# -*- coding: utf-8 -*-
# http://pointclouds.org/documentation/tutorials/global_hypothesis_verification.php#global-hypothesis-verification

import pcl

# struct CloudStyle
# {
#     double r;
#     double g;
#     double b;
#     double size;
# 
#     CloudStyle (double r,
#                 double g,
#                 double b,
#                 double size) :
#         r (r),
#         g (g),
#         b (b),
#         size (size)
#     {
#     }
# };
# 
# CloudStyle style_white (255.0, 255.0, 255.0, 4.0);
# CloudStyle style_red (255.0, 0.0, 0.0, 3.0);
# CloudStyle style_green (0.0, 255.0, 0.0, 5.0);
# CloudStyle style_cyan (93.0, 200.0, 217.0, 4.0);
# CloudStyle style_violet (255.0, 0.0, 255.0, 8.0);
# 
# std::string model_filename_;
# std::string scene_filename_;
# 
# //Algorithm params 
# bool show_keypoints_ (false);
# bool use_hough_ (true);
# float model_ss_ (0.02f);
# float scene_ss_ (0.02f);
# float rf_rad_ (0.015f);
# float descr_rad_ (0.02f);
# float cg_size_ (0.01f);
# float cg_thresh_ (5.0f);
# int icp_max_iter_ (5);
# float icp_corr_distance_ (0.005f);
# float hv_clutter_reg_ (5.0f);
# float hv_inlier_th_ (0.005f);
# float hv_occlusion_th_ (0.01f);
# float hv_rad_clutter_ (0.03f);
# float hv_regularizer_ (3.0f);
# float hv_rad_normals_ (0.05);
# bool hv_detect_clutter_ (true);

# /**
#  * Prints out Help message
#  * @param filename Runnable App Name
#  */
# void
# showHelp (char *filename)
# {
#   std::cout << std::endl;
#   std::cout << "***************************************************************************" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "*          Global Hypothese Verification Tutorial - Usage Guide          *" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "***************************************************************************" << std::endl << std::endl;
#   std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
#   std::cout << "Options:" << std::endl;
#   std::cout << "     -h:                          Show this help." << std::endl;
#   std::cout << "     -k:                          Show keypoints." << std::endl;
#   std::cout << "     --algorithm (Hough|GC):      Clustering algorithm used (default Hough)." << std::endl;
#   std::cout << "     --model_ss val:              Model uniform sampling radius (default " << model_ss_ << ")" << std::endl;
#   std::cout << "     --scene_ss val:              Scene uniform sampling radius (default " << scene_ss_ << ")" << std::endl;
#   std::cout << "     --rf_rad val:                Reference frame radius (default " << rf_rad_ << ")" << std::endl;
#   std::cout << "     --descr_rad val:             Descriptor radius (default " << descr_rad_ << ")" << std::endl;
#   std::cout << "     --cg_size val:               Cluster size (default " << cg_size_ << ")" << std::endl;
#   std::cout << "     --cg_thresh val:             Clustering threshold (default " << cg_thresh_ << ")" << std::endl << std::endl;
#   std::cout << "     --icp_max_iter val:          ICP max iterations number (default " << icp_max_iter_ << ")" << std::endl;
#   std::cout << "     --icp_corr_distance val:     ICP correspondence distance (default " << icp_corr_distance_ << ")" << std::endl << std::endl;
#   std::cout << "     --hv_clutter_reg val:        Clutter Regularizer (default " << hv_clutter_reg_ << ")" << std::endl;
#   std::cout << "     --hv_inlier_th val:          Inlier threshold (default " << hv_inlier_th_ << ")" << std::endl;
#   std::cout << "     --hv_occlusion_th val:       Occlusion threshold (default " << hv_occlusion_th_ << ")" << std::endl;
#   std::cout << "     --hv_rad_clutter val:        Clutter radius (default " << hv_rad_clutter_ << ")" << std::endl;
#   std::cout << "     --hv_regularizer val:        Regularizer value (default " << hv_regularizer_ << ")" << std::endl;
#   std::cout << "     --hv_rad_normals val:        Normals radius (default " << hv_rad_normals_ << ")" << std::endl;
#   std::cout << "     --hv_detect_clutter val:     TRUE if clutter detect enabled (default " << hv_detect_clutter_ << ")" << std::endl << std::endl;
# }
# 
# /**
#  * Parses Command Line Arguments (Argc,Argv)
#  * @param argc
#  * @param argv
#  */
# void
# parseCommandLine (int argc,
#                   char *argv[])
# {
#   //Show help
#   if (pcl::console::find_switch (argc, argv, "-h"))
#   {
#     showHelp (argv[0]);
#     exit (0);
#   }
# 
#   //Model & scene filenames
#   std::vector<int> filenames;
#   filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
#   if (filenames.size () != 2)
#   {
#     std::cout << "Filenames missing.