import types # Fill in a flattened method resolution dictionary for a class (attributes are # filtered out). Flattening honours the MI method resolution rules # (depth-first search of bases in order). The dictionary has method names # for keys and functions for values. def __methodDict(cls, dict): # the strategy is to traverse the class in the _reverse_ of the normal # order, and overwrite any duplicates. baseList = list(cls.__bases__) baseList.reverse() # do bases in reverse order, so first base overrides last base for super in baseList: __methodDict(super, dict) # do my methods last to override base classes for key, value in cls.__dict__.items(): # ignore class attributes if type(value) == types.FunctionType: dict[key] = value def __methods(cls): # Return all method names for a class. # Return all method names for a class (attributes are filtered # out). Base classes are searched recursively. dict = {} __methodDict(cls, dict) return dict.keys() # Function body to resolve a forwarding given the target method name and the # attribute name. The resulting lambda requires only self, but will forward # any other parameters. __stringBody = ( 'def %(method)s(this, *args, **kw): return ' + 'apply(this.%(attribute)s.%(method)s, args, kw)') # Get a unique id __counter = 0 def __unique(): global __counter __counter = __counter + 1 return str(__counter) # Function body to resolve a forwarding given the target method name and the # index of the resolution function. The resulting lambda requires only self, # but will forward any other parameters. The target instance is identified # by invoking the resolution function. __funcBody = ( 'def %(method)s(this, *args, **kw): return ' + 'apply(this.%(forwardFunc)s().%(method)s, args, kw)') def forwardmethods(fromClass, toClass, toPart, exclude = []): # Forward all methods from one class to another. # Forwarders will be created in fromClass to forward method # invocations to toClass. The methods to be forwarded are # identified by flattening the interface of toClass, and excluding # methods identified in the exclude list. Methods already defined # in fromClass, or special methods with one or more leading or # trailing underscores will not be forwarded. # For a given object of class fromClass, the corresponding toClass # object is identified using toPart. This can either be a String # denoting an attribute of fromClass objects, or a function taking # a fromClass object and returning a toClass object. # Example: # class MyClass: # ... # def __init__(self): # ... # self.__target = TargetClass() # ... # def findtarget(self): # return self.__target # forwardmethods(MyClass, TargetClass, '__target', ['dangerous1', 'dangerous2']) # # ...or... # forwardmethods(MyClass, TargetClass, MyClass.findtarget, # ['dangerous1', 'dangerous2']) # In both cases, all TargetClass methods will be forwarded from # MyClass except for dangerous1, dangerous2, special methods like # __str__, and pre-existing methods like findtarget. # Allow an attribute name (String) or a function to determine the instance if type(toPart) != types.StringType: # check that it is something like a function if callable(toPart): # If a method is passed, use the function within it if hasattr(toPart, 'im_func'): toPart = toPart.im_func # After this is set up, forwarders in this class will use # the forwarding function. The forwarding function name is # guaranteed to be unique, so that it can't be hidden by subclasses forwardName = '__fwdfunc__' + __unique() fromClass.__dict__[forwardName] = toPart # It's not a valid type else: raise TypeError, 'toPart must be attribute name, function or method' # get the full set of candidate methods dict = {} __methodDict(toClass, dict) # discard special methods for ex in dict.keys(): if ex[:1] == '_' or ex[-1:] == '_': del dict[ex] # discard dangerous methods supplied by the caller for ex in exclude: if dict.has_key(ex): del dict[ex] # discard methods already defined in fromClass for ex in __methods(fromClass): if dict.has_key(ex): del dict[ex] for method, func in dict.items(): d = {'method': method, 'func': func} if type(toPart) == types.StringType: execString = \ __stringBody % {'method' : method, 'attribute' : toPart} else: execString = \ __funcBody % {'forwardFunc' : forwardName, 'method' : method} exec execString in d # this creates a method fromClass.__dict__[method] = d[method]