fast and flexible probabilistic modelling in python

Jacob Schreiber
Paul G. Allen School of Computer Science & Engineering
University of Washington

jmschreiber91
@jmschrei
@jmschreiber91
Background
pomegranate is **fast, flexible, and intuitive to use**
Main Models
1. Probability Distributions
2. General Mixture Models
3. Hidden Markov Models
4. Naive Bayes / Bayes' Classifiers
5. Markov Chains
6. Bayesian Networks

Supporting Models
- k-means / kmeans++ / kmeans||
- Factor graphs
Models can be made in two ways...

...from known values

\[d = \text{NormalDistribution}(5, 2.3) \]

...from data

\[d = \text{NormalDistribution}.\text{from_samples}(X) \]
Models can be made in two ways...

...from known values

n1 = Node(...)
n2 = Node(...)
model = BayesianNetwork()
model.add_nodes(n1, n2...)
model.add_edges(...)

...from data

d = BayesianNetwork.from_samples(X)
Everything is a probability distribution

A guiding principle of pomegranate is that every model should be treated like a probability distribution, because they are probability distributions.
The API is common to all models

- `model.log_probability(X) / model.probability(X)`
- `model.sample()`
- `model.fit(X, weights, inertia)`
- `model.summarize(X, weights)`
- `model.from_summaries(inertia)`
- `Model.from_samples(X, weights)`
- `model.predict(X)`
- `model.predict_proba(X)`
- `model.predict_log_proba(X)`

All models have these methods!

All models composed of distributions (like GMM, HMM...) have these methods too!
Overview: model stacking in pomegranate

GeneralMixtureModel.from_samples(NormalDistribution, n_components=3, X=X)

GeneralMixtureModel.from_samples(ExponentialDistribution, n_components=3, X=X)

BayesClassifier.from_samples(MultivariateGaussianDistribution, X, y)

d1 = GeneralMixtureModel.from_samples...
d2 = GeneralMixtureModel.from_samples...
model = BayesClassifier([d1, d2])
pomegranate is just as fast as numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10 dimensions

```python
data = numpy.random.randn(10000000, 10)

print "numpy time:"
%timeit -n 10 data.mean(axis=0), numpy.cov(data, rowvar=False, bias=True)
print "\n" "pomegranate time:"
%timeit -n 10 MultivariateGaussianDistribution.from_samples(data)
```

numpy time:
10 loops, best of 3: 3.52 s per loop

pomegranate time:
10 loops, best of 3: 2.87 s per loop
pomegranate uses additive summarization

pomegranate reduces data to sufficient statistics for updates and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient statistics

\[
\begin{align*}
\mu &= \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} \\
\sigma^2 &= \frac{\sum_{i=1}^{n} w_i x_i^2}{\sum_{i=1}^{n} w_i} - \left(\frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} \right)^2
\end{align*}
\]
pomegranate supports out-of-core learning

Batches from a dataset can be reduced to additive summary statistics, enabling exact updates from data that can’t fit in memory.

On Disk ➔ In Memory ➔ Sufficient Statistics ➔ New Parameters

Extract summaries
pomegranate supports parallelization

Multiple batches can be loaded at the same time and processed by different threads using `n_jobs` in either fitting or prediction methods.
Training models in parallel

Naive Bayes' (50k, 1k) | Bayes' Classifier (50k, 1k) | GMM (1M by 5)
For many tasks, there is limited labeled data but a deluge of unlabeled data, and one wants to utilize both.
Semisupervised learning uses labeled and unlabeled data

Summaries from MLE on the labeled data can be added to summaries from EM on the unlabeled data.
Resulting models can be more accurate

Training Data

Supervised Acc: 0.93

Semisupervised Acc: 0.96
Using mean/median imputation can fail

Many real world tasks involve missing data, but common approaches aren't sufficient for tackling the problem.
Many real world tasks involve missing data, but common approaches aren't sufficient for tackling the problem.
Ignoring leads to better model parameters
Pomegranate supports **model fitting**, **structure learning**, and **inference** on data sets that include missing values, no matter how complicated the model or sparse the data set.

