"""Provides an easy way of generating several geometric objects.

**CONTAINS**
ArrowSource
CylinderSource
SphereSource
PlaneSource
LineSource
CubeSource
ConeSource
DiscSource
PolygonSource
vtkPyramid
PlatonicSolidSource
SuperquadricSource
Text3DSource

as well as some pure-python helpers.

"""

from __future__ import annotations

import contextlib
from itertools import product

import numpy as np

import pyvista
from pyvista.core import _vtk_core as _vtk

from .arrays import _coerce_pointslike_arg
from .geometric_sources import ArrowSource
from .geometric_sources import BoxSource
from .geometric_sources import ConeSource
from .geometric_sources import CubeSource
from .geometric_sources import CylinderSource
from .geometric_sources import DiscSource
from .geometric_sources import LineSource
from .geometric_sources import MultipleLinesSource
from .geometric_sources import PlaneSource
from .geometric_sources import PlatonicSolidSource
from .geometric_sources import PolygonSource
from .geometric_sources import SphereSource
from .geometric_sources import SuperquadricSource
from .geometric_sources import Text3DSource
from .geometric_sources import translate

with contextlib.suppress(ImportError):
    from .geometric_sources import CapsuleSource

from .helpers import wrap
from .misc import check_valid_vector

NORMALS = {
    'x': [1, 0, 0],
    'y': [0, 1, 0],
    'z': [0, 0, 1],
    '-x': [-1, 0, 0],
    '-y': [0, -1, 0],
    '-z': [0, 0, -1],
}


def Capsule(
    center=(0.0, 0.0, 0.0),
    direction=(1.0, 0.0, 0.0),
    radius=0.5,
    cylinder_length=1.0,
    resolution=30,
):
    """Create the surface of a capsule.

    .. warning::
       :func:`pyvista.Capsule` function rotates the :class:`pyvista.CapsuleSource` 's :class:`pyvista.PolyData` in its own way.
       It rotates the :attr:`pyvista.CapsuleSource.output` 90 degrees in z-axis, translates and
       orients the mesh to a new ``center`` and ``direction``.

    .. note::
       A class:`pyvista.CylinderSource` is used to generate the capsule mesh. For vtk versions
       below 9.3, a class:`pyvista.CapsuleSource` is used instead. The mesh geometries are similar but
       not identical.

    .. versionadded:: 0.44.0

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Location of the centroid in ``[x, y, z]``.

    direction : sequence[float], default: (1.0, 0.0, 0.0)
        Direction the capsule points to in ``[x, y, z]``.

    radius : float, default: 0.5
        Radius of the capsule.

    cylinder_length : float, default: 1.0
        Cylinder length of the capsule.

    resolution : int, default: 30
        Number of points on the circular face of the cylinder.

    Returns
    -------
    pyvista.PolyData
        Capsule surface.

    See Also
    --------
    pyvista.Cylinder

    Examples
    --------
    Create a capsule using default parameters.

    >>> import pyvista as pv
    >>> capsule = pv.Capsule()
    >>> capsule.plot(show_edges=True)

    """
    if pyvista.vtk_version_info >= (9, 3):  # pragma: no cover
        algo = CylinderSource(
            center=center,
            direction=direction,
            radius=radius,
            height=cylinder_length,
            capping=True,
            resolution=resolution,
        )
        algo.capsule_cap = True
    else:
        algo = CapsuleSource(
            center=(0, 0, 0),
            direction=(1, 0, 0),
            radius=radius,
            cylinder_length=cylinder_length,
            theta_resolution=resolution,
            phi_resolution=resolution,
        )
    output = wrap(algo.output)
    output.rotate_z(90, inplace=True)
    translate(output, center, direction)
    return output


def Cylinder(
    center=(0.0, 0.0, 0.0),
    direction=(1.0, 0.0, 0.0),
    radius=0.5,
    height=1.0,
    resolution=100,
    capping=True,
):
    """Create the surface of a cylinder.

    .. warning::
       :func:`pyvista.Cylinder` function rotates the :class:`pyvista.CylinderSource` 's :class:`pyvista.PolyData` in its own way.
       It rotates the :attr:`pyvista.CylinderSource.output` 90 degrees in z-axis, translates and
       orients the mesh to a new ``center`` and ``direction``.

