1 """
2 Cython wrapper to provide python interfaces to
3 PROJ.4 (http://trac.osgeo.org/proj/) functions.
4
5 Performs cartographic transformations and geodetic computations.
6
7 The Proj class can convert from geographic (longitude,latitude)
8 to native map projection (x,y) coordinates and vice versa, or
9 from one map projection coordinate system directly to another.
10 The module variable pj_list is a dictionary containing all the
11 available projections and their descriptions.
12
13 The Geod class can perform forward and inverse geodetic, or
14 Great Circle, computations. The forward computation involves
15 determining latitude, longitude and back azimuth of a terminus
16 point given the latitude and longitude of an initial point, plus
17 azimuth and distance. The inverse computation involves
18 determining the forward and back azimuths and distance given the
19 latitudes and longitudes of an initial and terminus point.
20
21 Input coordinates can be given as python arrays, lists/tuples,
22 scalars or numpy/Numeric/numarray arrays. Optimized for objects
23 that support the Python buffer protocol (regular python and
24 numpy array objects).
25
26 Download: http://python.org/pypi/pyproj
27
28 Requirements: python 2.4 or higher.
29
30 Example scripts are in 'test' subdirectory of source distribution.
31 The 'test()' function will run the examples in the docstrings.
32
33 Contact: Jeffrey Whitaker <jeffrey.s.whitaker@noaa.gov
34
35 copyright (c) 2006 by Jeffrey Whitaker.
36
37 Permission to use, copy, modify, and distribute this software
38 and its documentation for any purpose and without fee is hereby
39 granted, provided that the above copyright notice appear in all
40 copies and that both the copyright notice and this permission
41 notice appear in supporting documentation. THE AUTHOR DISCLAIMS
42 ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
43 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
44 SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR
45 CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
46 LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
47 NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
48 CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """
49
50 from pyproj import _proj
51 from pyproj.datadir import pyproj_datadir
52 __version__ = _proj.__version__
53 set_datapath = _proj.set_datapath
54 from array import array
55 import os, math
56
57 pj_list={
58 'aea': "Albers Equal Area",
59 'aeqd': "Azimuthal Equidistant",
60 'airy': "Airy",
61 'aitoff': "Aitoff",
62 'alsk': "Mod. Stererographics of Alaska",
63 'apian': "Apian Globular I",
64 'august': "August Epicycloidal",
65 'bacon': "Bacon Globular",
66 'bipc': "Bipolar conic of western hemisphere",
67 'boggs': "Boggs Eumorphic",
68 'bonne': "Bonne (Werner lat_1=90)",
69 'cass': "Cassini",
70 'cc': "Central Cylindrical",
71 'cea': "Equal Area Cylindrical",
72 'chamb': "Chamberlin Trimetric",
73 'collg': "Collignon",
74 'crast': "Craster Parabolic (Putnins P4)",
75 'denoy': "Denoyer Semi-Elliptical",
76 'eck1': "Eckert I",
77 'eck2': "Eckert II",
78 'eck3': "Eckert III",
79 'eck4': "Eckert IV",
80 'eck5': "Eckert V",
81 'eck6': "Eckert VI",
82 'eqc': "Equidistant Cylindrical (Plate Caree)",
83 'eqdc': "Equidistant Conic",
84 'etmerc': "Extended Transverse Mercator" ,
85 'euler': "Euler",
86 'fahey': "Fahey",
87 'fouc': "Foucaut",
88 'fouc_s': "Foucaut Sinusoidal",
89 'gall': "Gall (Gall Stereographic)",
90 'geocent': "Geocentric",
91 'geos': "Geostationary Satellite View",
92 'gins8': "Ginsburg VIII (TsNIIGAiK)",
