Centrality ========== >>> from networkx import * >>> K=krackhardt_kite_graph() >>> P3=path_graph(3) >>> P4=path_graph(4) >>> K5=complete_graph(5) >>> C4=cycle_graph(4) >>> T=balanced_tree(r=2, h=2) >>> Gb = Graph() >>> Gb.add_edges_from([(0,1), (0,2), (1,3), (2,3), (2,4), (4,5), (3,5)]) >>> F=Graph() # Florentine families >>> F.add_edge('Acciaiuoli','Medici') >>> F.add_edge('Castellani','Peruzzi') >>> F.add_edge('Castellani','Strozzi') >>> F.add_edge('Castellani','Barbadori') >>> F.add_edge('Medici','Barbadori') >>> F.add_edge('Medici','Ridolfi') >>> F.add_edge('Medici','Tornabuoni') >>> F.add_edge('Medici','Albizzi') >>> F.add_edge('Medici','Salviati') >>> F.add_edge('Salviati','Pazzi') >>> F.add_edge('Peruzzi','Strozzi') >>> F.add_edge('Peruzzi','Bischeri') >>> F.add_edge('Strozzi','Ridolfi') >>> F.add_edge('Strozzi','Bischeri') >>> F.add_edge('Ridolfi','Tornabuoni') >>> F.add_edge('Tornabuoni','Guadagni') >>> F.add_edge('Albizzi','Ginori') >>> F.add_edge('Albizzi','Guadagni') >>> F.add_edge('Bischeri','Guadagni') >>> F.add_edge('Guadagni','Lamberteschi') Closeness Centrality -------------------- >>> c=closeness_centrality(K5) >>> for v in K5: ... print "%0.2d %5.3f"%(v,c[v]) 00 1.000 01 1.000 02 1.000 03 1.000 04 1.000 >>> c=closeness_centrality(P3) >>> for v in P3: ... print "%0.2d %5.3f"%(v,c[v]) 00 0.667 01 1.000 02 0.667 >>> c=closeness_centrality(K) >>> for v in K: ... print "%0.2d %5.3f"%(v,c[v]) 00 0.529 01 0.529 02 0.500 03 0.600 04 0.500 05 0.643 06 0.643 07 0.600 08 0.429 09 0.310 >>> c=closeness_centrality(F) >>> for v in sorted(F): ... print "%-13s %5.3f"%(v,c[v]) Acciaiuoli 0.368 Albizzi 0.483 Barbadori 0.438 Bischeri 0.400 Castellani 0.389 Ginori 0.333 Guadagni 0.467 Lamberteschi 0.326 Medici 0.560 Pazzi 0.286 Peruzzi 0.368 Ridolfi 0.500 Salviati 0.389 Strozzi 0.438 Tornabuoni 0.483 Weighted Closeness ------------------ >>> XG=Graph() >>> XG.add_weighted_edges_from([('s','u',10) ,('s','x',5) ,('u','v',1) ,('u','x',2) ,('v','y',1) ,('x','u',3) ,('x','v',5) ,('x','y',2) ,('y','s',7) ,('y','v',6)]) >>> c=closeness_centrality(XG,weighted_edges=True) >>> for v in XG.nodes(): ... print "%s %5.3f"%(v,c[v]) y 0.200 x 0.286 s 0.138 u 0.235 v 0.200