from __future__ import annotations

from enum import Enum
from typing import List, Optional
from typing_extensions import Literal, TypeVar

import pytest
from respx import MockRouter
from pydantic import Field, BaseModel
from inline_snapshot import snapshot

import openai
from openai import OpenAI, AsyncOpenAI
from openai._utils import assert_signatures_in_sync
from openai._compat import PYDANTIC_V2

from ..utils import print_obj
from ...conftest import base_url
from ..snapshots import make_snapshot_request, make_async_snapshot_request
from ..schema_types.query import Query

_T = TypeVar("_T")

# all the snapshots in this file are auto-generated from the live API
#
# you can update them with
#
# `OPENAI_LIVE=1 pytest --inline-snapshot=fix -p no:xdist -o addopts=""`


@pytest.mark.respx(base_url=base_url)
def test_parse_nothing(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvaueLEMLNYbT8YzpJxsmiQ6HSY", "object": "chat.completion", "created": 1727346142, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "I\'m unable to provide real-time weather updates. To get the current weather in San Francisco, I recommend checking a reliable weather website or app like the Weather Channel or a local news station.", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 14, "completion_tokens": 37, "total_tokens": 51, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_b40fb1c6fb"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[NoneType](
    choices=[
        ParsedChoice[NoneType](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[NoneType](
                annotations=None,
                audio=None,
                content="I'm unable to provide real-time weather updates. To get the current weather in San Francisco, I
recommend checking a reliable weather website or app like the Weather Channel or a local news station.",
                function_call=None,
                parsed=None,
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727346142,
    id='chatcmpl-ABfvaueLEMLNYbT8YzpJxsmiQ6HSY',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_b40fb1c6fb',
    usage=CompletionUsage(
        completion_tokens=37,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=14,
        prompt_tokens_details=None,
        total_tokens=51
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_model(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvbtVnTu5DeC4EFnRYj8mtfOM99", "object": "chat.completion", "created": 1727346143, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":65,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 79, "completion_tokens": 14, "total_tokens": 93, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[Location](
    choices=[
        ParsedChoice[Location](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[Location](
                annotations=None,
                audio=None,
                content='{"city":"San Francisco","temperature":65,"units":"f"}',
                function_call=None,
                parsed=Location(city='San Francisco', temperature=65.0, units='f'),
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727346143,
    id='chatcmpl-ABfvbtVnTu5DeC4EFnRYj8mtfOM99',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_5050236cbd',
    usage=CompletionUsage(
        completion_tokens=14,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=79,
        prompt_tokens_details=None,
        total_tokens=93
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_model_optional_default(
    client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Optional[Literal["c", "f"]] = None

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvcC8grKYsRkSoMp9CCAhbXAd0b", "object": "chat.completion", "created": 1727346144, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":65,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 88, "completion_tokens": 14, "total_tokens": 102, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_b40fb1c6fb"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[Location](
    choices=[
        ParsedChoice[Location](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[Location](
                annotations=None,
                audio=None,
                content='{"city":"San Francisco","temperature":65,"units":"f"}',
                function_call=None,
                parsed=Location(city='San Francisco', temperature=65.0, units='f'),
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727346144,
    id='chatcmpl-ABfvcC8grKYsRkSoMp9CCAhbXAd0b',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_b40fb1c6fb',
    usage=CompletionUsage(
        completion_tokens=14,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=88,
        prompt_tokens_details=None,
        total_tokens=102
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_model_enum(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class Color(Enum):
        """The detected color"""

        RED = "red"
        BLUE = "blue"
        GREEN = "green"

    class ColorDetection(BaseModel):
        color: Color
        hex_color_code: str = Field(description="The hex color code of the detected color")

    if not PYDANTIC_V2:
        ColorDetection.update_forward_refs(**locals())  # type: ignore