93 'gn_sinu': "General Sinusoidal Series",
94 'gnom': "Gnomonic",
95 'goode': "Goode Homolosine",
96 'gs48': "Mod. Stererographics of 48 U.S.",
97 'gs50': "Mod. Stererographics of 50 U.S.",
98 'hammer': "Hammer & Eckert-Greifendorff",
99 'hatano': "Hatano Asymmetrical Equal Area",
100 'healpix': "HEALPix",
101 'rhealpix': "rHEALPix",
102 'igh': "Interrupted Goode Homolosine",
103 'imw_p': "Internation Map of the World Polyconic",
104 'isea': "Icosahedral Snyder Equal Area",
105 'kav5': "Kavraisky V",
106 'kav7': "Kavraisky VII",
107 'krovak': "Krovak",
108 'labrd': "Laborde",
109 'laea': "Lambert Azimuthal Equal Area",
110 'lagrng': "Lagrange",
111 'larr': "Larrivee",
112 'lask': "Laskowski",
113 'lonlat': "Lat/long (Geodetic)",
114 'latlon': "Lat/long (Geodetic alias)",
115 'latlong': "Lat/long (Geodetic alias)",
116 'longlat': "Lat/long (Geodetic alias)",
117 'lcc': "Lambert Conformal Conic",
118 'lcca': "Lambert Conformal Conic Alternative",
119 'leac': "Lambert Equal Area Conic",
120 'lee_os': "Lee Oblated Stereographic",
121 'loxim': "Loximuthal",
122 'lsat': "Space oblique for LANDSAT",
123 'mbt_s': "McBryde-Thomas Flat-Polar Sine",
124 'mbt_fps': "McBryde-Thomas Flat-Pole Sine (No. 2)",
125 'mbtfpp': "McBride-Thomas Flat-Polar Parabolic",
126 'mbtfpq': "McBryde-Thomas Flat-Polar Quartic",
127 'mbtfps': "McBryde-Thomas Flat-Polar Sinusoidal",
128 'merc': "Mercator",
129 'mil_os': "Miller Oblated Stereographic",
130 'mill': "Miller Cylindrical",
131 'moll': "Mollweide",
132 'murd1': "Murdoch I",
133 'murd2': "Murdoch II",
134 'murd3': "Murdoch III",
135 'natearth': "Natural Earth",
136 'nell': "Nell",
137 'nell_h': "Nell-Hammer",
138 'nicol': "Nicolosi Globular",
139 'nsper': "Near-sided perspective",
140 'nzmg': "New Zealand Map Grid",
141 'ob_tran': "General Oblique Transformation",
142 'ocea': "Oblique Cylindrical Equal Area",
143 'oea': "Oblated Equal Area",
144 'omerc': "Oblique Mercator",
145 'ortel': "Ortelius Oval",
146 'ortho': "Orthographic",
147 'pconic': "Perspective Conic",
148 'poly': "Polyconic (American)",
149 'putp1': "Putnins P1",
150 'putp2': "Putnins P2",
151 'putp3': "Putnins P3",
152 'putp3p': "Putnins P3'",
153 'putp4p': "Putnins P4'",
154 'putp5': "Putnins P5",
155 'putp5p': "Putnins P5'",
156 'putp6': "Putnins P6",
157 'putp6p': "Putnins P6'",
158 'qua_aut': "Quartic Authalic",
159 'robin': "Robinson",
160 'rouss': "Roussilhe Stereographic",
161 'rpoly': "Rectangular Polyconic",
162 'sinu': "Sinusoidal (Sanson-Flamsteed)",
163 'somerc': "Swiss. Obl. Mercator",
164 'stere': "Stereographic",
165 'sterea': "Oblique Stereographic Alternative",
166 'gstmerc': "Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)",
167 'tcc': "Transverse Central Cylindrical",
168 'tcea': "Transverse Cylindrical Equal Area",
169 'tissot': "Tissot Conic",
170 'tmerc': "Transverse Mercator",
171 'tpeqd': "Two Point Equidistant",
172 'tpers': "Tilted perspective",
173 'ups': "Universal Polar Stereographic",
174 'urm5': "Urmaev V",
175 'urmfps': "Urmaev Flat-Polar Sinusoidal",
176 'utm': "Universal Transverse Mercator (UTM)",
177 'vandg': "van der Grinten (I)",
178 'vandg2': "van der Grinten II",
179 'vandg3': "van der Grinten III",
180 'vandg4': "van der Grinten IV",
181 'vitk1': "Vitkovsky I",
182 'wag1': "Wagner I (Kavraisky VI)",
183 'wag2': "Wagner II",
184 'wag3': "Wagner III",
185 'wag4': "Wagner IV",
186 'wag5': "Wagner V",
187 'wag6': "Wagner VI",
188 'wag7': "Wagner VII",
189 'weren': "Werenskiold I",
190 'wink1': "Winkel I",
191 'wink2': "Winkel II",
192 'wintri': "Winkel Tripel"}