\n";
#     showHelp (argv[0]);
#     exit (-1);
#   }
# 
#   model_filename_ = argv[filenames[0]];
#   scene_filename_ = argv[filenames[1]];
# 
#   //Program behavior
#   if (pcl::console::find_switch (argc, argv, "-k"))
#   {
#     show_keypoints_ = true;
#   }
# 
#   std::string used_algorithm;
#   if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
#   {
#     if (used_algorithm.compare ("Hough") == 0)
#     {
#       use_hough_ = true;
#     }
#     else if (used_algorithm.compare ("GC") == 0)
#     {
#       use_hough_ = false;
#     }
#     else
#     {
#       std::cout << "Wrong algorithm name.\n";
#       showHelp (argv[0]);
#       exit (-1);
#     }
#   }
# 
#   //General parameters
#   pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
#   pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
#   pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
#   pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
#   pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
#   pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
#   pcl::console::parse_argument (argc, argv, "--icp_max_iter", icp_max_iter_);
#   pcl::console::parse_argument (argc, argv, "--icp_corr_distance", icp_corr_distance_);
#   pcl::console::parse_argument (argc, argv, "--hv_clutter_reg", hv_clutter_reg_);
#   pcl::console::parse_argument (argc, argv, "--hv_inlier_th", hv_inlier_th_);
#   pcl::console::parse_argument (argc, argv, "--hv_occlusion_th", hv_occlusion_th_);
#   pcl::console::parse_argument (argc, argv, "--hv_rad_clutter", hv_rad_clutter_);
#   pcl::console::parse_argument (argc, argv, "--hv_regularizer", hv_regularizer_);
#   pcl::console::parse_argument (argc, argv, "--hv_rad_normals", hv_rad_normals_);
#   pcl::console::parse_argument (argc, argv, "--hv_detect_clutter", hv_detect_clutter_);
# }

# parseCommandLine (argc, argv);
# pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());
#   pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());
#   pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());
#   pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ());
# 
#   /**
#    * Load Clouds
#    */
#   if (pcl::io::loadPCDFile (model_filename_, *model) < 0)
#   {
#     std::cout << "Error loading model cloud." << std::endl;
#     showHelp (argv[0]);
#     return (-1);
#   }
#   if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0)
#   {
#     std::cout << "Error loading scene cloud." << std::endl;
#     showHelp (argv[0]);
#     return (-1);
#   }
# 
#   /**
#    * Compute Normals
#    */
#   pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
#   norm_est.setKSearch (10);
#   norm_est.setInputCloud (model);
#   norm_est.compute (*model_normals);
# 
#   norm_est.setInputCloud (scene);
#   norm_est.compute (*scene_normals);
# 
#   /**
#    *  Downsample Clouds to Extract keypoints
#    */
#   pcl::UniformSampling<PointType> uniform_sampling;
#   uniform_sampling.setInputCloud (model);
#   uniform_sampling.setRadiusSearch (model_ss_);
#   uniform_sampling.filter (*model_keypoints);
#   std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl;
# 
#   uniform_sampling.setInputCloud (scene);
#   uniform_sampling.setRadiusSearch (scene_ss_);
#   uniform_sampling.filter (*scene_keypoints);
#   std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl;
# 
#   /**
#    *  Compute Descriptor for keypoints
#    */
#   pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
#   descr_est.setRadiusSearch (descr_rad_);
# 
#   descr_est.setInputCloud (model_keypoints);
#   