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "user", "content": "What color is a Coke can?"},
            ],
            response_format=ColorDetection,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvjIatz0zrZu50gRbMtlp0asZpz", "object": "chat.completion", "created": 1727346151, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"color\\":\\"red\\",\\"hex_color_code\\":\\"#FF0000\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 109, "completion_tokens": 14, "total_tokens": 123, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices[0], monkeypatch) == snapshot(
        """\
ParsedChoice[ColorDetection](
    finish_reason='stop',
    index=0,
    logprobs=None,
    message=ParsedChatCompletionMessage[ColorDetection](
        annotations=None,
        audio=None,
        content='{"color":"red","hex_color_code":"#FF0000"}',
        function_call=None,
        parsed=ColorDetection(color=<Color.RED: 'red'>, hex_color_code='#FF0000'),
        refusal=None,
        role='assistant',
        tool_calls=None
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_model_multiple_choices(
    client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            n=3,
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvp8qzboW92q8ONDF4DPHlI7ckC", "object": "chat.completion", "created": 1727346157, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":64,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}, {"index": 1, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":65,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}, {"index": 2, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":63.0,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 79, "completion_tokens": 44, "total_tokens": 123, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_b40fb1c6fb"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices, monkeypatch) == snapshot(
        """\
[
    ParsedChoice[Location](
        finish_reason='stop',
        index=0,
        logprobs=None,
        message=ParsedChatCompletionMessage[Location](
            annotations=None,
            audio=None,
            content='{"city":"San Francisco","temperature":64,"units":"f"}',
            function_call=None,
            parsed=Location(city='San Francisco', temperature=64.0, units='f'),
            refusal=None,
            role='assistant',
            tool_calls=None
        )
    ),
    ParsedChoice[Location](
        finish_reason='stop',
        index=1,
        logprobs=None,
        message=ParsedChatCompletionMessage[Location](
            annotations=None,
            audio=None,
            content='{"city":"San Francisco","temperature":65,"units":"f"}',
            function_call=None,
            parsed=Location(city='San Francisco', temperature=65.0, units='f'),
            refusal=None,
            role='assistant',
            tool_calls=None
        )
    ),
    ParsedChoice[Location](
        finish_reason='stop',
        index=2,
        logprobs=None,
        message=ParsedChatCompletionMessage[Location](
            annotations=None,
            audio=None,
            content='{"city":"San Francisco","temperature":63.0,"units":"f"}',
            function_call=None,
            parsed=Location(city='San Francisco', temperature=63.0, units='f'),
            refusal=None,
            role='assistant',
            tool_calls=None
        )
    )
]
"""
    )


@pytest.mark.respx(base_url=base_url)
@pytest.mark.skipif(not PYDANTIC_V2, reason="dataclasses only supported in v2")
def test_parse_pydantic_dataclass(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    from pydantic.dataclasses import dataclass

    @dataclass
    class CalendarEvent:
        name: str
        date: str
        participants: List[str]

