# Copyright (C) 2003, 2004 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met: 
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.      

import types
import math
import numarray
import _ni_support
import _nd_image
import morphology
from numarray.generic import _broadcast

def label(input, structure = None, output = None):
    """Label an array of objects.

    The structure that defines the object connections must be
    symmetric.  If no structuring element is provided an element is
    generated with a squared connectivity equal to one. This function
    returns a tuple consisting of the array of labels and the number
    of objects found. An optional output can be given. In the latter
    case only the number of objects found is returned."""

    if structure == None:
        rank = _ni_support._array_rank(input)
        structure = morphology.generate_binary_structure(rank, 1)
    return _nd_image.label(input, structure, output)


def find_objects(input, max_label = 0):
    """Find objects in a labeled array.

    The input must be an array with labeled objects. A list of slices
    into the array is returned that contain the objects. The list
    represents a sequence of the numbered objects. If a number is
    missing, None is returned instead of a slice. If max_label > 0, it
    gives the largest object number that is searched for, otherwise
    all are returned."""

    if max_label < 1:
        input = numarray.asarray(input)
        if input.rank < 1:
            max_label = int(input);
        else:
            max_label = input.max()
    return _nd_image.find_objects(input, max_label)

def sum(input, labels = None, index = None):
    """Calculate the sum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.sum(input, labels, index)


def mean(input, labels = None, index = None):
    """Calculate the mean of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        labels = _broadcast(labels, input.shape)
    return _nd_image.mean(input, labels, index)


def variance(input, labels = None, index = None):
    """Calculate the variance of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.variance(input, labels, index)


def standard_deviation(input, labels = None, index = None):
    """Calculate the standard deviation of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    var = variance(input, labels, index)
    if (isinstance(var, types.ListType)):
        return [math.sqrt(x) for x in var]
    else:
        return math.sqrt(var)


def minimum(input, labels = None, index = None):
    """Calculate the minimum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.minimum(input, labels, index)


def maximum(input, labels = None, index = None):
    """Calculate the maximum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.maximum(input, labels, index)


def _index_to_position(index, shape):
    """Convert a linear index to a position"""
    if len(shape) > 0:
        pos = []
        stride = numarray.multiply.reduce(shape)
        for size in shape:
            stride = stride // size
            pos.append(index // stride)
            index -= pos[-1] * stride
        return tuple(pos)
    else:
        return 0
    

def minimum_position(input, labels = None, index = None):
    """Find the position of the minimum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    input = numarray.asarray(input)
    if labels != None:
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    pos = _nd_image.minimum_position(input, labels, index)
    if (isinstance(pos, types.ListType)):
        return [_index_to_position(x, input.shape) for x in pos]
    else:
        return _index_to_position(pos, input.shape)


def maximum_position(input, labels = None, index = None):
    """Find the position of the maximum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    input = numarray.asarray(input)
    if labels != None:
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    pos = _nd_image.maximum_position(input, labels, index)
    if (isinstance(pos, types.ListType)):
        return [_index_to_position(x, input.shape) for x in pos]
    else:
        return _index_to_position(pos, input.shape)


def extrema(input, labels = None, index = None):
    """Calculate the minimum, the maximum and their positions of the 
       values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    input = numarray.asarray(input)
    if labels != None:
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    min, max, minp, maxp = _nd_image.extrema(input, labels, index)
    if (isinstance(minp, types.ListType)):
        minp = [_index_to_position(x, input.shape) for x in minp]
        maxp = [_index_to_position(x, input.shape) for x in maxp]
    else:
        minp = _index_to_position(minp, input.shape)
        maxp = _index_to_position(maxp, input.shape)
    return min, max, minp, maxp
        


def center_of_mass(input, labels = None, index = None):
    """Calculate the center of mass of of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.center_of_mass(input, labels, index)


def histogram(input, min, max, bins, labels = None, index = None):
    """Calculate a histogram of of the array.

    The histogram is defined by its minimum and maximum value and the
    number of bins.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.

    """
    if labels != None:
        input = numarray.asarray(input)
        labels = numarray.asarray(labels)
        labels = _broadcast(labels, input.shape)
    return _nd_image.histogram(input, min, max, bins, labels, index)


def watershed_ift(input, markers, structure = None, output = None):
    """Apply watershed from markers using a iterative forest transform
    algorithm.

    Negative markers are considered background markers which are
    processed after the other markers. A structuring element defining
    the connectivity of the object can be provided. If none is
    provided an element is generated iwth a squared connecitiviy equal
    to one. An output array can optionally be provided.
    """
    if structure == None:
        rank = _ni_support._array_rank(input)
        structure = morphology.generate_binary_structure(rank, 1)
    return _nd_image.watershed_ift(input, markers, structure, output)