    See also :func:`pyvista.CylinderStructured`.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Location of the centroid in ``[x, y, z]``.

    direction : sequence[float], default: (1.0, 0.0, 0.0)
        Direction cylinder points to  in ``[x, y, z]``.

    radius : float, default: 0.5
        Radius of the cylinder.

    height : float, default: 1.0
        Height of the cylinder.

    resolution : int, default: 100
        Number of points on the circular face of the cylinder.

    capping : bool, default: True
        Cap cylinder ends with polygons.

    Returns
    -------
    pyvista.PolyData
        Cylinder surface.

    Examples
    --------
    >>> import pyvista as pv
    >>> cylinder = pv.Cylinder(
    ...     center=[1, 2, 3], direction=[1, 1, 1], radius=1, height=2
    ... )
    >>> cylinder.plot(show_edges=True, line_width=5, cpos='xy')

    >>> pl = pv.Plotter()
    >>> _ = pl.add_mesh(
    ...     pv.Cylinder(
    ...         center=[1, 2, 3], direction=[1, 1, 1], radius=1, height=2
    ...     ),
    ...     show_edges=True,
    ...     line_width=5,
    ... )
    >>> pl.camera_position = "xy"
    >>> pl.show()

    The above examples are similar in terms of their behavior.
    """
    algo = CylinderSource(
        center=center,
        direction=direction,
        radius=radius,
        height=height,
        capping=capping,
        resolution=resolution,
    )
    output = wrap(algo.output)
    output.rotate_z(90, inplace=True)
    translate(output, center, direction)
    return output


def CylinderStructured(
    radius=0.5,
    height=1.0,
    center=(0.0, 0.0, 0.0),
    direction=(1.0, 0.0, 0.0),
    theta_resolution=32,
    z_resolution=10,
):
    """Create a cylinder mesh as a :class:`pyvista.StructuredGrid`.

    The end caps are left open. This can create a surface mesh if a single
    value for the ``radius`` is given or a 3D mesh if multiple radii are given
    as a list/array in the ``radius`` argument.

    Parameters
    ----------
    radius : float | sequence[float], default: 0.5
        Radius of the cylinder. If a sequence, then describes the
        radial coordinates of the cells as a range of values as
        specified by the ``radius``.

    height : float, default: 1.0
        Height of the cylinder along its Z-axis.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Location of the centroid in ``[x, y, z]``.

    direction : sequence[float], default: (1.0, 0.0, 0.0)
        Direction cylinder Z-axis in ``[x, y, z]``.

    theta_resolution : int, default: 32
        Number of points on the circular face of the cylinder.
        Ignored if ``radius`` is an iterable.

    z_resolution : int, default: 10
        Number of points along the height (Z-axis) of the cylinder.

    Returns
    -------
    pyvista.StructuredGrid
        Structured cylinder.

    Notes
    -----
    .. versionchanged:: 0.38.0
       Prior to version 0.38, this method had incorrect results, producing
       inconsistent number of points on the circular face of the cylinder.

    Examples
    --------
    Default structured cylinder

    >>> import pyvista as pv
    >>> mesh = pv.CylinderStructured()
    >>> mesh.plot(show_edges=True)

    Structured cylinder with an inner radius of 1, outer of 2, with 5
    segments.

    >>> import numpy as np
    >>> mesh = pv.CylinderStructured(radius=np.linspace(1, 2, 5))
    >>> mesh.plot(show_edges=True)

    """
    # Define grid in polar coordinates
    r = np.array([radius]).ravel()
    nr = len(r)
    theta = np.linspace(0, 2 * np.pi, num=theta_resolution + 1)
    radius_matrix, theta_matrix = np.meshgrid(r, theta)

    # Transform to cartesian space
    X = radius_matrix * np.cos(theta_matrix)
    Y = radius_matrix * np.sin(theta_matrix)

    # Make all the nodes in the grid
    xx = np.array([X] * z_resolution).ravel()
    yy = np.array([Y] * z_resolution).ravel()
    dz = height / (z_resolution - 1)
    zz = np.empty(yy.size)
    zz = np.full((X.size, z_resolution), dz)
    zz *= np.arange(z_resolution)
    zz = zz.ravel(order='f')

    # Create the grid
    grid = pyvista.StructuredGrid()
    grid.points = np.c_[xx, yy, zz]
    grid.dimensions = [nr, theta_resolution + 1, z_resolution]

    # Center at origin
    grid.points -= np.array(grid.center)

    # rotate initially to face +X direction
    grid.rotate_y(90, inplace=True)

    # rotate points 180 for compatibility with previous versions
    grid.rotate_x(180, inplace=True)

    # move to final position
    translate(grid, center=center, direction=direction)
    return grid


def Arrow(
    start=(0.0, 0.0, 0.0),
    direction=(1.0, 0.0, 0.0),
    tip_length=0.25,
    tip_radius=0.1,
    tip_resolution=20,
    shaft_radius=0.05,
    shaft_resolution=20,
    scale=None,
):
    """Create an arrow.