You can **fit a Gaussian mixture model** to incomplete data sets.

You can run the **Viterbi or forward-backward algorithm** using a HMM on incomplete data sets.

You can **learn the structure of a Bayesian network** on incomplete data sets.

All without having to change your command, simply by including `np.nan` in the place of the missing value.
pomegranate can be faster than scipy

```python
d = MultivariateGaussianDistribution(mu, cov)  
X = numpy.random.randn(2000, 2000)  
print "scipy time: ",  
%timeit multivariate_normal.logpdf(X, mu, cov)  
print "pomegranate time: ",  
%timeit MultivariateGaussianDistribution(mu, cov).log_probability(X)  
print "pomegranate time (w/ precreated object): ",  
%timeit d.log_probability(X)
```

scipy time: 1 loop, best of 3: 1.67 s per loop
pomegranate time: 1 loop, best of 3: 801 ms per loop
pomegranate time (w/ precreated object): 1 loop, best of 3: 216 ms per loop
pomegranate caches aggressively

\[P(X | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) \]

\[\log P(X | \mu, \sigma) = -\log(\sqrt{2\pi\sigma}) - \frac{(x - \mu)^2}{2\sigma^2} \]

\[\log P(X | \mu, \sigma) = \alpha + \beta (x - \mu)^2 \]
Spotted: Lonely Boy. Can't believe the love of his life has returned. If only she knew who he was. But everyone knows Serena. And everyone is talking. Wonder what Blair Waldorf thinks. Sure, they're BFF's, but we always thought Blair's boyfriend Nate had a thing for Serena.
Why'd she leave? Why'd she return? Send me all the deets.
And who am I? That's the secret I'll never tell. The only one.
—XOXO. Gossip Girl.
How do we encode these ‘blasts’?

Better lock it down with Nate, B. Clock's ticking.

+1 Nate
-1 Blair
How do we encode these ‘blasts’?

This just in: S and B committing a crime of fashion. Who doesn't love a five-finger discount. Especially if it's the middle one.

-1 Blair
-1 Serena
Simple summations don't work well

Blair Chuck Dan Jenny Nate Serena Vanessa

Sentiment Sum

Character
Beta distributions can model uncertainty
Beta distributions can model uncertainty
Beta distributions can model uncertainty
Bayesian networks are powerful inference tools which define a dependency structure between variables.

Bayesian networks provide principled solutions to two tasks:
1. Inference given incomplete information
2. Learning the dependency structure from data
Bayesian network structure learning

Three primary ways:
- “Search and score” / Exact
- “Constraint Learning” / PC
- Heuristics
Bayesian network structure learning

pomegranate supports:
- “Search and score” / Exact
- “Constraint Learning” / PC
- Heuristics
pomegranate supports four algorithms.
BNSL is hard due to acyclicity requirement

Global Parameter Independence: The parents of some variable A are independent of the parents of some variable B given that they don’t form a cycle in the resulting graph

Easy! Tractable!

Hard! Exponential Time!
Constraint graphs merge data + knowledge

- genetics
- condition
- symptoms
Global Parameter Independence: The parents of some variable A are independent of the parents of some variable B given that they don't form a cycle in the resulting graph.
The parents of some variable A are independent of the parents of some variable B
Constraint graphs merge data + knowledge

Time To Learn Bayesian Network

- Exact
- Constrained

Number of Variables

Time (s)

- genetics
- condition
- symptoms
Modeling the global stock market
Finding the optimal Bayesian network given a constraint graph

Jacob M. Schreiber1 and William S. Noble2

1 Department of Computer Science, University of Washington, Seattle, WA, United States of America
2 Department of Genome Science, University of Washington, Seattle, WA, United States of America

\section*{ABSTRACT}

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior
You can now pass in your own distributions

class StudentTDistribution:
 def __init__(self, mu, std, df=1.0):
 self.mu = mu
 self.std = std
 self.df = df
 self.parameters = (self.mu, self.std)
 self.d = 1
 self.summaries = numpy.zeros(3)

 def probability(self, X):
 return numpy.exp(self.log_probability(X))

 def log_probability(self, X):
 return scipy.stats.t.logpdf(X, self.df, self.mu, self.std)

 def summarize(self, X, w=None):
 if w is None:
 w = numpy.ones(X.shape[0])

