"""
Fast Fourier Transform.

A Fast Fourier Transform (FFT) is an efficient algorithm to compute 
the discrete Fourier transform (DFT) and its inverse (IFFT).

The objects below can be used to perform sound processing in the 
spectral domain.

"""

"""
Copyright 2011 Olivier Belanger

This file is part of pyo, a python module to help digital signal
processing script creation.

pyo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pyo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with pyo.  If not, see <http://www.gnu.org/licenses/>.
"""
from _core import *
from _maps import *
from _widgets import createSpectrumWindow
from pattern import Pattern

class FFT(PyoObject):
    """
    Fast Fourier Transform.

    FFT analyses an input signal and converts it into the spectral
    domain. Three audio signals are sent out of the object, the
    `real` part, from bin 0 (DC) to bin size/2 (Nyquist), the 
    `imaginary` part, from bin 0 to bin size/2-1, and the bin 
    number, an increasing count from 0 to size-1. `real` and 
    `imaginary` buffer's left samples  up to size-1 are filled 
    with zeros. See notes below for an example of how to retrieve 
    each signal component.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. Defaults to 1024.
        overlaps : int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. Defaults to 4.
        wintype : int, optional
            Shape of the envelope used to filter each input frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)

    .. note::
    
        FFT has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

        FFT has no `mul` and `add` attributes.
        
        Real, imaginary and bin_number parts are three separated set 
        of audio streams. The user should call :
        
        FFT['real'] to retrieve the real part.
        FFT['imag'] to retrieve the imaginary part.
        FFT['bin'] to retrieve the bin number part.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """
    def __init__(self, input, size=1024, overlaps=4, wintype=2):
        PyoObject.__init__(self)
        self._real_dummy = []
        self._imag_dummy = []
        self._bin_dummy = []
        self._input = input
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(input)
        in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
        self._base_players = []
        for j in range(overlaps):
            for i in range(lmax):
                hopsize = wrap(size,i) * j / overlaps
                self._base_players.append(FFTMain_base(wrap(in_fader,i), wrap(size,i), hopsize, wrap(wintype,i)))
        self._real_objs = []
        self._imag_objs = []
        self._bin_objs = []
        for j in range(len(self._base_players)):
            self._real_objs.append(FFT_base(wrap(self._base_players,j), 0, self._mul, self._add))
            self._imag_objs.append(FFT_base(wrap(self._base_players,j), 1, self._mul, self._add))
            self._bin_objs.append(FFT_base(wrap(self._base_players,j), 2, self._mul, self._add))
            
    def __len__(self):
        return len(self._real_objs)

    def __getitem__(self, str):
        if str == 'real':
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._real_objs)]))
            return self._real_dummy[-1]
        if str == 'imag':
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._imag_objs)]))
            return self._imag_dummy[-1]
        if str == 'bin':
            self._bin_dummy.append(Dummy([obj for i, obj in enumerate(self._bin_objs)]))
            return self._bin_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.
        
        Can be used to convert audio stream to usable Python data.
        
        "real", "imag" or "bin" must be given to `identifier` to specify
        which stream to get value from.
        
        :Args:

            identifier : string {"real", "imag", "bin"}
                Address string parameter identifying audio stream.
                Defaults to "real".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.
                 
        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]
 
    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)
                    
    def play(self, dur=0, delay=0):
        dur, delay, lmax = convertArgsToLists(dur, delay)
        self._base_players = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._base_players)]
        self._real_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._real_objs)]
        self._imag_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._imag_objs)]
        self._bin_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._bin_objs)]
        return self
    
    def stop(self):
        [obj.stop() for obj in self._base_players]
        [obj.stop() for obj in self._real_objs]
        [obj.stop() for obj in self._imag_objs]
        [obj.stop() for obj in self._bin_objs]
        return self

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        poly = len(self._base_players) / self._overlaps
        for j in range(self._overlaps):
            for i in range(poly):
                hopsize = wrap(x,i) * j / self._overlaps
                self._base_players[j*poly+i].setSize(wrap(x,i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

class IFFT(PyoObject):
    """
    Inverse Fast Fourier Transform.