    Parameters
    ----------
    start : sequence[float], default: (0.0, 0.0, 0.0)
        Start location in ``[x, y, z]``.

    direction : sequence[float], default: (1.0, 0.0, 0.0)
        Direction the arrow points to in ``[x, y, z]``.

    tip_length : float, default: 0.25
        Length of the tip.

    tip_radius : float, default: 0.1
        Radius of the tip.

    tip_resolution : int, default: 20
        Number of faces around the tip.

    shaft_radius : float, default: 0.05
        Radius of the shaft.

    shaft_resolution : int, default: 20
        Number of faces around the shaft.

    scale : float | str, optional
        Scale factor of the entire object, defaults to a scale of 1.
        ``'auto'`` scales to length of direction array.

    Returns
    -------
    pyvista.PolyData
        Arrow mesh.

    Examples
    --------
    Plot a default arrow.

    >>> import pyvista as pv
    >>> mesh = pv.Arrow()
    >>> mesh.plot(show_edges=True)

    """
    arrow = ArrowSource(
        tip_length=tip_length,
        tip_radius=tip_radius,
        tip_resolution=tip_resolution,
        shaft_radius=shaft_radius,
        shaft_resolution=shaft_resolution,
    )
    surf = arrow.output

    if scale == 'auto':
        scale = float(np.linalg.norm(direction))
    if isinstance(scale, (float, int)):
        surf.points *= scale
    elif scale is not None:
        raise TypeError("Scale must be either float, int or 'auto'.")

    translate(surf, start, direction)
    return surf


def Sphere(
    radius=0.5,
    center=(0.0, 0.0, 0.0),
    direction=(0.0, 0.0, 1.0),
    theta_resolution=30,
    phi_resolution=30,
    start_theta=0.0,
    end_theta=360.0,
    start_phi=0.0,
    end_phi=180.0,
):
    """Create a sphere.

    A sphere describes a 2D surface in comparison to
    :func:`pyvista.SolidSphere`, which fills a 3D volume.

    PyVista uses a convention where ``theta`` represents the azimuthal
    angle (similar to degrees longitude on the globe) and ``phi``
    represents the polar angle (similar to degrees latitude on the
    globe). In contrast to latitude on the globe, here
    ``phi`` is 0 degrees at the North Pole and 180 degrees at the South
    Pole. ``phi=0`` is on the positive z-axis by default.
    ``theta=0`` is on the positive x-axis by default.

    Parameters
    ----------
    radius : float, default: 0.5
        Sphere radius.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center coordinate vector in ``[x, y, z]``.

    direction : sequence[float], default: (0.0, 0.0, 1.0)
        Direction coordinate vector in ``[x, y, z]`` pointing from ``center`` to
        the sphere's north pole at zero degrees ``phi``.

    theta_resolution : int, default: 30
        Set the number of points in the azimuthal direction (ranging
        from ``start_theta`` to ``end_theta``).

    phi_resolution : int, default: 30
        Set the number of points in the polar direction (ranging from
        ``start_phi`` to ``end_phi``).

    start_theta : float, default: 0.0
        Starting azimuthal angle in degrees ``[0, 360]``.

    end_theta : float, default: 360.0
        Ending azimuthal angle in degrees ``[0, 360]``.

    start_phi : float, default: 0.0
        Starting polar angle in degrees ``[0, 180]``.

    end_phi : float, default: 180.0
        Ending polar angle in degrees ``[0, 180]``.

    Returns
    -------
    pyvista.PolyData
        Sphere mesh.

    See Also
    --------
    pyvista.Icosphere : Sphere created from projection of icosahedron.
    pyvista.SolidSphere : Sphere that fills 3D space.

    Examples
    --------
    Create a sphere using default parameters.

