# -*- coding: utf-8 -*-
"""Some utility functions."""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)

from contextlib import contextmanager
import hashlib
from io import BytesIO, StringIO
from math import sqrt
import numbers
import operator
import os
import os.path as op
from math import ceil
import shutil
import sys

import numpy as np
from scipy import sparse

from ._logging import logger, warn, verbose
from .check import check_random_state, _ensure_int, _validate_type
from .linalg import _svd_lwork, _repeated_svd, dgemm, zgemm
from ..fixes import _infer_dimension_, svd_flip, stable_cumsum, _safe_svd
from .docs import deprecated, fill_doc


def split_list(l, n, idx=False):
    """Split list in n (approx) equal pieces, possibly giving indices."""
    n = int(n)
    tot = len(l)
    sz = tot // n
    start = stop = 0
    for i in range(n - 1):
        stop += sz
        yield (np.arange(start, stop), l[start:stop]) if idx else l[start:stop]
        start += sz
    yield (np.arange(start, tot), l[start:]) if idx else l[start]


def array_split_idx(ary, indices_or_sections, axis=0, n_per_split=1):
    """Do what numpy.array_split does, but add indices."""
    # this only works for indices_or_sections as int
    indices_or_sections = _ensure_int(indices_or_sections)
    ary_split = np.array_split(ary, indices_or_sections, axis=axis)
    idx_split = np.array_split(np.arange(ary.shape[axis]), indices_or_sections)
    idx_split = (np.arange(sp[0] * n_per_split, (sp[-1] + 1) * n_per_split)
                 for sp in idx_split)
    return zip(idx_split, ary_split)


def create_chunks(sequence, size):
    """Generate chunks from a sequence.

    Parameters
    ----------
    sequence : iterable
        Any iterable object
    size : int
        The chunksize to be returned
    """
    return (sequence[p:p + size] for p in range(0, len(sequence), size))


def sum_squared(X):
    """Compute norm of an array.

    Parameters
    ----------
    X : array
        Data whose norm must be found

    Returns
    -------
    value : float
        Sum of squares of the input array X
    """
    X_flat = X.ravel(order='F' if np.isfortran(X) else 'C')
    return np.dot(X_flat, X_flat)


def _compute_row_norms(data):
    """Compute scaling based on estimated norm."""
    norms = np.sqrt(np.sum(data ** 2, axis=1))
    norms[norms == 0] = 1.0
    return norms


def _reg_pinv(x, reg=0, rank='full', rcond=1e-15, svd_lwork=None):
    """Compute a regularized pseudoinverse of a square matrix.

    Regularization is performed by adding a constant value to each diagonal
    element of the matrix before inversion. This is known as "diagonal
    loading". The loading factor is computed as ``reg * np.trace(x) / len(x)``.

    The pseudo-inverse is computed through SVD decomposition and inverting the
    singular values. When the matrix is rank deficient, some singular values
    will be close to zero and will not be used during the inversion. The number
    of singular values to use can either be manually specified or automatically
    estimated.

    Parameters
    ----------
    x : ndarray, shape (n, n)
        Square matrix to invert.
    reg : float
        Regularization parameter. Defaults to 0.
    rank : int | None | 'full'
        This controls the effective rank of the covariance matrix when
        computing the inverse. The rank can be set explicitly by specifying an
        integer value. If ``None``, the rank will be automatically estimated.
        Since applying regularization will always make the covariance matrix
        full rank, the rank is estimated before regularization in this case. If
        'full', the rank will be estimated after regularization and hence
        will mean using the full rank, unless ``reg=0`` is used.
        Defaults to 'full'.
    rcond : float | 'auto'
        Cutoff for detecting small singular values when attempting to estimate
        the rank of the matrix (``rank='auto'``). Singular values smaller than
        the cutoff are set to zero. When set to 'auto', a cutoff based on
        floating point precision will be used. Defaults to 1e-15.