    IFFT takes a signal in the spectral domain and converts it to a 
    real audio signal using an inverse fast fourier transform. 
    IFFT takes two signals in input, the `real` and `imaginary` parts
    of an FFT analysis and returns the corresponding real signal.
    These signals must correspond to `real` and `imaginary` parts
    from an FFT object.

    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        inreal : PyoObject
            Input `real` signal.
        inimag : PyoObject
            Input `imaginary` signal.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. This value must match the `size` 
            attribute of the former FFT object. Defaults to 1024.
        overlaps : int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. This value must match the `overlaps` 
            atribute of the former FFT object. Defaults to 4.
        wintype : int, optional
            Shape of the envelope used to filter each output frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)

    .. note::
    
        The number of streams in `inreal` and `inimag` attributes
        must be egal to the output of the former FFT object. In
        most case, it will be `channels of processed sound` * `overlaps`.

        The output of IFFT must be mixed to reconstruct the real
        signal from the overlapped streams. It is left to the user
        to call the mix(channels of the processed sound) method on
        an IFFT object.
    
    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """
    def __init__(self, inreal, inimag, size=1024, overlaps=4, wintype=2, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._inreal = inreal
        self._inimag = inimag
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, size, wintype, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, size, wintype, mul, add)
        self._base_objs = []
        ratio = lmax / overlaps
        for i in range(lmax):
            hopsize = wrap(size,i) * ((i/ratio)%overlaps) / overlaps
            self._base_objs.append(IFFT_base(wrap(in_fader,i), wrap(in_fader2,i), wrap(size,i), hopsize, wrap(wintype,i), wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inreal)
        
    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.
        
        :Args:

            x : PyoObject
                New input `real` signal.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.
        
        :Args:

            x : PyoObject
                New input `imag` signal.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        ratio = len(self._base_objs) / self._overlaps
        for i, obj in enumerate(self._base_objs):
            hopsize = wrap(x,i) * ((i/ratio)%self._overlaps) / self._overlaps
            self._base_objs[i].setSize(wrap(x,i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)
      
    @property
    def inreal(self):
        """PyoObject. Real input signal.""" 
        return self._inreal
    @inreal.setter
    def inreal(self, x): self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal.""" 
        return self._inimag
    @inimag.setter
    def inimag(self, x): self.setInImag(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

class CarToPol(PyoObject):
    """
    Performs the cartesian to polar conversion.

    The Cartesian system locates points on a plane by measuring the  horizontal and 
    vertical distances from an arbitrary origin to a point.  These are usually denoted 
    as a pair of values (X,Y).

    The Polar system locates the point by measuring the straight line distance, usually 
    denoted by R, from the origin to the point and the angle of an imaginary line from 
    the origin to the point measured counterclockwise from the positive X axis.

    :Parent: :py:class:`PyoObject`

    :Args:

        inreal : PyoObject
            Real input signal.
        inimag : PyoObject
            Imaginary input signal.

    .. note::
    
        Polar coordinates can be retrieve by calling :
        
        CarToPol['mag'] to retrieve the magnitude part.
        CarToPol['ang'] to retrieve the angle part.

        CarToPol has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """
    def __init__(self, inreal, inimag, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._mag_dummy = []
        self._ang_dummy = []
        self._inreal = inreal
        self._inimag = inimag
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
            self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inreal)

    def __getitem__(self, str):
        if str == 'mag':
            self._mag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
            return self._mag_dummy[-1]
        if str == 'ang':
            self._ang_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
            return self._ang_dummy[-1]

    def get(self, identifier="mag", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "mag" or "ang" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier : string {"mag", "ang"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inreal(self):
        """PyoObject. Real input signal.""" 
        return self._inreal
    @inreal.setter
    def inreal(self, x): self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal.""" 
        return self._inimag
    @inimag.setter
    def inimag(self, x): self.setInImag(x)

class PolToCar(PyoObject):
    """
    Performs the polar to cartesian conversion.