    >>> import pyvista as pv
    >>> sphere = pv.Sphere()
    >>> sphere.plot(show_edges=True)

    Create a quarter sphere by setting ``end_theta``.

    >>> sphere = pv.Sphere(end_theta=90)
    >>> out = sphere.plot(show_edges=True)

    Create a hemisphere by setting ``end_phi``.

    >>> sphere = pv.Sphere(end_phi=90)
    >>> out = sphere.plot(show_edges=True)

    """
    sphere = SphereSource(
        radius=radius,
        theta_resolution=theta_resolution,
        phi_resolution=phi_resolution,
        start_theta=start_theta,
        end_theta=end_theta,
        start_phi=start_phi,
        end_phi=end_phi,
    )
    surf = sphere.output
    surf.rotate_y(90, inplace=True)
    translate(surf, center, direction)
    return surf


def SolidSphere(
    outer_radius=0.5,
    inner_radius=0.0,
    radius_resolution=5,
    start_theta=0.0,
    end_theta=None,
    theta_resolution=30,
    start_phi=0.0,
    end_phi=None,
    phi_resolution=30,
    center=(0.0, 0.0, 0.0),
    direction=(0.0, 0.0, 1.0),
    radians=False,
    tol_radius=1.0e-8,
    tol_angle=None,
):
    """Create a solid sphere.

    A solid sphere fills space in 3D in comparison to
    :func:`pyvista.Sphere`, which is a 2D surface.

    This function uses a linear sampling of each spherical
    coordinate, whereas :func:`pyvista.SolidSphereGeneric`
    allows for nonuniform sampling. Angles are by default
    specified in degrees.

    PyVista uses a convention where ``theta`` represents the azimuthal
    angle (similar to degrees longitude on the globe) and ``phi``
    represents the polar angle (similar to degrees latitude on the
    globe). In contrast to latitude on the globe, here
    ``phi`` is 0 degrees at the North Pole and 180 degrees at the South
    Pole. ``phi=0`` is on the positive z-axis by default.
    ``theta=0`` is on the positive x-axis by default.

    While values for theta can be any value with a maximum span of
    360 degrees, large magnitudes may result in problems with endpoint
    overlap detection.

    Parameters
    ----------
    outer_radius : float, default: 0.5
        Outer radius of sphere.  Must be non-negative.

    inner_radius : float, default: 0.0
        Inner radius of sphere.  Must be non-negative
        and smaller than ``outer_radius``.

    radius_resolution : int, default: 5
        Number of points in radial direction.

    start_theta : float, default: 0.0
        Starting azimuthal angle.

    end_theta : float, default: 360.0
        Ending azimuthal angle.
        ``end_theta`` must be greater than ``start_theta``.

    theta_resolution : int, default: 30
        Number of points in ``theta`` direction.

    start_phi : float, default: 0.0
        Starting polar angle.
        ``phi`` must lie between 0 and 180 in degrees.

    end_phi : float, default: 180.0
        Ending polar angle.
        ``phi`` must lie between 0 and 180 in degrees.
        ``end_phi`` must be greater than ``start_phi``.

    phi_resolution : int, default: 30
        Number of points in ``phi`` direction,
        inclusive of polar axis, i.e. ``phi=0`` and ``phi=180``
        in degrees, if applicable.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center coordinate vector in ``[x, y, z]``.

    direction : sequence[float], default: (0.0, 0.0, 1.0)
        Direction coordinate vector in ``[x, y, z]`` pointing from ``center`` to
        the sphere's north pole at zero degrees ``phi``.

    radians : bool, default: False
        Whether to use radians for ``theta`` and ``phi``. Default is degrees.

    tol_radius : float, default: 1.0e-8
        Absolute tolerance for endpoint detection for ``radius``.

    tol_angle : float, optional
        Absolute tolerance for endpoint detection
        for ``phi`` and ``theta``. Unit is determined by choice
        of ``radians`` parameter.  Default is 1.0e-8 degrees or
        1.0e-8 degrees converted to radians.

    Returns
    -------
    pyvista.UnstructuredGrid
        Solid sphere mesh.

    See Also
    --------
    pyvista.Sphere: Sphere that describes outer 2D surface.
    pyvista.SolidSphereGeneric: Uses more flexible parameter definition.

    Examples
    --------
    Create a solid sphere.