193
194 pj_ellps={
195 "MERIT": {'a':6378137.0,'rf':298.257,'description':"MERIT 1983"},
196 "SGS85": {'a':6378136.0,'rf':298.257,'description':"Soviet Geodetic System 85"},
197 "GRS80": {'a':6378137.0,'rf':298.257222101,'description':"GRS 1980(IUGG, 1980)"},
198 "IAU76": {'a':6378140.0,'rf':298.257,'description':"IAU 1976"},
199 "airy": {'a':6377563.396,'b':6356256.910,'description':"Airy 1830"},
200 "APL4.9": {'a':6378137.0,'rf':298.25,'description':"Appl. Physics. 1965"},
201 "NWL9D": {'a':6378145.0,'rf':298.25,'description':" Naval Weapons Lab., 1965"},
202 "mod_airy": {'a':6377340.189,'b':6356034.446,'description':"Modified Airy"},
203 "andrae": {'a':6377104.43,'rf':300.0,'description':"Andrae 1876 (Den., Iclnd.)"},
204 "aust_SA": {'a':6378160.0,'rf':298.25,'description':"Australian Natl & S. Amer. 1969"},
205 "GRS67": {'a':6378160.0,'rf':298.2471674270,'description':"GRS 67(IUGG 1967)"},
206 "bessel": {'a':6377397.155,'rf':299.1528128,'description':"Bessel 1841"},
207 "bess_nam": {'a':6377483.865,'rf':299.1528128,'description':"Bessel 1841 (Namibia)"},
208 "clrk66": {'a':6378206.4,'b':6356583.8,'description':"Clarke 1866"},
209 "clrk80": {'a':6378249.145,'rf':293.4663,'description':"Clarke 1880 mod."},
210 "CPM": {'a':6375738.7,'rf':334.29,'description':"Comm. des Poids et Mesures 1799"},
211 "delmbr": {'a':6376428.,'rf':311.5,'description':"Delambre 1810 (Belgium)"},
212 "engelis": {'a':6378136.05,'rf':298.2566,'description':"Engelis 1985"},
213 "evrst30": {'a':6377276.345,'rf':300.8017,'description':"Everest 1830"},
214 "evrst48": {'a':6377304.063,'rf':300.8017,'description':"Everest 1948"},
215 "evrst56": {'a':6377301.243,'rf':300.8017,'description':"Everest 1956"},
216 "evrst69": {'a':6377295.664,'rf':300.8017,'description':"Everest 1969"},
217 "evrstSS": {'a':6377298.556,'rf':300.8017,'description':"Everest (Sabah & Sarawak)"},
218 "fschr60": {'a':6378166.,'rf':298.3,'description':"Fischer (Mercury Datum) 1960"},
219 "fschr60m": {'a':6378155.,'rf':298.3,'description':"Modified Fischer 1960"},
220 "fschr68": {'a':6378150.,'rf':298.3,'description':"Fischer 1968"},
221 "helmert": {'a':6378200.,'rf':298.3,'description':"Helmert 1906"},
222 "hough": {'a':6378270.0,'rf':297.,'description':"Hough"},
223 "intl": {'a':6378388.0,'rf':297.,'description':"International 1909 (Hayford)"},
224 "krass": {'a':6378245.0,'rf':298.3,'description':"Krassovsky, 1942"},
225 "kaula": {'a':6378163.,'rf':298.24,'description':"Kaula 1961"},
226 "lerch": {'a':6378139.,'rf':298.257,'description':"Lerch 1979"},
227 "mprts": {'a':6397300.,'rf':191.,'description':"Maupertius 1738"},
228 "new_intl": {'a':6378157.5,'b':6356772.2,'description':"New International 1967"},
229 "plessis": {'a':6376523.,'b':6355863.,'description':"Plessis 1817 (France)"},
230 "SEasia": {'a':6378155.0,'b':6356773.3205,'description':"Southeast Asia"},
231 "walbeck": {'a':6376896.0,'b':6355834.8467,'description':"Walbeck"},
232 "WGS60": {'a':6378165.0,'rf':298.3,'description':"WGS 60"},
233 "WGS66": {'a':6378145.0,'rf':298.25,'description':"WGS 66"},
234 "WGS72": {'a':6378135.0,'rf':298.26,'description':"WGS 72"},
235 "WGS84": {'a':6378137.0,'rf':298.257223563,'description':"WGS 84"},
236 "sphere": {'a':6370997.0,'b':6370997.0,'description':"Normal Sphere"},
237 }
238
239
240
241
242
243 set_datapath(pyproj_datadir)
244
245 -class Proj(_proj.Proj):
246 """
247 performs cartographic transformations (converts from
248 longitude,latitude to native map projection x,y coordinates and
249 vice versa) using proj (http://trac.osgeo.org/proj/).