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "Extract the event information."},
                {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
            ],
            response_format=CalendarEvent,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvqhz4uUUWsw8Ohw2Mp9B4sKKV8", "object": "chat.completion", "created": 1727346158, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"name\\":\\"Science Fair\\",\\"date\\":\\"Friday\\",\\"participants\\":[\\"Alice\\",\\"Bob\\"]}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 92, "completion_tokens": 17, "total_tokens": 109, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_7568d46099"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[CalendarEvent](
    choices=[
        ParsedChoice[CalendarEvent](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[CalendarEvent](
                annotations=None,
                audio=None,
                content='{"name":"Science Fair","date":"Friday","participants":["Alice","Bob"]}',
                function_call=None,
                parsed=CalendarEvent(name='Science Fair', date='Friday', participants=['Alice', 'Bob']),
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727346158,
    id='chatcmpl-ABfvqhz4uUUWsw8Ohw2Mp9B4sKKV8',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_7568d46099',
    usage=CompletionUsage(
        completion_tokens=17,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=92,
        prompt_tokens_details=None,
        total_tokens=109
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_pydantic_tool_model_all_types(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "look up all my orders in may of last year that were fulfilled but not delivered on time",
                },
            ],
            tools=[openai.pydantic_function_tool(Query)],
            response_format=Query,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvtNiaTNUF6OymZUnEFc9lPq9p1", "object": "chat.completion", "created": 1727346161, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "tool_calls": [{"id": "call_NKpApJybW1MzOjZO2FzwYw0d", "type": "function", "function": {"name": "Query", "arguments": "{\\"name\\":\\"May 2022 Fulfilled Orders Not Delivered on Time\\",\\"table_name\\":\\"orders\\",\\"columns\\":[\\"id\\",\\"status\\",\\"expected_delivery_date\\",\\"delivered_at\\",\\"shipped_at\\",\\"ordered_at\\",\\"canceled_at\\"],\\"conditions\\":[{\\"column\\":\\"ordered_at\\",\\"operator\\":\\">=\\",\\"value\\":\\"2022-05-01\\"},{\\"column\\":\\"ordered_at\\",\\"operator\\":\\"<=\\",\\"value\\":\\"2022-05-31\\"},{\\"column\\":\\"status\\",\\"operator\\":\\"=\\",\\"value\\":\\"fulfilled\\"},{\\"column\\":\\"delivered_at\\",\\"operator\\":\\">\\",\\"value\\":{\\"column_name\\":\\"expected_delivery_date\\"}}],\\"order_by\\":\\"asc\\"}"}}], "refusal": null}, "logprobs": null, "finish_reason": "tool_calls"}], "usage": {"prompt_tokens": 512, "completion_tokens": 132, "total_tokens": 644, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_7568d46099"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices[0], monkeypatch) == snapshot(
        """\
ParsedChoice[Query](
    finish_reason='tool_calls',
    index=0,
    logprobs=None,
    message=ParsedChatCompletionMessage[Query](
        annotations=None,
        audio=None,
        content=None,
        function_call=None,
        parsed=None,
        refusal=None,
        role='assistant',
        tool_calls=[
            ParsedFunctionToolCall(
                function=ParsedFunction(
                    arguments='{"name":"May 2022 Fulfilled Orders Not Delivered on 
Time","table_name":"orders","columns":["id","status","expected_delivery_date","delivered_at","shipped_at","ordered_at","
canceled_at"],"conditions":[{"column":"ordered_at","operator":">=","value":"2022-05-01"},{"column":"ordered_at","operato
r":"<=","value":"2022-05-31"},{"column":"status","operator":"=","value":"fulfilled"},{"column":"delivered_at","operator"
:">","value":{"column_name":"expected_delivery_date"}}],"order_by":"asc"}',
                    name='Query',
                    parsed_arguments=Query(
                        columns=[
                            <Column.id: 'id'>,
                            <Column.status: 'status'>,
                            <Column.expected_delivery_date: 'expected_delivery_date'>,
                            <Column.delivered_at: 'delivered_at'>,
                            <Column.shipped_at: 'shipped_at'>,
                            <Column.ordered_at: 'ordered_at'>,
                            <Column.canceled_at: 'canceled_at'>
                        ],
                        conditions=[
                            Condition(column='ordered_at', operator=<Operator.ge: '>='>, value='2022-05-01'),
                            Condition(column='ordered_at', operator=<Operator.le: '<='>, value='2022-05-31'),
                            Condition(column='status', operator=<Operator.eq: '='>, value='fulfilled'),
                            Condition(
                                column='delivered_at',
                                operator=<Operator.gt: '>'>,
                                value=DynamicValue(column_name='expected_delivery_date')
                            )
                        ],
                        name='May 2022 Fulfilled Orders Not Delivered on Time',
                        order_by=<OrderBy.asc: 'asc'>,
                        table_name=<Table.orders: 'orders'>
                    )
                ),
                id='call_NKpApJybW1MzOjZO2FzwYw0d',
                type='function'
            )
        ]
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_max_tokens_reached(client: OpenAI, respx_mock: MockRouter) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    with pytest.raises(openai.LengthFinishReasonError):
        make_snapshot_request(
            lambda c: c.chat.completions.parse(
                model="gpt-4o-2024-08-06",
                messages=[
                    {
                        "role": "user",
                        "content": "What's the weather like in SF?",
                    },
                ],
                max_tokens=1,
                response_format=Location,
            ),
            content_snapshot=snapshot(
                '{"id": "chatcmpl-ABfvvX7eB1KsfeZj8VcF3z7G7SbaA", "object": "chat.completion", "created": 1727346163, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"", "refusal": null}, "logprobs": null, "finish_reason": "length"}], "usage": {"prompt_tokens": 79, "completion_tokens": 1, "total_tokens": 80, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_7568d46099"}'
            ),
        path="/chat/completions",
            mock_client=client,
            respx_mock=respx_mock,
        )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_model_refusal(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "How do I make anthrax?",
                },
            ],
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvwoKVWPQj2UPlAcAKM7s40GsRx", "object": "chat.completion", "created": 1727346164, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "refusal": "I\'m very sorry, but I can\'t assist with that."}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 79, "completion_tokens": 12, "total_tokens": 91, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices, monkeypatch) == snapshot(
        """\
[
    ParsedChoice[Location](
        finish_reason='stop',
        index=0,
        logprobs=None,
        message=ParsedChatCompletionMessage[Location](
            annotations=None,
            audio=None,
            content=None,
            function_call=None,
            parsed=None,
            refusal="I'm very sorry, but I can't assist with that.",
            role='assistant',
            tool_calls=None
        )
    )
]
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_tool(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class GetWeatherArgs(BaseModel):
        city: str
        country: str
        units: Literal["c", "f"] = "c"

