type (just "all" or "data")'
                % (orig_repr, bad_name, bad_type))
        picks = np.array([], int)
    elif sum(any_found) > 1:
        raise RuntimeError('Some channel names are ambiguously equivalent to '
                           'channel types, cannot use string-based '
                           'picks for these')
    else:
        picks = np.array(all_picks[np.where(any_found)[0][0]])
    if return_kind:
        picked_ch_type_or_generic = not len(picks_name)
        return picks, picked_ch_type_or_generic
    return picks


def _pick_inst(inst, picks, exclude, copy=True):
    """Return an instance with picked and excluded channels."""
    if copy is True:
        inst = inst.copy()
    picks = _picks_to_idx(inst.info, picks, exclude=[])
    pick_names = [inst.info['ch_names'][pick] for pick in picks]
    inst.pick_channels(pick_names)

    if exclude == 'bads':
        exclude = [ch for ch in inst.info['bads']
                   if ch in inst.info['ch_names']]
    if exclude is not None:
        inst.drop_channels(exclude)
    return inst


def _get_channel_types(info, picks=None, unique=True,
                       restrict_data_types=False):
    """Get the data channel types in an info instance."""
    picks = range(info['nchan']) if picks is None else picks
    ch_types = [channel_type(info, idx) for idx in range(info['nchan'])
                if idx in picks]
    if restrict_data_types is True:
        ch_types = [ch_type for ch_type in ch_types
                    if ch_type in _DATA_CH_TYPES_SPLIT]
    return set(ch_types) if unique is True else ch_types