250
251 A Proj class instance is initialized with proj map projection
252 control parameter key/value pairs. The key/value pairs can
253 either be passed in a dictionary, or as keyword arguments,
254 or as a proj4 string (compatible with the proj command). See
255 http://www.remotesensing.org/geotiff/proj_list for examples of
256 key/value pairs defining different map projections.
257
258 Calling a Proj class instance with the arguments lon, lat will
259 convert lon/lat (in degrees) to x/y native map projection
260 coordinates (in meters). If optional keyword 'inverse' is True
261 (default is False), the inverse transformation from x/y to
262 lon/lat is performed. If optional keyword 'radians' is True
263 (default is False) lon/lat are interpreted as radians instead of
264 degrees. If optional keyword 'errcheck' is True (default is
265 False) an exception is raised if the transformation is invalid.
266 If errcheck=False and the transformation is invalid, no
267 exception is raised and 1.e30 is returned. If the optional keyword
268 'preserve_units' is True, the units in map projection coordinates
269 are not forced to be meters.
270
271 Works with numpy and regular python array objects, python
272 sequences and scalars.
273 """
274
275 - def __new__(self, projparams=None, preserve_units=False, **kwargs):
276 """
277 initialize a Proj class instance.
278
279 Proj4 projection control parameters must either be given in a
280 dictionary 'projparams' or as keyword arguments. See the proj
281 documentation (http://trac.osgeo.org/proj/) for more information
282 about specifying projection parameters.
283
284 Example usage:
285
286 >>> from pyproj import Proj
287 >>> p = Proj(proj='utm',zone=10,ellps='WGS84') # use kwargs
288 >>> x,y = p(-120.108, 34.36116666)
289 >>> 'x=%9.3f y=%11.3f' % (x,y)
290 'x=765975.641 y=3805993.134'
291 >>> 'lon=%8.3f lat=%5.3f' % p(x,y,inverse=True)
292 'lon=-120.108 lat=34.361'
293 >>> # do 3 cities at a time in a tuple (Fresno, LA, SF)
294 >>> lons = (-119.72,-118.40,-122.38)
295 >>> lats = (36.77, 33.93, 37.62 )
296 >>> x,y = p(lons, lats)
297 >>> 'x: %9.3f %9.3f %9.3f' % x
298 'x: 792763.863 925321.537 554714.301'
299 >>> 'y: %9.3f %9.3f %9.3f' % y
300 'y: 4074377.617 3763936.941 4163835.303'
301 >>> lons, lats = p(x, y, inverse=True) # inverse transform
302 >>> 'lons: %8.3f %8.3f %8.3f' % lons
303 'lons: -119.720 -118.400 -122.380'
304 >>> 'lats: %8.3f %8.3f %8.3f' % lats
305 'lats: 36.770 33.930 37.620'
306 >>> p2 = Proj('+proj=utm +zone=10 +ellps=WGS84') # use proj4 string
307 >>> x,y = p2(-120.108, 34.36116666)
308 >>> 'x=%9.3f y=%11.3f' % (x,y)
309 'x=765975.641 y=3805993.134'
310 >>> p = Proj(init="epsg:32667")
311 >>> 'x=%12.3f y=%12.3f (meters)' % p(-114.057222, 51.045)
312 'x=-1783486.760 y= 6193833.196 (meters)'
313 >>> p = Proj("+init=epsg:32667",preserve_units=True)
314 >>> 'x=%12.3f y=%12.3f (feet)' % p(-114.057222, 51.045)
315 'x=-5851322.810 y=20320934.409 (feet)'
316 """
317
318 if projparams is None:
319 if len(kwargs) == 0:
320 raise RuntimeError('no projection control parameters specified')
321 else:
322 projstring = _dict2string(kwargs)
323 elif type(projparams) == str:
324
325 projstring = projparams
326 else:
327 projstring = _dict2string(projparams)
328
329 if not projstring.count('+units=') and not preserve_units:
330 projstring = '+units=m '+projstring
331 else:
332 kvpairs = []
333 for kvpair in projstring.split():
334 if kvpair.startswith('+units') and not preserve_units:
335 k,v = kvpair.split('=')
336 kvpairs.append(k+'=m ')
337 else:
338 kvpairs.append(kvpair+' ')
339 projstring = ''.join(kvpairs)
340
341
342 projstring = projstring.replace('EPSG','epsg')
343 return _proj.Proj.__new__(self, projstring)
344
346
347 """
348 Calling a Proj class instance with the arguments lon, lat will
349 convert lon/lat (in degrees) to x/y native map projection
350 coordinates (in meters). If optional keyword 'inverse' is True
351 (default is False), the inverse transformation from x/y to
352 lon/lat is performed. If optional keyword 'radians' is True
353 (default is False) the units of lon/lat are radians instead of
354 degrees. If optional keyword 'errcheck' is True (default is
355 False) an exception is raised if the transformation is invalid.
356 If errcheck=False and the transformation is invalid, no
357 exception is raised and 1.e30 is returned.