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in Edinburgh?",
                },
            ],
            tools=[
                openai.pydantic_function_tool(GetWeatherArgs),
            ],
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvx6Z4dchiW2nya1N8KMsHFrQRE", "object": "chat.completion", "created": 1727346165, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "tool_calls": [{"id": "call_Y6qJ7ofLgOrBnMD5WbVAeiRV", "type": "function", "function": {"name": "GetWeatherArgs", "arguments": "{\\"city\\":\\"Edinburgh\\",\\"country\\":\\"UK\\",\\"units\\":\\"c\\"}"}}], "refusal": null}, "logprobs": null, "finish_reason": "tool_calls"}], "usage": {"prompt_tokens": 76, "completion_tokens": 24, "total_tokens": 100, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_e45dabd248"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices, monkeypatch) == snapshot(
        """\
[
    ParsedChoice[NoneType](
        finish_reason='tool_calls',
        index=0,
        logprobs=None,
        message=ParsedChatCompletionMessage[NoneType](
            annotations=None,
            audio=None,
            content=None,
            function_call=None,
            parsed=None,
            refusal=None,
            role='assistant',
            tool_calls=[
                ParsedFunctionToolCall(
                    function=ParsedFunction(
                        arguments='{"city":"Edinburgh","country":"UK","units":"c"}',
                        name='GetWeatherArgs',
                        parsed_arguments=GetWeatherArgs(city='Edinburgh', country='UK', units='c')
                    ),
                    id='call_Y6qJ7ofLgOrBnMD5WbVAeiRV',
                    type='function'
                )
            ]
        )
    )
]
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_multiple_pydantic_tools(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class GetWeatherArgs(BaseModel):
        """Get the temperature for the given country/city combo"""

        city: str
        country: str
        units: Literal["c", "f"] = "c"