 X = X.reshape(X.shape[0])
 self.summaries[0] += w.sum()
 self.summaries[1] += X.dot(w)
 self.summaries[2] += (X ** 2.).dot(w)

 def from_summaries(self, inertia=0.0):
 self.mu = self.summaries[1] / self.summaries[0]

 self.std = numpy.sqrt(self.std)
 self.parameters = (self.mu, self.std)
 self.clear_summaries()

 def clear_summaries(self, inertia=0.0):
 self.summaries = numpy.zeros(3)

 @classmethod
 def from_samples(cls, X, weights=None, df=1):
 d = StudentTDistribution(0, 0, df)
 d.summarize(X, weights)
 d.from_summaries()
 return d
You can now pass in your own distributions

```python
class StudentTDistribution():
    def __init__(self, mu, std, df=1.0):
        self.mu = mu
        self.std = std
        self.df = df
        self.parameters = (self.mu, self.std)
        self.d = 1
        self.summaries = numpy.zeros(3)

    def probability(self, X):
        return numpy.exp(self.log_probability(X))

    def log_probability(self, X):
        return scipy.stats.t.logpdf(X, self.df, self.mu, self.std)

    def summarize(self, X, w=None):
        if w is None:
            w = numpy.ones(X.shape[0])
        X = X.reshape(X.shape[0])
        self.summaries[0] += w.sum()
        self.summaries[1] += X.dot(w)
        self.summaries[2] += (X ** 2.).dot(w)

    def from_summaries(self, inertia=0.0):
        self.mu = self.summaries[1] / self.summaries[0]
        self.std = numpy.sqrt(self.std)
        self.parameters = (self.mu, self.std)
        self.clear_summaries()

    def clear_summaries(self, inertia=0.0):
        self.summaries = numpy.zeros(3)

    @classmethod
    def from_samples(cls, X, weights=None, df=1):
        d = StudentTDistribution(0, 0, df)
        d.summarize(X, weights)
        return d
```

Take in parameters
You can now pass in your own distributions

```
class StudentTDistribution():
    def __init__(self, mu, std, df=1.0):
        self.mu = mu
        self.std = std
        self.df = df
        self.parameters = (self.mu, self.std)
        self.d = 1
        self.summaries = numpy.zeros(3)

    def probability(self, X):
        return numpy.exp(self.log_probability(X))

    def log_probability(self, X):
        return scipy.stats.t.logpdf(X, self.df, self.mu, self.std)

    def summarize(self, X, w=None):
        if w is None:
            w = numpy.ones(X.shape[0])
        X = X.reshape(X.shape[0])
        self.summaries[0] += w.sum()
        self.summaries[1] += X.dot(w)
        self.summaries[2] += (X ** 2.).dot(w)

    def from_summaries(self, inertia=0.0):
        self.mu = self.summaries[1] / self.summaries[0]
        self.std = numpy.sqrt(self.std)
        self.parameters = (self.mu, self.std)
        self.clear_summaries()

    def clear_summaries(self, inertia=0.0):
        self.summaries = numpy.zeros(3)

@classmethod
def from_samples(cls, X, weights=None, df=1):
    d = StudentTDistribution(0, 0, df)
    d.summarize(X, weights)
    d.from_summaries()
    return d
```
You can now pass in your own distributions

```python
class StudentTDistribution():
    def __init__(self, mu, std, df=1.0):
        self.mu = mu
        self.std = std
        self.df = df
        self.parameters = (self.mu, self.std)
        self.d = 1
        self.summaries = numpy.zeros(3)

    def probability(self, X):
        return numpy.exp(self.log_probability(X))

    def log_probability(self, self, X):
        return scipy.stats.t.logpdf(X, self.df, self.mu, self.std)

    def summarize(self, X, w=None):
        if w is None:
            w = numpy.ones(X.shape[0])
        X = X.reshape(X.shape[0])
        self.summaries[0] += w.sum()
        self.summaries[1] += X.dot(w)
        self.summaries[2] += (X ** 2.).dot(w)

    def from_summaries(self, inertia=0.0):
        self.mu = self.summaries[1] / self.summaries[0]
        self.std = numpy.sqrt(self.std)
        self.parameters = (self.mu, self.std)
        self.clear_summaries()

    def clear_summaries(self, inertia=0.0):
        self.summaries = numpy.zeros(3)

@classmethod
def from_samples(cls, X, weights=None, df=1):
    d = StudentTDistribution(0, 0, df)
    d.summarize(X, weights)
    d.from_summaries()
    return d
```