358
359 Instead of calling with lon, lat, a single ndarray of
360 shape n,2 may be used, and one of the same shape will
361 be returned; this is more efficient.
362
363 Inputs should be doubles (they will be cast to doubles if they
364 are not, causing a slight performance hit).
365
366 Works with numpy and regular python array objects, python
367 sequences and scalars, but is fastest for array objects.
368 """
369 inverse = kw.get('inverse', False)
370 radians = kw.get('radians', False)
371 errcheck = kw.get('errcheck', False)
372
373
374
375
376
377
378
379
380 lon, lat = args
381
382 inx, xisfloat, xislist, xistuple = _copytobuffer(lon)
383 iny, yisfloat, yislist, yistuple = _copytobuffer(lat)
384
385 if inverse:
386 _proj.Proj._inv(self, inx, iny, radians=radians, errcheck=errcheck)
387 else:
388 _proj.Proj._fwd(self, inx, iny, radians=radians, errcheck=errcheck)
389
390 outx = _convertback(xisfloat,xislist,xistuple,inx)
391 outy = _convertback(yisfloat,yislist,xistuple,iny)
392 return outx, outy
393
395 """returns an equivalent Proj in the corresponding lon/lat
396 coordinates. (see pj_latlong_from_proj() in the Proj.4 C API)"""
397 return _proj.Proj.to_latlong(self)
398
400 """returns True if projection in geographic (lon/lat) coordinates"""
401 return _proj.Proj.is_latlong(self)
402
404 """returns True if projection in geocentric (x/y) coordinates"""
405 return _proj.Proj.is_geocent(self)
406
496
498 try:
499
500 return array('d',(float(x),)),True,False,False
501 except:
502 raise TypeError('input must be an array, list, tuple or scalar')
503
505 """
506 return a copy of x as an object that supports the python Buffer
507 API (python array if input is float, list or tuple, numpy array
508 if input is a numpy array). returns copyofx, isfloat, islist,
509 istuple (islist is True if input is a list, istuple is true if
510 input is a tuple, isfloat is true if input is a float).
511 """
512
513 isfloat = False; islist = False; istuple = False
514
515
516 if hasattr(x,'shape'):
517 if x.shape == ():
518 return _copytobuffer_return_scalar(x)
519 else:
520 try:
521
522
523
524 x.dtype.char
525 inx = x.astype('d')
526
527 return inx,False,False,False
528 except:
529 try:
530
531
532 x.typecode()
533 inx = x.astype('d')
534
535 return inx,False,False,False
536 except:
537 raise TypeError('input must be an array, list, tuple or scalar')
538 else:
539
540 if hasattr(x, 'typecode'):
541
542 inx = array('d',x)
543
544
545 elif type(x) == list:
546 inx = array('d',x)
547 islist = True
548
549 elif type(x) == tuple:
550 inx = array('d',x)
551 istuple = True
552
553 else:
554 return _copytobuffer_return_scalar(x)
555 return inx,isfloat,islist,istuple
556
558
559 if isfloat:
560 return inx[0]
561 elif islist:
562 return inx.tolist()
563 elif istuple:
564 return tuple(inx)
565 else:
566 return inx
567
569
570 pjargs = []
571 for key,value in projparams.items():
572 pjargs.append('+'+key+"="+str(value)+' ')
573 return ''.join(pjargs)
574
575 -class Geod(_proj.Geod):
576 """
577 performs forward and inverse geodetic, or Great Circle,
578 computations. The forward computation (using the 'fwd' method)
579 involves determining latitude, longitude and back azimuth of a
580 computations. The forward computation (using the 'fwd' method)
581 involves determining latitude, longitude and back azimuth of a
582 terminus point given the latitude and longitude of an initial
583 point, plus azimuth and distance. The inverse computation (using
584 the 'inv' method) involves determining the forward and back
585 azimuths and distance given the latitudes and longitudes of an
586 initial and terminus point.
587 """
588 - def __new__(self, initstring=None, **kwargs):
589 """
590 initialize a Geod class instance.
591
592 Geodetic parameters for specifying the ellipsoid
593 can be given in a dictionary 'initparams', as keyword arguments,
594 or as as proj4 geod initialization string.