    class GetStockPrice(BaseModel):
        ticker: str
        exchange: str

    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in Edinburgh?",
                },
                {
                    "role": "user",
                    "content": "What's the price of AAPL?",
                },
            ],
            tools=[
                openai.pydantic_function_tool(GetWeatherArgs),
                openai.pydantic_function_tool(
                    GetStockPrice, name="get_stock_price", description="Fetch the latest price for a given ticker"
                ),
            ],
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvyvfNWKcl7Ohqos4UFrmMs1v4C", "object": "chat.completion", "created": 1727346166, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "tool_calls": [{"id": "call_fdNz3vOBKYgOIpMdWotB9MjY", "type": "function", "function": {"name": "GetWeatherArgs", "arguments": "{\\"city\\": \\"Edinburgh\\", \\"country\\": \\"GB\\", \\"units\\": \\"c\\"}"}}, {"id": "call_h1DWI1POMJLb0KwIyQHWXD4p", "type": "function", "function": {"name": "get_stock_price", "arguments": "{\\"ticker\\": \\"AAPL\\", \\"exchange\\": \\"NASDAQ\\"}"}}], "refusal": null}, "logprobs": null, "finish_reason": "tool_calls"}], "usage": {"prompt_tokens": 149, "completion_tokens": 60, "total_tokens": 209, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_b40fb1c6fb"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices, monkeypatch) == snapshot(
        """\
[
    ParsedChoice[NoneType](
        finish_reason='tool_calls',
        index=0,
        logprobs=None,
        message=ParsedChatCompletionMessage[NoneType](
            annotations=None,
            audio=None,
            content=None,
            function_call=None,
            parsed=None,
            refusal=None,
            role='assistant',
            tool_calls=[
                ParsedFunctionToolCall(
                    function=ParsedFunction(
                        arguments='{"city": "Edinburgh", "country": "GB", "units": "c"}',
                        name='GetWeatherArgs',
                        parsed_arguments=GetWeatherArgs(city='Edinburgh', country='GB', units='c')
                    ),
                    id='call_fdNz3vOBKYgOIpMdWotB9MjY',
                    type='function'
                ),
                ParsedFunctionToolCall(
                    function=ParsedFunction(
                        arguments='{"ticker": "AAPL", "exchange": "NASDAQ"}',
                        name='get_stock_price',
                        parsed_arguments=GetStockPrice(exchange='NASDAQ', ticker='AAPL')
                    ),
                    id='call_h1DWI1POMJLb0KwIyQHWXD4p',
                    type='function'
                )
            ]
        )
    )
]
"""
    )


@pytest.mark.respx(base_url=base_url)
def test_parse_strict_tools(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    completion = make_snapshot_request(
        lambda c: c.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            tools=[
                {
                    "type": "function",
                    "function": {
                        "name": "get_weather",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "city": {"type": "string"},
                                "state": {"type": "string"},
                            },
                            "required": [
                                "city",
                                "state",
                            ],
                            "additionalProperties": False,
                        },
                        "strict": True,
                    },
                }
            ],
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABfvzdvCI6RaIkiEFNjqGXCSYnlzf", "object": "chat.completion", "created": 1727346167, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "tool_calls": [{"id": "call_CUdUoJpsWWVdxXntucvnol1M", "type": "function", "function": {"name": "get_weather", "arguments": "{\\"city\\":\\"San Francisco\\",\\"state\\":\\"CA\\"}"}}], "refusal": null}, "logprobs": null, "finish_reason": "tool_calls"}], "usage": {"prompt_tokens": 48, "completion_tokens": 19, "total_tokens": 67, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )

    assert print_obj(completion.choices, monkeypatch) == snapshot(
        """\
[
    ParsedChoice[NoneType](
        finish_reason='tool_calls',
        index=0,
        logprobs=None,
        message=ParsedChatCompletionMessage[NoneType](
            annotations=None,
            audio=None,
            content=None,
            function_call=None,
            parsed=None,
            refusal=None,
            role='assistant',
            tool_calls=[
                ParsedFunctionToolCall(
                    function=ParsedFunction(
                        arguments='{"city":"San Francisco","state":"CA"}',
                        name='get_weather',
                        parsed_arguments={'city': 'San Francisco', 'state': 'CA'}
                    ),
                    id='call_CUdUoJpsWWVdxXntucvnol1M',
                    type='function'
                )
            ]
        )
    )
]
"""
    )


def test_parse_non_strict_tools(client: OpenAI) -> None:
    with pytest.raises(
        ValueError, match="`get_weather` is not strict. Only `strict` function tools can be auto-parsed"
    ):
        client.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[],
            tools=[
                {
                    "type": "function",
                    "function": {
                        "name": "get_weather",
                        "parameters": {},
                    },
                }
            ],
        )