    Returns
    -------
    x_inv : ndarray, shape (n, n)
        The inverted matrix.
    loading_factor : float
        Value added to the diagonal of the matrix during regularization.
    rank : int
        If ``rank`` was set to an integer value, this value is returned,
        else the estimated rank of the matrix, before regularization, is
        returned.
    """
    from ..rank import _estimate_rank_from_s
    if rank is not None and rank != 'full':
        rank = int(operator.index(rank))
    if x.ndim != 2 or x.shape[0] != x.shape[1]:
        raise ValueError('Input matrix must be square.')
    if not np.allclose(x, x.conj().T):
        raise ValueError('Input matrix must be Hermitian (symmetric)')

    # Decompose the matrix
    if svd_lwork is None:
        svd_lwork = _svd_lwork(x.shape, x.dtype)
    U, s, V = _repeated_svd(x, lwork=svd_lwork)

    # Estimate the rank before regularization
    tol = 'auto' if rcond == 'auto' else rcond * s.max()
    rank_before = _estimate_rank_from_s(s, tol)

    # Decompose the matrix again after regularization
    loading_factor = reg * np.mean(s)
    U, s, V = _repeated_svd(x + loading_factor * np.eye(len(x)),
                            lwork=svd_lwork)

    # Estimate the rank after regularization
    tol = 'auto' if rcond == 'auto' else rcond * s.max()
    rank_after = _estimate_rank_from_s(s, tol)

    # Warn the user if both all parameters were kept at their defaults and the
    # matrix is rank deficient.
    if rank_after < len(x) and reg == 0 and rank == 'full' and rcond == 1e-15:
        warn('Covariance matrix is rank-deficient and no regularization is '
             'done.')
    elif isinstance(rank, int) and rank > len(x):
        raise ValueError('Invalid value for the rank parameter (%d) given '
                         'the shape of the input matrix (%d x %d).' %
                         (rank, x.shape[0], x.shape[1]))

    # Pick the requested number of singular values
    if rank is None:
        sel_s = s[:rank_before]
    elif rank == 'full':
        sel_s = s[:rank_after]
    else:
        sel_s = s[:rank]

    # Invert only non-zero singular values
    s_inv = np.zeros(s.shape)
    nonzero_inds = np.flatnonzero(sel_s != 0)
    if len(nonzero_inds) > 0:
        s_inv[nonzero_inds] = 1. / sel_s[nonzero_inds]

    # Compute the pseudo inverse
    U *= s_inv
    if U.dtype == np.float64:
        gemm = dgemm
    else:
        assert U.dtype == np.complex128
        gemm = zgemm
    x_inv = gemm(1., U, V).T

    if rank is None or rank == 'full':
        return x_inv, loading_factor, rank_before
    else:
        return x_inv, loading_factor, rank


def _gen_events(n_epochs):
    """Generate event structure from number of epochs."""
    events = np.c_[np.arange(n_epochs), np.zeros(n_epochs, int),
                   np.ones(n_epochs, int)]
    return events


def _reject_data_segments(data, reject, flat, decim, info, tstep):
    """Reject data segments using peak-to-peak amplitude."""
    from ..epochs import _is_good
    from ..io.pick import channel_indices_by_type

    data_clean = np.empty_like(data)
    idx_by_type = channel_indices_by_type(info)
    step = int(ceil(tstep * info['sfreq']))
    if decim is not None:
        step = int(ceil(step / float(decim)))
    this_start = 0
    this_stop = 0
    drop_inds = []
    for first in range(0, data.shape[1], step):
        last = first + step
        data_buffer = data[:, first:last]
        if data_buffer.shape[1] < (last - first):
            break  # end of the time segment
        if _is_good(data_buffer, info['ch_names'], idx_by_type, reject,
                    flat, ignore_chs=info['bads']):
            this_stop = this_start + data_buffer.shape[1]
            data_clean[:, this_start:this_stop] = data_buffer
            this_start += data_buffer.shape[1]
        else:
            logger.info("Artifact detected in [%d, %d]" % (first, last))
            drop_inds.append((first, last))
    data = data_clean[:, :this_stop]
    if not data.any():
        raise RuntimeError('No clean segment found. Please '
                           'consider updating your rejection '
                           'thresholds.')
    return data, drop_inds


def _get_inst_data(inst):
    """Get data view from MNE object instance like Raw, Epochs or Evoked."""
    from ..io.base import BaseRaw
    from ..epochs import BaseEpochs
    from .. import Evoked
    from ..time_frequency.tfr import _BaseTFR

    _validate_type(inst, (BaseRaw, BaseEpochs, Evoked, _BaseTFR), "Instance")
    if not inst.preload:
        inst.load_data()
    return inst._data


def compute_corr(x, y):
    """Compute pearson correlations between a vector and a matrix."""
    if len(x) == 0 or len(y) == 0:
        raise ValueError('x or y has zero length')
    X = np.array(x, float)
    Y = np.array(y, float)
    X -= X.mean(0)
    Y -= Y.mean(0)
    x_sd = X.std(0, ddof=1)
    # if covariance matrix is fully expanded, Y needs a
    # transpose / broadcasting else Y is correct
    y_sd = Y.std(0, ddof=1)[:, None if X.shape == Y.shape else Ellipsis]
    return (np.dot(X.T, Y) / float(len(X) - 1)) / (x_sd * y_sd)


@fill_doc
def random_permutation(n_samples, random_state=None):
    """Emulate the randperm matlab function.