595 Following is a list of the ellipsoids that may be defined using the
596 'ellps' keyword (these are stored in the model variable pj_ellps)::
597
598 MERIT a=6378137.0 rf=298.257 MERIT 1983
599 SGS85 a=6378136.0 rf=298.257 Soviet Geodetic System 85
600 GRS80 a=6378137.0 rf=298.257222101 GRS 1980(IUGG, 1980)
601 IAU76 a=6378140.0 rf=298.257 IAU 1976
602 airy a=6377563.396 b=6356256.910 Airy 1830
603 APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
604 airy a=6377563.396 b=6356256.910 Airy 1830
605 APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
606 NWL9D a=6378145.0. rf=298.25 Naval Weapons Lab., 1965
607 mod_airy a=6377340.189 b=6356034.446 Modified Airy
608 andrae a=6377104.43 rf=300.0 Andrae 1876 (Den., Iclnd.)
609 aust_SA a=6378160.0 rf=298.25 Australian Natl & S. Amer. 1969
610 GRS67 a=6378160.0 rf=298.247167427 GRS 67(IUGG 1967)
611 bessel a=6377397.155 rf=299.1528128 Bessel 1841
612 bess_nam a=6377483.865 rf=299.1528128 Bessel 1841 (Namibia)
613 clrk66 a=6378206.4 b=6356583.8 Clarke 1866
614 clrk80 a=6378249.145 rf=293.4663 Clarke 1880 mod.
615 CPM a=6375738.7 rf=334.29 Comm. des Poids et Mesures 1799
616 delmbr a=6376428. rf=311.5 Delambre 1810 (Belgium)
617 engelis a=6378136.05 rf=298.2566 Engelis 1985
618 evrst30 a=6377276.345 rf=300.8017 Everest 1830
619 evrst48 a=6377304.063 rf=300.8017 Everest 1948
620 evrst56 a=6377301.243 rf=300.8017 Everest 1956
621 evrst69 a=6377295.664 rf=300.8017 Everest 1969
622 evrstSS a=6377298.556 rf=300.8017 Everest (Sabah & Sarawak)
623 fschr60 a=6378166. rf=298.3 Fischer (Mercury Datum) 1960
624 fschr60m a=6378155. rf=298.3 Modified Fischer 1960
625 fschr68 a=6378150. rf=298.3 Fischer 1968
626 helmert a=6378200. rf=298.3 Helmert 1906
627 hough a=6378270.0 rf=297. Hough
628 helmert a=6378200. rf=298.3 Helmert 1906
629 hough a=6378270.0 rf=297. Hough
630 intl a=6378388.0 rf=297. International 1909 (Hayford)
631 krass a=6378245.0 rf=298.3 Krassovsky, 1942
632 kaula a=6378163. rf=298.24 Kaula 1961
633 lerch a=6378139. rf=298.257 Lerch 1979
634 mprts a=6397300. rf=191. Maupertius 1738
635 new_intl a=6378157.5 b=6356772.2 New International 1967
636 plessis a=6376523. b=6355863. Plessis 1817 (France)
637 SEasia a=6378155.0 b=6356773.3205 Southeast Asia
638 walbeck a=6376896.0 b=6355834.8467 Walbeck
639 WGS60 a=6378165.0 rf=298.3 WGS 60
640 WGS66 a=6378145.0 rf=298.25 WGS 66
641 WGS72 a=6378135.0 rf=298.26 WGS 72
642 WGS84 a=6378137.0 rf=298.257223563 WGS 84
643 sphere a=6370997.0 b=6370997.0 Normal Sphere (r=6370997)
644
645 The parameters of the ellipsoid may also be set directly using
646 the 'a' (semi-major or equatorial axis radius) keyword, and
647 any one of the following keywords: 'b' (semi-minor,
648 or polar axis radius), 'e' (eccentricity), 'es' (eccentricity
649 squared), 'f' (flattening), or 'rf' (reciprocal flattening).
650
651 See the proj documentation (http://trac.osgeo.org/proj/) for more
652
653 See the proj documentation (http://trac.osgeo.org/proj/) for more
654 information about specifying ellipsoid parameters (specifically,
655 the chapter 'Specifying the Earth's figure' in the main Proj
656 users manual).
657
658 Example usage:
659
660 >>> from pyproj import Geod
661 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
662 >>> # specify the lat/lons of some cities.
663 >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
664 >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
665 >>> newyork_lat = 40.+(47./60.); newyork_lon = -73.-(58./60.)