@pytest.mark.respx(base_url=base_url)
def test_parse_pydantic_raw_response(client: OpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    response = make_snapshot_request(
        lambda c: c.chat.completions.with_raw_response.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABrDYCa8W1w66eUxKDO8TQF1m6trT", "object": "chat.completion", "created": 1727389540, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":58,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 79, "completion_tokens": 14, "total_tokens": 93, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=client,
        respx_mock=respx_mock,
    )
    assert response.http_request.headers.get("x-stainless-helper-method") == "chat.completions.parse"

    completion = response.parse()
    message = completion.choices[0].message
    assert message.parsed is not None
    assert isinstance(message.parsed.city, str)
    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[Location](
    choices=[
        ParsedChoice[Location](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[Location](
                annotations=None,
                audio=None,
                content='{"city":"San Francisco","temperature":58,"units":"f"}',
                function_call=None,
                parsed=Location(city='San Francisco', temperature=58.0, units='f'),
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727389540,
    id='chatcmpl-ABrDYCa8W1w66eUxKDO8TQF1m6trT',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_5050236cbd',
    usage=CompletionUsage(
        completion_tokens=14,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=79,
        prompt_tokens_details=None,
        total_tokens=93
    )
)
"""
    )


@pytest.mark.respx(base_url=base_url)
@pytest.mark.asyncio
async def test_async_parse_pydantic_raw_response(
    async_client: AsyncOpenAI, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
) -> None:
    class Location(BaseModel):
        city: str
        temperature: float
        units: Literal["c", "f"]

    response = await make_async_snapshot_request(
        lambda c: c.chat.completions.with_raw_response.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {
                    "role": "user",
                    "content": "What's the weather like in SF?",
                },
            ],
            response_format=Location,
        ),
        content_snapshot=snapshot(
            '{"id": "chatcmpl-ABrDQWOiw0PK5JOsxl1D9ooeQgznq", "object": "chat.completion", "created": 1727389532, "model": "gpt-4o-2024-08-06", "choices": [{"index": 0, "message": {"role": "assistant", "content": "{\\"city\\":\\"San Francisco\\",\\"temperature\\":65,\\"units\\":\\"f\\"}", "refusal": null}, "logprobs": null, "finish_reason": "stop"}], "usage": {"prompt_tokens": 79, "completion_tokens": 14, "total_tokens": 93, "completion_tokens_details": {"reasoning_tokens": 0}}, "system_fingerprint": "fp_5050236cbd"}'
        ),
        path="/chat/completions",
        mock_client=async_client,
        respx_mock=respx_mock,
    )
    assert response.http_request.headers.get("x-stainless-helper-method") == "chat.completions.parse"

    completion = response.parse()
    message = completion.choices[0].message
    assert message.parsed is not None
    assert isinstance(message.parsed.city, str)
    assert print_obj(completion, monkeypatch) == snapshot(
        """\
ParsedChatCompletion[Location](
    choices=[
        ParsedChoice[Location](
            finish_reason='stop',
            index=0,
            logprobs=None,
            message=ParsedChatCompletionMessage[Location](
                annotations=None,
                audio=None,
                content='{"city":"San Francisco","temperature":65,"units":"f"}',
                function_call=None,
                parsed=Location(city='San Francisco', temperature=65.0, units='f'),
                refusal=None,
                role='assistant',
                tool_calls=None
            )
        )
    ],
    created=1727389532,
    id='chatcmpl-ABrDQWOiw0PK5JOsxl1D9ooeQgznq',
    model='gpt-4o-2024-08-06',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_5050236cbd',
    usage=CompletionUsage(
        completion_tokens=14,
        completion_tokens_details=CompletionTokensDetails(
            accepted_prediction_tokens=None,
            audio_tokens=None,
            reasoning_tokens=0,
            rejected_prediction_tokens=None
        ),
        prompt_tokens=79,
        prompt_tokens_details=None,
        total_tokens=93
    )
)
"""
    )


@pytest.mark.parametrize("sync", [True, False], ids=["sync", "async"])
def test_parse_method_in_sync(sync: bool, client: OpenAI, async_client: AsyncOpenAI) -> None:
    checking_client: OpenAI | AsyncOpenAI = client if sync else async_client

    assert_signatures_in_sync(
        checking_client.chat.completions.create,
        checking_client.chat.completions.parse,
        exclude_params={"response_format", "stream"},
    )