    It returns a vector containing a random permutation of the
    integers between 0 and n_samples-1. It returns the same random numbers
    than randperm matlab function whenever the random_state is the same
    as the matlab's random seed.

    This function is useful for comparing against matlab scripts
    which use the randperm function.

    Note: the randperm(n_samples) matlab function generates a random
    sequence between 1 and n_samples, whereas
    random_permutation(n_samples, random_state) function generates
    a random sequence between 0 and n_samples-1, that is:
    randperm(n_samples) = random_permutation(n_samples, random_state) - 1

    Parameters
    ----------
    n_samples : int
        End point of the sequence to be permuted (excluded, i.e., the end point
        is equal to n_samples-1)
    %(random_state)s

    Returns
    -------
    randperm : ndarray, int
        Randomly permuted sequence between 0 and n-1.
    """
    rng = check_random_state(random_state)
    # This can't just be rng.permutation(n_samples) because it's not identical
    # to what MATLAB produces
    idx = rng.uniform(size=n_samples)
    randperm = np.argsort(idx)
    return randperm


@verbose
def _apply_scaling_array(data, picks_list, scalings, verbose=None):
    """Scale data type-dependently for estimation."""
    scalings = _check_scaling_inputs(data, picks_list, scalings)
    if isinstance(scalings, dict):
        logger.debug('    Scaling using mapping %s.' % (scalings,))
        picks_dict = dict(picks_list)
        scalings = [(picks_dict[k], v) for k, v in scalings.items()
                    if k in picks_dict]
        for idx, scaling in scalings:
            data[idx, :] *= scaling  # F - order
    else:
        logger.debug('    Scaling using computed norms.')
        data *= scalings[:, np.newaxis]  # F - order


def _invert_scalings(scalings):
    if isinstance(scalings, dict):
        scalings = {k: 1. / v for k, v in scalings.items()}
    elif isinstance(scalings, np.ndarray):
        scalings = 1. / scalings
    return scalings


def _undo_scaling_array(data, picks_list, scalings):
    scalings = _invert_scalings(_check_scaling_inputs(data, picks_list,
                                                      scalings))
    return _apply_scaling_array(data, picks_list, scalings, verbose=False)


@contextmanager
def _scaled_array(data, picks_list, scalings):
    """Scale, use, unscale array."""
    _apply_scaling_array(data, picks_list=picks_list, scalings=scalings)
    try:
        yield
    finally:
        _undo_scaling_array(data, picks_list=picks_list, scalings=scalings)


def _apply_scaling_cov(data, picks_list, scalings):
    """Scale resulting data after estimation."""
    scalings = _check_scaling_inputs(data, picks_list, scalings)
    scales = None
    if isinstance(scalings, dict):
        n_channels = len(data)
        covinds = list(zip(*picks_list))[1]
        assert len(data) == sum(len(k) for k in covinds)
        assert list(sorted(np.concatenate(covinds))) == list(range(len(data)))
        scales = np.zeros(n_channels)
        for ch_t, idx in picks_list:
            scales[idx] = scalings[ch_t]
    elif isinstance(scalings, np.ndarray):
        if len(scalings) != len(data):
            raise ValueError('Scaling factors and data are of incompatible '
                             'shape')
        scales = scalings
    elif scalings is None:
        pass
    else:
        raise RuntimeError('Arff...')
    if scales is not None:
        assert np.sum(scales == 0.) == 0
        data *= (scales[None, :] * scales[:, None])


def _undo_scaling_cov(data, picks_list, scalings):
    scalings = _invert_scalings(_check_scaling_inputs(data, picks_list,
                                                      scalings))
    return _apply_scaling_cov(data, picks_list, scalings)


def _check_scaling_inputs(data, picks_list, scalings):
    """Aux function."""
    rescale_dict_ = dict(mag=1e15, grad=1e13, eeg=1e6)

    scalings_ = None
    if isinstance(scalings, str) and scalings == 'norm':
        scalings_ = 1. / _compute_row_norms(data)
    elif isinstance(scalings, dict):
        rescale_dict_.update(scalings)
        scalings_ = rescale_dict_
    elif isinstance(scalings, np.ndarray):
        scalings_ = scalings
    elif scalings is None:
        pass
    else:
        raise NotImplementedError("No way! That's not a rescaling "
                                  'option: %s' % scalings)
    return scalings_