666 >>> london_lat = 51.+(32./60.); london_lon = -(5./60.)
667 >>> # compute forward and back azimuths, plus distance
668 >>> # between Boston and Portland.
669 >>> az12,az21,dist = g.inv(boston_lon,boston_lat,portland_lon,portland_lat)
670 >>> "%7.3f %6.3f %12.3f" % (az12,az21,dist)
671 '-66.531 75.654 4164192.708'
672 >>> # compute latitude, longitude and back azimuth of Portland,
673 >>> # given Boston lat/lon, forward azimuth and distance to Portland.
674 >>> endlon, endlat, backaz = g.fwd(boston_lon, boston_lat, az12, dist)
675 >>> "%6.3f %6.3f %13.3f" % (endlat,endlon,backaz)
676 '45.517 -123.683 75.654'
677 >>> # compute the azimuths, distances from New York to several
678 >>> # cities (pass a list)
679 >>> lons1 = 3*[newyork_lon]; lats1 = 3*[newyork_lat]
680 >>> lons2 = [boston_lon, portland_lon, london_lon]
681 >>> lats2 = [boston_lat, portland_lat, london_lat]
682 >>> az12,az21,dist = g.inv(lons1,lats1,lons2,lats2)
683 >>> for faz,baz,d in list(zip(az12,az21,dist)): "%7.3f %7.3f %9.3f" % (faz,baz,d)
684 ' 54.663 -123.448 288303.720'
685 '-65.463 79.342 4013037.318'
686 ' 51.254 -71.576 5579916.651'
687 >>> g2 = Geod('+ellps=clrk66') # use proj4 style initialization string
688 >>> az12,az21,dist = g2.inv(boston_lon,boston_lat,portland_lon,portland_lat)
689 >>> "%7.3f %6.3f %12.3f" % (az12,az21,dist)
690 '-66.531 75.654 4164192.708'
691 """
692
693
694 ellpsd = {}
695 if initstring is not None:
696 for kvpair in initstring.split():
697 k,v = kvpair.split('=')
698 k = k.lstrip('+')
699 if k in ['a','b','rf','f','es','e']:
700 v = float(v)
701 ellpsd[k] = v
702
703 kwargs = dict(list(kwargs.items()) + list(ellpsd.items()))
704 self.sphere = False
705 if 'ellps' in kwargs:
706
707 ellps_dict = pj_ellps[kwargs['ellps']]
708 a = ellps_dict['a']
709 if ellps_dict['description']=='Normal Sphere':
710 self.sphere = True
711 if 'b' in ellps_dict:
712 b = ellps_dict['b']
713 es = 1. - (b * b) / (a * a)
714 f = (a - b)/a
715 elif 'rf' in ellps_dict:
716 f = 1./ellps_dict['rf']
717 b = a*(1. - f)
718 es = 1. - (b * b) / (a * a)
719 else:
720
721
722
723
724
725
726 a = kwargs['a']
727 if 'b' in kwargs:
728 b = kwargs['b']
729 es = 1. - (b * b) / (a * a)
730 f = (a - b)/a
731 elif 'rf' in kwargs:
732 f = 1./kwargs['rf']
733 b = a*(1. - f)
734 es = 1. - (b * b) / (a * a)
735 elif 'f' in kwargs:
736 f = kwargs['f']
737 b = a*(1. - f)
738 es = 1. - (b/a)**2
739 elif 'es' in kwargs:
740 es = kwargs['es']
741 b = math.sqrt(a**2 - es*a**2)
742 f = (a - b)/a
743 elif 'e' in kwargs:
744 es = kwargs['e']**2
745 b = math.sqrt(a**2 - es*a**2)
746 f = (a - b)/a
747 else:
748 b = a
749 f = 0.
750 es = 0.
751
752
753 if math.fabs(f) < 1.e-8: self.sphere = True
754 self.a = a
755 self.b = b
756 self.f = f
757 self.es = es
758 return _proj.Geod.__new__(self, a, f)
759
760 - def fwd(self, lons, lats, az, dist, radians=False):
761 """
762 forward transformation - Returns longitudes, latitudes and back
763 azimuths of terminus points given longitudes (lons) and
764 latitudes (lats) of initial points, plus forward azimuths (az)
765 and distances (dist).
766 latitudes (lats) of initial points, plus forward azimuths (az)
767 and distances (dist).
768
769 Works with numpy and regular python array objects, python
770 sequences and scalars.
771
772 if radians=True, lons/lats and azimuths are radians instead of
773 degrees. Distances are in meters.