    The Polar system locates the point by measuring the straight line distance, usually 
    denoted by R, from the origin to the point and the angle of an imaginary line from 
    the origin to the point measured counterclockwise from the positive X axis.

    The Cartesian system locates points on a plane by measuring the  horizontal and 
    vertical distances from an arbitrary origin to a point.  These are usually denoted 
    as a pair of values (X,Y).

    :Parent: :py:class:`PyoObject`

    :Args:

        inmag : PyoObject
            Magintude input signal.
        inang : PyoObject
            Angle input signal.

    .. note::

        Cartesians coordinates can be retrieve by calling :
        
        PolToCar['real'] to retrieve the real part.
        CarToPol['imag'] to retrieve the imaginary part.

        PolToCar has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """
    def __init__(self, inmag, inang, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._real_dummy = []
        self._imag_dummy = []
        self._inmag = inmag
        self._inang = inang
        self._in_fader = InputFader(inmag)
        self._in_fader2 = InputFader(inang)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
            self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inmag)

    def __getitem__(self, str):
        if str == 'real':
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
            return self._real_dummy[-1]
        if str == 'imag':
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
            return self._imag_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "real" or "imag" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier : string {"real", "imag"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInMag(self, x, fadetime=0.05):
        """
        Replace the `inmag` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inmag = x
        self._in_fader.setInput(x, fadetime)

    def setInAng(self, x, fadetime=0.05):
        """
        Replace the `inang` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inang = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inmag(self):
        """PyoObject. Magnitude input signal.""" 
        return self._inmag
    @inmag.setter
    def inmag(self, x): self.setInMag(x)

    @property
    def inang(self):
        """PyoObject. Angle input signal.""" 
        return self._inang
    @inang.setter
    def inang(self, x): self.setInAng(x)

class FrameDelta(PyoObject):
    """
    Computes the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin 
    determines the exact frequency of the energy centered in that bin. This is often 
    known as the phase difference (and sometimes also referred to as phase derivative 
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to 
    calculate the phase difference between successive frames and use it to construct a 
    `running phase` (by simply summing the successive differences with FrameAccum) for 
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Phase input signal, usually from an FFT analysis.
        framesize : int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameDelta has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = sndinfo(snd)[0] / size
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """
    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameDeltaMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(FrameDelta_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

class FrameAccum(PyoObject):
    """
    Accumulates the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin 
    determines the exact frequency of the energy centered in that bin. This is often 
    known as the phase difference (and sometimes also referred to as phase derivative 
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to 
    calculate the phase difference between successive frames, with FrameDelta, and use 
    it to construct a `running phase` (by simply summing the successive differences) for 
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Phase input signal.
        framesize : int, optional
            Frame size in samples. Usually same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameAccum has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = sndinfo(snd)[0] / size
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """
    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i%num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameAccumMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(FrameAccum_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

class Vectral(PyoObject):
    """
    Performs magnitude smoothing between successive frames.

    Vectral applies filter with different coefficients for increasing
    and decreasing magnitude vectors, bin by bin.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Magnitude input signal, usually from an FFT analysis.
        framesize : int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.
        up : float or PyoObject, optional
            Filter coefficient for increasing bins, between 0 and 1.
            Lower values results in a longer ramp time for bin magnitude.
            Defaults to 1.
        down : float or PyoObject, optional
            Filter coefficient for decreasing bins, between 0 and 1.
            Lower values results in a longer decay time for bin magnitude.
            Defaults to 0.7
        damp : float or PyoObject, optional
            High frequencies damping factor, between 0 and 1. Lower values
            mean more damping. Defaults to 0.9.