descr_est.setInputNormals (model_normals);
#   descr_est.setSearchSurface (model);
#   descr_est.compute (*model_descriptors);
# 
#   descr_est.setInputCloud (scene_keypoints);
#   descr_est.setInputNormals (scene_normals);
#   descr_est.setSearchSurface (scene);
#   descr_est.compute (*scene_descriptors);
# 
#   /**
#    *  Find Model-Scene Correspondences with KdTree
#    */
#   pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
#   pcl::KdTreeFLANN<DescriptorType> match_search;
#   match_search.setInputCloud (model_descriptors);
#   std::vector<int> model_good_keypoints_indices;
#   std::vector<int> scene_good_keypoints_indices;
# 
#   for (size_t i = 0; i < scene_descriptors->size (); ++i)
#   {
#     std::vector<int> neigh_indices (1);
#     std::vector<float> neigh_sqr_dists (1);
#     if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0]))  //skipping NaNs
#     {
#       continue;
#     }
#     int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
#     if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
#     {
#       pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
#       model_scene_corrs->push_back (corr);
#       model_good_keypoints_indices.push_back (corr.index_query);
#       scene_good_keypoints_indices.push_back (corr.index_match);
#     }
#   }
#   pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp);
#   pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp);
# 
#   std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl;
# 
#   /**
#    *  Clustering
#    */
#   std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
#   std::vector < pcl::Correspondences > clustered_corrs;
# 
#   if (use_hough_)
#   {
#     pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
#     pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ());
# 
#     pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
#     rf_est.setFindHoles (true);
#     rf_est.setRadiusSearch (rf_rad_);
# 
#     rf_est.setInputCloud (model_keypoints);
#     rf_est.setInputNormals (model_normals);
#     rf_est.setSearchSurface (model);
#     rf_est.compute (*model_rf);
# 
#     rf_est.setInputCloud (scene_keypoints);
#     rf_est.setInputNormals (scene_normals);
#     rf_est.setSearchSurface (scene);
#     rf_est.compute (*scene_rf);
# 
#     //  Clustering
#     pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
#     clusterer.setHoughBinSize (cg_size_);
#     clusterer.setHoughThreshold (cg_thresh_);
#     clusterer.setUseInterpolation (true);
#     clusterer.setUseDistanceWeight (false);
# 
#     clusterer.setInputCloud (model_keypoints);
#     clusterer.setInputRf (model_rf);
#     clusterer.setSceneCloud (scene_keypoints);
#     clusterer.setSceneRf (scene_rf);
#     clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     clusterer.recognize (rototranslations, clustered_corrs);
#   }
#   else
#   {
#     pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
#     gc_clusterer.setGCSize (cg_size_);
#     gc_clusterer.setGCThreshold (cg_thresh_);
# 
#     gc_clusterer.setInputCloud (model_keypoints);
#     gc_clusterer.setSceneCloud (scene_keypoints);
#     gc_clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     gc_clusterer.recognize (rototranslations, clustered_corrs);
#   }
# 
#   /**
#    * Stop if no instances
#    */
#   if (rototranslations.size () <= 0)
#   {
#     cout << "*** No instances found! ***" << endl;
#     return (0);
#   }
#   else
#   {
#     cout << "Recognized Instances: " << rototranslations.size () << endl << endl;
#   }
# 
#   /**
#    * Generates clouds for each instances found 
#    */
#   std::vector<pcl::PointCloud<PointType>::ConstPtr> instances;
# 
#   for (size_t i = 0; i < rototranslations.size (); ++i)
#   {
#     pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
#     pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
#     instances.push_back (rotated_model);
#   }
# 
#   /**
#    * ICP
#    */
#   std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances;
#   if (true)
#   {
#     cout << "--- ICP ---------" << endl;
# 
#     