Out-of-core update functions
You can now pass in your own distributions

\[
\begin{align*}
 dn &= \text{NormalDistribution}(0, 1) \\
 dt1 &= \text{StudentTDistribution}(0, 1, 1) \\
 dt3 &= \text{StudentTDistribution}(0, 1, 3) \\
 dt8 &= \text{StudentTDistribution}(0, 1, 8)
\end{align*}
\]

Larger tails to capture more uncertainty
Custom distributions simply compatible

```python
modeln = GeneralMixtureModel.from_samples(NormalDistribution, 2, X)
modelt = GeneralMixtureModel.from_samples(StudentTDistribution, 2, X)
```
HMMs typically use a set of distributions

Observations

Component 1

Component 2

Component 3

Likelihood P(D|M)

Structure

Posterior P(M|D)

0.001

0.015

0.032

0.052

0.796

0.152

HMMs typically use a set of distributions.
Neural HMMs use a single neural network

Can model complex interactions between features, e.g., pixels in an image, much better than individual distributions

“Likelihood” $P(D|M)$

| Neural Network | Structure | Posterior $P(M|D)$ |
|----------------|-----------|-------------------|
| 0.001 | | 0.021 |
| 0.015 | | 0.312 |
| 0.032 | | 0.667 |
The HMM adds structural regularization to the NN.

- "Likelihood" $P(D|M)$
 - Fish: 0.001
 - Lion: 0.015
 - Li'l fluffers: 0.932

CNN (VGG, GoogLeNet...)
The HMM adds structural regularization to the NN.
pomegranate: fast and flexible probabilistic modeling in python

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington
Seattle, WA 98195
jmschr@cs.washington.edu

Abstract

We present pomegranate, an open source machine learning package for probabilistic modeling in Python. Probabilistic modeling encompasses a wide range of methods that explicitly describe uncertainty using probability distributions. Three widely used probabilistic models implemented in pomegranate are general mixture models, hidden Markov models, and Bayesian networks. A primary focus of pomegranate is to abstract away the complexities of training models from their definition. This allows users to focus on specifying the correct model for their
pomegranate is NumFOCUS affiliated

pomegranate

pomegranate is a Python module for fast and flexible probabilistic modeling inspired by the design of scikit-learn. A primary focus of pomegranate is to abstract away the intricacies of a model from its definition, allowing users to easily prototype with complex models and training strategies. Its modular implementation allows for probability distributions to be swapped in or out for each other with ease and for models to be stacked within each other, yielding such delights as a mixture of Bayesian networks or a Gaussian mixture model Bayes classifier.

pomegranate is a python package which implements fast, efficient, and extremely flexible probabilistic models ranging from probability distributions to Bayesian networks to mixtures of hidden Markov models. The most basic level of probabilistic modeling is the a simple probability distribution. If we’re modeling language, this may be a simple distribution over the frequency of all possible words a person can say.

1. Probability Distributions

The next level up are probabilistic models which use the simple distributions in more complex ways. A markov chain can extend a simple probability distribution to say that the probability of a certain word depends on the word(s) which have been said previously. A hidden Markov model may say that the probability of a certain words depends on the latent/hidden state of the previous word.
Tutorials available on GitHub

https://github.com/jmschrei/pomegranate/tree/master/tutorials
fast and flexible probabilistic modelling in python

Jacob Schreiber
Paul G. Allen School of Computer Science & Engineering
University of Washington

@jmschreiber91
@jmschrei
@jmschreiber91