    .. note::

        Vectral has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd = SNDS_PATH + '/accord.aif'
    >>> size, olaps = 1024, 4
    >>> snd = SfPlayer(snd, speed=[.75,.8], loop=True, mul=.3)
    >>> fin = FFT(snd, size=size, overlaps=olaps)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> vec = Vectral(pol["mag"], framesize=size, overlaps=olaps, down=.2, damp=.6)
    >>> car = PolToCar(vec, pol["ang"])
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=olaps).mix(2).out()
    >>> s.start()

    """
    def __init__(self, input, framesize=1024, overlaps=4, up=1.0, down=0.7, damp=0.9, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._up = up
        self._down = down
        self._damp = damp
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, up, down, damp, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, up, down, damp, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(VectralMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j), wrap(up,j), wrap(down,j), wrap(damp,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(Vectral_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setUp(self, x):
        """
        Replace the `up` attribute.

        :Args:

            x : float or PyoObject
                new `up` attribute.

        """
        self._up = x
        x, lmax = convertArgsToLists(x)
        [obj.setUp(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setDown(self, x):
        """
        Replace the `down` attribute.

        :Args:

            x : float or PyoObject
                new `down` attribute.

        """
        self._down = x
        x, lmax = convertArgsToLists(x)
        [obj.setDown(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setDamp(self, x):
        """
        Replace the `damp` attribute.

        :Args:

            x : float or PyoObject
                new `damp` attribute.

        """
        self._damp = x
        x, lmax = convertArgsToLists(x)
        [obj.setDamp(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMap(0., 1., "lin", "up", self._up),
                          SLMap(0., 1., "lin", "down", self._down),
                          SLMap(0., 1., "lin", "damp", self._damp),
                          SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Magnitude input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """int. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

    @property
    def up(self):
        """float or PyoObject. Filter coefficient for increasing bins.""" 
        return self._up
    @up.setter
    def up(self, x): self.setUp(x)

    @property
    def down(self):
        """float or PyoObject. Filter coefficient for decreasing bins.""" 
        return self._down
    @down.setter
    def down(self, x): self.setDown(x)

    @property
    def damp(self):
        """float or PyoObject. High frequencies damping factor.""" 
        return self._damp
    @damp.setter
    def damp(self, x): self.setDamp(x)
    
class CvlVerb(PyoObject):
    """
    Convolution based reverb.

    CvlVerb implements convolution based on a uniformly partitioned overlap-save 
    algorithm. This object can be used to convolve an input signal with an 
    impulse response soundfile to simulate real acoustic spaces.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        impulse : string, optional
            Path to the impulse response soundfile. The file must have the same 
            sampling rate as the server to get the proper convolution. Available at
            initialization time only. Defaults to 'IRMediumHallStereo.wav', located 
            in pyolib SNDS_PATH folder.
        size : int {pow-of-two}, optional
            The size in samples of each partition of the impulse file. Small size means
            smaller latency but more computation time. If not a power-of-2, the object
            will find the next power-of-2 greater and use that as the actual partition size.
            This value must also be greater or equal than the server's buffer size.
            Available at initialization time only. Defaults to 1024.
        bal : float or PyoObject, optional
            Balance between wet and dry signal, between 0 and 1. 0 means no 
            reverb. Defaults to 0.25.
    
    >>> s = Server().boot()
    >>> s.start()
    >>> sf = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=0.5)
    >>> cv = CvlVerb(sf, SNDS_PATH+"/IRMediumHallStereo.wav", size=1024, bal=0.4).out()

    """
    def __init__(self, input, impulse=SNDS_PATH+"/IRMediumHallStereo.wav", bal=0.25, size=1024, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._impulse = impulse
        self._bal = bal
        self._size = size
        self._in_fader = InputFader(input)
        in_fader, bal, size, mul, add, lmax = convertArgsToLists(self._in_fader, bal, size, mul, add)
        impulse, lmax2 = convertArgsToLists(impulse)
        self._base_objs = []
        for file in impulse:
            _size, _dur, _snd_sr, _snd_chnls, _format, _type = sndinfo(file)
            lmax3 = max(lmax, _snd_chnls)
            self._base_objs.extend([CvlVerb_base(wrap(in_fader,i), file, wrap(bal,i), wrap(size,i), i%_snd_chnls, wrap(mul,i), wrap(add,i)) for i in range(lmax3)])

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setBal(self, x):
        """
        Replace the `bal` attribute.