@deprecated('mne.utils.md5sum will be deprecated in 0.19, please use '
            'mne.utils.hashfunc(... , hash_type="md5") instead.')
def md5sum(fname, block_size=1048576):  # 2 ** 20
    """Calculate the md5sum for a file.

    Parameters
    ----------
    fname : str
        Filename.
    block_size : int
        Block size to use when reading.

    Returns
    -------
    hash_ : str
        The hexadecimal digest of the hash.
    """
    md5 = hashlib.md5()
    with open(fname, 'rb') as fid:
        while True:
            data = fid.read(block_size)
            if not data:
                break
            md5.update(data)
    return md5.hexdigest()


def hashfunc(fname, block_size=1048576, hash_type="md5"):  # 2 ** 20
    """Calculate the hash for a file.

    Parameters
    ----------
    fname : str
        Filename.
    block_size : int
        Block size to use when reading.

    Returns
    -------
    hash_ : str
        The hexadecimal digest of the hash.
    """
    if hash_type == "md5":
        hasher = hashlib.md5()
    elif hash_type == "sha1":
        hasher = hashlib.sha1()
    with open(fname, 'rb') as fid:
        while True:
            data = fid.read(block_size)
            if not data:
                break
            hasher.update(data)
    return hasher.hexdigest()


def _replace_md5(fname):
    """Replace a file based on MD5sum."""
    # adapted from sphinx-gallery
    assert fname.endswith('.new')
    fname_old = fname[:-4]
    if op.isfile(fname_old) and hashfunc(fname) == hashfunc(fname_old):
        os.remove(fname)
    else:
        shutil.move(fname, fname_old)


def create_slices(start, stop, step=None, length=1):
    """Generate slices of time indexes.

    Parameters
    ----------
    start : int
        Index where first slice should start.
    stop : int
        Index where last slice should maximally end.
    length : int
        Number of time sample included in a given slice.
    step: int | None
        Number of time samples separating two slices.
        If step = None, step = length.

    Returns
    -------
    slices : list
        List of slice objects.
    """
    # default parameters
    if step is None:
        step = length

    # slicing
    slices = [slice(t, t + length, 1) for t in
              range(start, stop - length + 1, step)]
    return slices


def _time_mask(times, tmin=None, tmax=None, sfreq=None, raise_error=True,
               include_tmax=True):
    """Safely find sample boundaries."""
    orig_tmin = tmin
    orig_tmax = tmax
    tmin = -np.inf if tmin is None else tmin
    tmax = np.inf if tmax is None else tmax
    if not np.isfinite(tmin):
        tmin = times[0]
    if not np.isfinite(tmax):
        tmax = times[-1]
        include_tmax = True  # ignore this param when tmax is infinite
    if sfreq is not None:
        # Push to a bit past the nearest sample boundary first
        sfreq = float(sfreq)
        tmin = int(round(tmin * sfreq)) / sfreq - 0.5 / sfreq
        tmax = int(round(tmax * sfreq)) / sfreq
        tmax += (0.5 if include_tmax else -0.5) / sfreq
    else:
        assert include_tmax  # can only be used when sfreq is known
    if raise_error and tmin > tmax:
        raise ValueError('tmin (%s) must be less than or equal to tmax (%s)'
                         % (orig_tmin, orig_tmax))
    mask = (times >= tmin)
    mask &= (times <= tmax)
    if raise_error and not mask.any():
        extra = '' if include_tmax else 'when include_tmax=False '
        raise ValueError('No samples remain when using tmin=%s and tmax=%s %s'
                         '(original time bounds are [%s, %s])'
                         % (orig_tmin, orig_tmax, extra, times[0], times[-1]))
    return mask