774 """
775
776 inx, xisfloat, xislist, xistuple = _copytobuffer(lons)
777 iny, yisfloat, yislist, yistuple = _copytobuffer(lats)
778 inz, zisfloat, zislist, zistuple = _copytobuffer(az)
779 ind, disfloat, dislist, distuple = _copytobuffer(dist)
780 _proj.Geod._fwd(self, inx, iny, inz, ind, radians=radians)
781
782 outx = _convertback(xisfloat,xislist,xistuple,inx)
783 outy = _convertback(yisfloat,yislist,xistuple,iny)
784 outz = _convertback(zisfloat,zislist,zistuple,inz)
785 return outx, outy, outz
786
787 - def inv(self,lons1,lats1,lons2,lats2,radians=False):
788 """
789 inverse transformation - Returns forward and back azimuths, plus
790 distances between initial points (specified by lons1, lats1) and
791 terminus points (specified by lons2, lats2).
792
793 Works with numpy and regular python array objects, python
794 sequences and scalars.
795
796 if radians=True, lons/lats and azimuths are radians instead of
797 degrees. Distances are in meters.
798 """
799
800 inx, xisfloat, xislist, xistuple = _copytobuffer(lons1)
801 iny, yisfloat, yislist, yistuple = _copytobuffer(lats1)
802 inz, zisfloat, zislist, zistuple = _copytobuffer(lons2)
803 ind, disfloat, dislist, distuple = _copytobuffer(lats2)
804 _proj.Geod._inv(self,inx,iny,inz,ind,radians=radians)
805
806 outx = _convertback(xisfloat,xislist,xistuple,inx)
807 outy = _convertback(yisfloat,yislist,xistuple,iny)
808 outz = _convertback(zisfloat,zislist,zistuple,inz)
809 return outx, outy, outz
810
811 - def npts(self, lon1, lat1, lon2, lat2, npts, radians=False):
812 """
813 Given a single initial point and terminus point (specified by
814 python floats lon1,lat1 and lon2,lat2), returns a list of
815 longitude/latitude pairs describing npts equally spaced
816 intermediate points along the geodesic between the initial and
817 terminus points.
818
819 if radians=True, lons/lats are radians instead of degrees.
820
821 Example usage:
822
823 >>> from pyproj import Geod
824 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
825 >>> # specify the lat/lons of Boston and Portland.
826 >>> g = Geod(ellps='clrk66') # Use Clarke 1966 ellipsoid.
827 >>> # specify the lat/lons of Boston and Portland.
828 >>> boston_lat = 42.+(15./60.); boston_lon = -71.-(7./60.)
829 >>> portland_lat = 45.+(31./60.); portland_lon = -123.-(41./60.)
830 >>> # find ten equally spaced points between Boston and Portland.
831 >>> lonlats = g.npts(boston_lon,boston_lat,portland_lon,portland_lat,10)
832 >>> for lon,lat in lonlats: '%6.3f %7.3f' % (lat, lon)
833 '43.528 -75.414'
834 '44.637 -79.883'
835 '45.565 -84.512'
836 '46.299 -89.279'
837 '46.830 -94.156'
838 '47.149 -99.112'
839 '47.251 -104.106'
840 '47.136 -109.100'
841 '46.805 -114.051'
842 '46.262 -118.924'
843 >>> # test with radians=True (inputs/outputs in radians, not degrees)
844 >>> import math
845 >>> dg2rad = math.radians(1.)
846 >>> rad2dg = math.degrees(1.)
847 >>> lonlats = g.npts(dg2rad*boston_lon,dg2rad*boston_lat,dg2rad*portland_lon,dg2rad*portland_lat,10,radians=True)
848 >>> for lon,lat in lonlats: '%6.3f %7.3f' % (rad2dg*lat, rad2dg*lon)
849 '43.528 -75.414'
850 '44.637 -79.883'
851 '45.565 -84.512'
852 '46.299 -89.279'
853 '46.830 -94.156'
854 '47.149 -99.112'
855 '47.251 -104.106'
856 '47.136 -109.100'
857 '46.805 -114.051'
858 '46.262 -118.924'
859 """
860 lons, lats = _proj.Geod._npts(self, lon1, lat1, lon2, lat2, npts, radians=radians)
861 return list(zip(lons, lats))
862
864 """run the examples in the docstrings using the doctest module"""
865 import doctest, pyproj
866 doctest.testmod(pyproj,verbose=True)
867
868 if __name__ == "__main__": test()
869