for (size_t i = 0; i < rototranslations.size (); ++i)
#     {
#       pcl::IterativeClosestPoint<PointType, PointType> icp;
#       icp.setMaximumIterations (icp_max_iter_);
#       icp.setMaxCorrespondenceDistance (icp_corr_distance_);
#       icp.setInputTarget (scene);
#       icp.setInputSource (instances[i]);
#       pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>);
#       icp.align (*registered);
#       registered_instances.push_back (registered);
#       cout << "Instance " << i << " ";
#       if (icp.hasConverged ())
#       {
#         cout << "Aligned!" << endl;
#       }
#       else
#       {
#         cout << "Not Aligned!" << endl;
#       }
#     }
# 
#     cout << "-----------------" << endl << endl;
#   }
# 
#   /**
#    * Hypothesis Verification
#    */
#   cout << "--- Hypotheses Verification ---" << endl;
#   std::vector<bool> hypotheses_mask;  // Mask Vector to identify positive hypotheses
# 
#   pcl::GlobalHypothesesVerification<PointType, PointType> GoHv;
# 
#   GoHv.setSceneCloud (scene);  // Scene Cloud
#   GoHv.addModels (registered_instances, true);  //Models to verify
# 
#   GoHv.setInlierThreshold (hv_inlier_th_);
#   GoHv.setOcclusionThreshold (hv_occlusion_th_);
#   GoHv.setRegularizer (hv_regularizer_);
#   GoHv.setRadiusClutter (hv_rad_clutter_);
#   GoHv.setClutterRegularizer (hv_clutter_reg_);
#   GoHv.setDetectClutter (hv_detect_clutter_);
#   GoHv.setRadiusNormals (hv_rad_normals_);
# 
#   GoHv.verify ();
#   GoHv.getMask (hypotheses_mask);  // i-element TRUE if hvModels[i] verifies hypotheses
# 
#   for (int i = 0; i < hypotheses_mask.size (); i++)
#   {
#     if (hypotheses_mask[i])
#     {
#       cout << "Instance " << i << " is GOOD! <---" << endl;
#     }
#     else
#     {
#       cout << "Instance " << i << " is bad!" << endl;
#     }
#   }
#   cout << "-------------------------------" << endl;
# 
#   /**
#    *  Visualization
#    */
#   pcl::visualization::PCLVisualizer viewer ("Hypotheses Verification");
#   viewer.addPointCloud (scene, "scene_cloud");
# 
#   pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
#   pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ());
# 
#   pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ());
#   pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
#   pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
#   pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
# 
#   if (show_keypoints_)
#   {
#     CloudStyle modelStyle = style_white;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b);
#     viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model");
#   }
# 
#   if (show_keypoints_)
#   {
#     CloudStyle goodKeypointStyle = style_violet;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
#                                                                                                     goodKeypointStyle.b);
#     viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints");
# 
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
#                                                                                                     goodKeypointStyle.b);
#     viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints");
#   }
# 
#   for (size_t i = 0; i < instances.size (); ++i)
#   {
#     std::stringstream ss_instance;
#     ss_instance << "instance_" << i;
# 
#     CloudStyle clusterStyle = style_red;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b);
#     viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ());
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ());
# 
#     CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan;
#     ss_instance << "_registered" << endl;
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r,
#                                                                                                    registeredStyles.g, registeredStyles.b);
#     viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ());
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ());
#   }
# 

# while (!viewer.wasStopped ())
# 	viewer.spinOnce ();