def _freq_mask(freqs, sfreq, fmin=None, fmax=None, raise_error=True):
    """Safely find frequency boundaries."""
    orig_fmin = fmin
    orig_fmax = fmax
    fmin = -np.inf if fmin is None else fmin
    fmax = np.inf if fmax is None else fmax
    if not np.isfinite(fmin):
        fmin = freqs[0]
    if not np.isfinite(fmax):
        fmax = freqs[-1]
    if sfreq is None:
        raise ValueError('sfreq can not be None')
    # Push 0.5/sfreq past the nearest frequency boundary first
    sfreq = float(sfreq)
    fmin = int(round(fmin * sfreq)) / sfreq - 0.5 / sfreq
    fmax = int(round(fmax * sfreq)) / sfreq + 0.5 / sfreq
    if raise_error and fmin > fmax:
        raise ValueError('fmin (%s) must be less than or equal to fmax (%s)'
                         % (orig_fmin, orig_fmax))
    mask = (freqs >= fmin)
    mask &= (freqs <= fmax)
    if raise_error and not mask.any():
        raise ValueError('No frequencies remain when using fmin=%s and '
                         'fmax=%s (original frequency bounds are [%s, %s])'
                         % (orig_fmin, orig_fmax, freqs[0], freqs[-1]))
    return mask


def grand_average(all_inst, interpolate_bads=True, drop_bads=True):
    """Make grand average of a list evoked or AverageTFR data.

    For evoked data, the function interpolates bad channels based on the
    ``interpolate_bads`` parameter. If ``interpolate_bads`` is True, the grand
    average file will contain good channels and the bad channels interpolated
    from the good MEG/EEG channels.
    For AverageTFR data, the function takes the subset of channels not marked
    as bad in any of the instances.

    The grand_average.nave attribute will be equal to the number
    of evoked datasets used to calculate the grand average.

    Note: Grand average evoked should not be used for source localization.

    Parameters
    ----------
    all_inst : list of Evoked or AverageTFR
        The evoked datasets.
    interpolate_bads : bool
        If True, bad MEG and EEG channels are interpolated. Ignored for
        AverageTFR.
    drop_bads : bool
        If True, drop all bad channels marked as bad in any data set.
        If neither interpolate_bads nor drop_bads is True, in the output file,
        every channel marked as bad in at least one of the input files will be
        marked as bad, but no interpolation or dropping will be performed.

    Returns
    -------
    grand_average : Evoked | AverageTFR
        The grand average data. Same type as input.

    Notes
    -----
    .. versionadded:: 0.11.0
    """
    # check if all elements in the given list are evoked data
    from ..evoked import Evoked
    from ..time_frequency import AverageTFR
    from ..channels.channels import equalize_channels
    assert len(all_inst) > 1
    inst_type = type(all_inst[0])
    _validate_type(all_inst[0], (Evoked, AverageTFR), 'All elements')
    for inst in all_inst:
        _validate_type(inst, inst_type, 'All elements', 'of the same type')

    # Copy channels to leave the original evoked datasets intact.
    all_inst = [inst.copy() for inst in all_inst]

    # Interpolates if necessary
    if isinstance(all_inst[0], Evoked):
        if interpolate_bads:
            all_inst = [inst.interpolate_bads() if len(inst.info['bads']) > 0
                        else inst for inst in all_inst]
        equalize_channels(all_inst)  # apply equalize_channels
        from ..evoked import combine_evoked as combine
        weights = [1. / len(all_inst)] * len(all_inst)
    else:  # isinstance(all_inst[0], AverageTFR):
        from ..time_frequency.tfr import combine_tfr as combine
        weights = 'equal'

    if drop_bads:
        bads = list({b for inst in all_inst for b in inst.info['bads']})
        if bads:
            for inst in all_inst:
                inst.drop_channels(bads)

    # make grand_average object using combine_[evoked/tfr]
    grand_average = combine(all_inst, weights=weights)
    # change the grand_average.nave to the number of Evokeds
    grand_average.nave = len(all_inst)
    # change comment field
    grand_average.comment = "Grand average (n = %d)" % grand_average.nave
    return grand_average


def object_hash(x, h=None):
    """Hash a reasonable python object.

    Parameters
    ----------
    x : object
        Object to hash. Can be anything comprised of nested versions of:
        {dict, list, tuple, ndarray, str, bytes, float, int, None}.
    h : hashlib HASH object | None
        Optional, object to add the hash to. None creates an MD5 hash.