        :Args:

            x : float or PyoObject
                new `bal` attribute.

        """
        self._bal = x
        x, lmax = convertArgsToLists(x)
        [obj.setBal(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMap(0., 1., "lin", "bal", self._bal),
                          SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def bal(self):
        """float or PyoObject. Wet / dry balance.""" 
        return self._bal
    @bal.setter
    def bal(self, x): self.setBal(x)

class Spectrum(PyoObject):
    """
    Spectrum analyzer and display.

    Spectrum measures the magnitude of an input signal versus frequency
    within a user defined range. It can show both magnitude and frequency
    on linear or logarithmic scale.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. Defaults to 1024.
        wintype : int, optional
            Shape of the envelope used to filter each input frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)
        function : python callable, optional
            If set, this function will be called with magnitudes (as
            list of lists, one list per channel). Useful if someone
            wants to save the analysis data into a text file.
            Defaults to None.

    .. note::
    
        Spectrum has no `out` method.
        Spectrum has no `mul` and `add` attributes.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = SuperSaw(freq=[500,750], detune=0.6, bal=0.7, mul=0.5).out()
    >>> spec = Spectrum(a, size=1024)

    """
    def __init__(self, input, size=1024, wintype=2, function=None):
        PyoObject.__init__(self)
        self.points = None
        self.viewFrame = None
        self._input = input
        self._size = size
        self._wintype = wintype
        self._function = function
        self._fscaling = 0
        self._mscaling = 1
        self._lowbound = 0
        self._highbound = 0.5
        self._width = 500
        self._height = 400
        self._gain = 1
        self._in_fader = InputFader(input)
        in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
        self._base_objs = [Spectrum_base(wrap(in_fader,i), wrap(size,i), wrap(wintype,i)) for i in range(lmax)]
        if function == None:
            self.view()
        self._timer = Pattern(self.refreshView, 0.05).play()
 
    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        [obj.setSize(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setFunction(self, function):
        """
        Sets the function to be called to retrieve the analysis data.
        
        :Args:
            
            function : python callable
                The function called by the internal timer to retrieve the
                analysis data. The function must be created with one argument
                and will receive the data as a list of lists (one list per channel).

        """
        self._function = function

    def poll(self, active):
        """
        Turns on and off the analysis polling.
        
        :Args:
            
            active : boolean
                If True, starts the analysis polling, False to stop it.
                defaults to True.

        """
        if active:
            self._timer.play()
        else:
            self._timer.stop()

    def polltime(self, time):
        """
        Sets the polling time in seconds.
        
        :Args:
            
            time : float
                Adjusts the frequency of the internal timer used to
                retrieve the current analysis frame. defaults to 0.05.
        
        """
        self._timer.time = time

    def setLowbound(self, x):
        """
        Sets the lower frequency, as multiplier of sr, returned by the analysis.
        
        Returns the real low frequency en Hz.
        
        :Args:

            x : float {0 <= x <= 0.5}
                new `lowbound` attribute.
        
        """
        self._lowbound = x
        x, lmax = convertArgsToLists(x)
        tmp = [obj.setLowbound(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        return tmp[0]

    def setHighbound(self, x):
        """
        Sets the higher frequency, as multiplier of sr, returned by the analysis.
        
        Returns the real high frequency en Hz.
        
        :Args:

            x : float {0 <= x <= 0.5}
                new `highbound` attribute.
        
        """
        self._highbound = x
        x, lmax = convertArgsToLists(x)
        tmp = [obj.setHighbound(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        return tmp[0]

    def getLowfreq(self):
        """
        Returns the current lower frequency, in Hz, used by the analysis.
        
        """

        return self._base_objs[0].getLowfreq()

    def getHighfreq(self):
        """
        Returns the current higher frequency, in Hz, used by the analysis.
        
        """
        return self._base_objs[0].getHighfreq()

    def setWidth(self, x):
        """
        Sets the width, in pixels, of the current display.
        
        Used internally to build the list of points to draw.
        