    Returns
    -------
    digest : int
        The digest resulting from the hash.
    """
    if h is None:
        h = hashlib.md5()
    if hasattr(x, 'keys'):
        # dict-like types
        keys = _sort_keys(x)
        for key in keys:
            object_hash(key, h)
            object_hash(x[key], h)
    elif isinstance(x, bytes):
        # must come before "str" below
        h.update(x)
    elif isinstance(x, (str, float, int, type(None))):
        h.update(str(type(x)).encode('utf-8'))
        h.update(str(x).encode('utf-8'))
    elif isinstance(x, (np.ndarray, np.number, np.bool_)):
        x = np.asarray(x)
        h.update(str(x.shape).encode('utf-8'))
        h.update(str(x.dtype).encode('utf-8'))
        h.update(x.tostring())
    elif hasattr(x, '__len__'):
        # all other list-like types
        h.update(str(type(x)).encode('utf-8'))
        for xx in x:
            object_hash(xx, h)
    else:
        raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
    return int(h.hexdigest(), 16)


def object_size(x):
    """Estimate the size of a reasonable python object.

    Parameters
    ----------
    x : object
        Object to approximate the size of.
        Can be anything comprised of nested versions of:
        {dict, list, tuple, ndarray, str, bytes, float, int, None}.

    Returns
    -------
    size : int
        The estimated size in bytes of the object.
    """
    # Note: this will not process object arrays properly (since those only)
    # hold references
    if isinstance(x, (bytes, str, int, float, type(None))):
        size = sys.getsizeof(x)
    elif isinstance(x, np.ndarray):
        # On newer versions of NumPy, just doing sys.getsizeof(x) works,
        # but on older ones you always get something small :(
        size = sys.getsizeof(np.array([])) + x.nbytes
    elif isinstance(x, np.generic):
        size = x.nbytes
    elif isinstance(x, dict):
        size = sys.getsizeof(x)
        for key, value in x.items():
            size += object_size(key)
            size += object_size(value)
    elif isinstance(x, (list, tuple)):
        size = sys.getsizeof(x) + sum(object_size(xx) for xx in x)
    elif sparse.isspmatrix_csc(x) or sparse.isspmatrix_csr(x):
        size = sum(sys.getsizeof(xx)
                   for xx in [x, x.data, x.indices, x.indptr])
    else:
        raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
    return size


def _sort_keys(x):
    """Sort and return keys of dict."""
    keys = list(x.keys())  # note: not thread-safe
    idx = np.argsort([str(k) for k in keys])
    keys = [keys[ii] for ii in idx]
    return keys


def _array_equal_nan(a, b):
    try:
        np.testing.assert_array_equal(a, b)
    except AssertionError:
        return False
    return True


def object_diff(a, b, pre=''):
    """Compute all differences between two python variables.

    Parameters
    ----------
    a : object
        Currently supported: dict, list, tuple, ndarray, int, str, bytes,
        float, StringIO, BytesIO.
    b : object
        Must be same type as ``a``.
    pre : str
        String to prepend to each line.

    Returns
    -------
    diffs : str
        A string representation of the differences.
    """
    out = ''
    if type(a) != type(b):
        # Deal with NamedInt and NamedFloat
        for sub in (int, float):
            if isinstance(a, sub) and isinstance(b, sub):
                break
        else:
            return pre + ' type mismatch (%s, %s)\n' % (type(a), type(b))
    if isinstance(a, dict):
        k1s = _sort_keys(a)
        k2s = _sort_keys(b)
        m1 = set(k2s) - set(k1s)
        if len(m1):
            out += pre + ' left missing keys %s\n' % (m1)
        for key in k1s:
            if key not in k2s:
                out += pre + ' right missing key %s\n' % key
            else:
                out += object_diff(a[key], b[key],
                                   pre=(pre + '[%s]' % repr(key)))
    elif isinstance(a, (list, tuple)):
        if len(a) != len(b):
            out += pre + ' length mismatch (%s, %s)\n' % (len(a), len(b))
        else:
            for ii, (xx1, xx2) in enumerate(zip(a, b)):
                out += object_diff(xx1, xx2, pre + '[%s]' % ii)
    elif isinstance(a, (str, int, float, bytes, np.generic)):
        if a != b:
            out += pre + ' value mismatch (%s, %s)\n' % (a, b)
    elif a is None:
        if b is not None:
            out += pre + ' left is None, right is not (%s)\n' % (b)
    elif isinstance(a, np.ndarray):
        if not _array_equal_nan(a, b):
            out += pre + ' array mismatch\n'
    elif isinstance(a, (StringIO, BytesIO)):
        if a.getvalue() != b.getvalue():
            out += pre + ' StringIO mismatch\n'
    elif sparse.isspmatrix(a):
        # sparsity and sparse type of b vs a already checked above by type()
        if b.shape != a.shape:
            out += pre + (' sparse matrix a and b shape mismatch'
                          '(%s vs %s)' % (a.shape, b.shape))
        else:
            c = a - b
            c.eliminate_zeros()
            if c.nnz > 0:
                out += pre + (' sparse matrix a and b differ on %s '
                              'elements' % c.nnz)
    elif hasattr(a, '__getstate__'):
        out += object_diff(a.__getstate__(), b.__getstate__(), pre)
    else:
        raise RuntimeError(pre + ': unsupported type %s (%s)' % (type(a), a))
    return out