        :Args:

            x : int
                new `width` attribute.
        
        """
        self._width = x
        x, lmax = convertArgsToLists(x)
        [obj.setWidth(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setHeight(self, x):
        """
        Sets the height, in pixels, of the current display.
        
        Used internally to build the list of points to draw.
        
        :Args:

            x : int
                new `height` attribute.
        
        """
        self._height = x
        x, lmax = convertArgsToLists(x)
        [obj.setHeight(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setFscaling(self, x):
        """
        Sets the frequency display to linear or logarithmic.
        
        :Args:

            x : boolean
                If True, the frequency display is logarithmic. False turns
                it back to linear. Defaults to False.
        
        """
        self._fscaling = x
        x, lmax = convertArgsToLists(x)
        [obj.setFscaling(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        if self.viewFrame != None:
            self.viewFrame.setFscaling(self._fscaling)

    def setMscaling(self, x):
        """
        Sets the magnitude display to linear or logarithmic.
        
        :Args:

            x : boolean
                If True, the magnitude display is logarithmic (which means in dB). 
                False turns it back to linear. Defaults to True.
        
        """
        self._mscaling = x
        x, lmax = convertArgsToLists(x)
        [obj.setMscaling(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        if self.viewFrame != None:
            self.viewFrame.setMscaling(self._mscaling)

    def getFscaling(self):
        """
        Returns the scaling of the frequency display.
        
        Returns True for logarithmic or False for linear.

        """
        return self._fscaling

    def getMscaling(self):
        """
        Returns the scaling of the magnitude display.
        
        Returns True for logarithmic or False for linear.

        """
        return self._mscaling

    def setGain(self, x):
        """
        Set the gain of the anaysis data. For drawing purpose.
        
        :Args:

            x : float
                new `gain` attribute, as linear values.
        
        """
        self._gain = x
        x, lmax = convertArgsToLists(x)
        [obj.setGain(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def view(self, title="Spectrum", wxnoserver=False):
        """
        Opens a window showing the result of the analysis.
        
        :Args:
        
            title : string, optional
                Window title. Defaults to "Spectrum". 
            wxnoserver : boolean, optional
                With wxPython graphical toolkit, if True, tells the 
                interpreter that there will be no server window.
                
        If `wxnoserver` is set to True, the interpreter will not wait for 
        the server GUI before showing the controller window. 
        
        """
        createSpectrumWindow(self, title, wxnoserver)

    def _setViewFrame(self, frame):
        self.viewFrame = frame
        
    def refreshView(self):
        """
        Updates the graphical display of the spectrum.
        
        Called automatically by the internal timer.

        """
        self.points = [obj.display() for obj in self._base_objs]
        if self._function != None:
            self._function(self.points)
        if self.viewFrame != None:
            self.viewFrame.update(self.points)


    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

    @property
    def gain(self):
        """float. Sets the gain of the analysis data."""
        return self._gain
    @gain.setter
    def gain(self, x): self.setGain(x)

    @property
    def lowbound(self):
        """float. Lowest frequency (multiplier of sr) to output."""
        return self._lowbound
    @lowbound.setter
    def lowbound(self, x): self.setLowbound(x)

    @property
    def highbound(self):
        """float. Highest frequency (multiplier of sr) to output."""
        return self._highbound
    @highbound.setter
    def highbound(self, x): self.setHighbound(x)

    @property
    def width(self):
        """int. Width, in pixels, of the current display."""
        return self._width
    @width.setter
    def width(self, x): self.setWidth(x)

    @property
    def height(self):
        """int. Height, in pixels, of the current display."""
        return self._height
    @height.setter
    def height(self, x): self.setHeight(x)

    @property
    def fscaling(self):
        """boolean. Scaling of the frequency display."""
        return self._fscaling
    @fscaling.setter
    def fscaling(self, x): self.setFscaling(x)

    @property
    def mscaling(self):
        """boolean. Scaling of the magnitude display."""
        return self._mscaling
    @mscaling.setter
    def mscaling(self, x): self.setMscaling(x)