class _PCA(object):
    """Principal component analysis (PCA)."""

    # Adapted from sklearn and stripped down to just use linalg.svd
    # and make it easier to later provide a "center" option if we want

    def __init__(self, n_components=None, whiten=False):
        self.n_components = n_components
        self.whiten = whiten

    def fit_transform(self, X, y=None):
        X = X.copy()
        U, S, _ = self._fit(X)
        U = U[:, :self.n_components_]

        if self.whiten:
            # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
            U *= sqrt(X.shape[0] - 1)
        else:
            # X_new = X * V = U * S * V^T * V = U * S
            U *= S[:self.n_components_]

        return U

    def _fit(self, X):
        if self.n_components is None:
            n_components = min(X.shape)
        else:
            n_components = self.n_components
        n_samples, n_features = X.shape

        if n_components == 'mle':
            if n_samples < n_features:
                raise ValueError("n_components='mle' is only supported "
                                 "if n_samples >= n_features")
        elif not 0 <= n_components <= min(n_samples, n_features):
            raise ValueError("n_components=%r must be between 0 and "
                             "min(n_samples, n_features)=%r with "
                             "svd_solver='full'"
                             % (n_components, min(n_samples, n_features)))
        elif n_components >= 1:
            if not isinstance(n_components, (numbers.Integral, np.integer)):
                raise ValueError("n_components=%r must be of type int "
                                 "when greater than or equal to 1, "
                                 "was of type=%r"
                                 % (n_components, type(n_components)))

        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_

        U, S, V = _safe_svd(X, full_matrices=False)
        # flip eigenvectors' sign to enforce deterministic output
        U, V = svd_flip(U, V)

        components_ = V

        # Get variance explained by singular values
        explained_variance_ = (S ** 2) / (n_samples - 1)
        total_var = explained_variance_.sum()
        explained_variance_ratio_ = explained_variance_ / total_var
        singular_values_ = S.copy()  # Store the singular values.

        # Postprocess the number of components required
        if n_components == 'mle':
            n_components = \
                _infer_dimension_(explained_variance_, n_samples, n_features)
        elif 0 < n_components < 1.0:
            # number of components for which the cumulated explained
            # variance percentage is superior to the desired threshold
            ratio_cumsum = stable_cumsum(explained_variance_ratio_)
            n_components = np.searchsorted(ratio_cumsum, n_components) + 1

        # Compute noise covariance using Probabilistic PCA model
        # The sigma2 maximum likelihood (cf. eq. 12.46)
        if n_components < min(n_features, n_samples):
            self.noise_variance_ = explained_variance_[n_components:].mean()
        else:
            self.noise_variance_ = 0.

        self.n_samples_, self.n_features_ = n_samples, n_features
        self.components_ = components_[:n_components]
        self.n_components_ = n_components
        self.explained_variance_ = explained_variance_[:n_components]
        self.explained_variance_ratio_ = \
            explained_variance_ratio_[:n_components]
        self.singular_values_ = singular_values_[:n_components]

        return U, S, V


def _mask_to_onsets_offsets(mask):
    """Group boolean mask into contiguous onset:offset pairs."""
    assert mask.dtype == bool and mask.ndim == 1
    mask = mask.astype(int)
    diff = np.diff(mask)
    onsets = np.where(diff > 0)[0] + 1
    if mask[0]:
        onsets = np.concatenate([[0], onsets])
    offsets = np.where(diff < 0)[0] + 1
    if mask[-1]:
        offsets = np.concatenate([offsets, [len(mask)]])
    assert len(onsets) == len(offsets)
    return onsets, offsets