    >>> import pyvista as pv
    >>> import numpy as np
    >>> solid_sphere = pv.SolidSphere()
    >>> solid_sphere.plot(show_edges=True)

    A solid sphere is 3D in comparison to the 2d :func:`pyvista.Sphere`.
    Generate a solid hemisphere to see the internal structure.

    >>> isinstance(solid_sphere, pv.UnstructuredGrid)
    True
    >>> partial_solid_sphere = pv.SolidSphere(
    ...     start_theta=180, end_theta=360
    ... )
    >>> partial_solid_sphere.plot(show_edges=True)

    To see the cell structure inside the solid sphere,
    only 1/4 of the sphere is generated. The cells are exploded
    and colored by radial position.

    >>> partial_solid_sphere = pv.SolidSphere(
    ...     start_theta=180,
    ...     end_theta=360,
    ...     start_phi=0,
    ...     end_phi=90,
    ...     radius_resolution=5,
    ...     theta_resolution=8,
    ...     phi_resolution=8,
    ... )
    >>> partial_solid_sphere["cell_radial_pos"] = np.linalg.norm(
    ...     partial_solid_sphere.cell_centers().points, axis=-1
    ... )
    >>> partial_solid_sphere.explode(1).plot()

    """
    if end_theta is None:
        end_theta = 2 * np.pi if radians else 360.0
    if end_phi is None:
        end_phi = np.pi if radians else 180.0

    radius = np.linspace(inner_radius, outer_radius, radius_resolution)
    theta = np.linspace(start_theta, end_theta, theta_resolution)
    phi = np.linspace(start_phi, end_phi, phi_resolution)
    return SolidSphereGeneric(
        radius,
        theta,
        phi,
        center,
        direction,
        radians=radians,
        tol_radius=tol_radius,
        tol_angle=tol_angle,
    )


def SolidSphereGeneric(
    radius=None,
    theta=None,
    phi=None,
    center=(0.0, 0.0, 0.0),
    direction=(0.0, 0.0, 1.0),
    radians=False,
    tol_radius=1.0e-8,
    tol_angle=None,
):
    """Create a solid sphere with flexible sampling.

    A solid sphere fills space in 3D in comparison to
    :func:`pyvista.Sphere`, which is a 2D surface.

    This function allows user defined sampling of each spherical
    coordinate, whereas :func:`pyvista.SolidSphere`
    only allows linear sampling.   Angles are by default
    specified in degrees.

    PyVista uses a convention where ``theta`` represents the azimuthal
    angle (similar to degrees longitude on the globe) and ``phi``
    represents the polar angle (similar to degrees latitude on the
    globe). In contrast to latitude on the globe, here
    ``phi`` is 0 degrees at the North Pole and 180 degrees at the South
    Pole. ``phi=0`` is on the positive z-axis by default.
    ``theta=0`` is on the positive x-axis by default.

    Parameters
    ----------
    radius : sequence[float], optional
        A monotonically increasing sequence of values specifying radial
        points. Must have at least two points and be non-negative.

    theta : sequence[float], optional
        A monotonically increasing sequence of values specifying ``theta``
        points. Must have at least two points.  Can have any value as long
        as range is within 360 degrees. Large magnitudes may result in
        problems with endpoint overlap detection.

    phi : sequence[float], optional
        A monotonically increasing sequence of values specifying ``phi``
        points. Must have at least two points.  Must be between
        0 and 180 degrees.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center coordinate vector in ``[x, y, z]``.

    direction : sequence[float], default: (0.0, 0.0, 1.0)
        Direction coordinate vector in ``[x, y, z]`` pointing from ``center`` to
        the sphere's north pole at zero degrees ``phi``.

    radians : bool, default: False
        Whether to use radians for ``theta`` and ``phi``. Default is degrees.

    tol_radius : float, default: 1.0e-8
        Absolute tolerance for endpoint detection for ``radius``.

    tol_angle : float, optional
        Absolute tolerance for endpoint detection
        for ``phi`` and ``theta``. Unit is determined by choice
        of ``radians`` parameter.  Default is 1.0e-8 degrees or
        1.0e-8 degrees converted to radians.

    Returns
    -------
    pyvista.UnstructuredGrid
        Solid sphere mesh.

    See Also
    --------
    pyvista.SolidSphere: Sphere creation using linear sampling.
    pyvista.Sphere: Sphere that describes outer 2D surface.

    Examples
    --------
    Linearly sampling spherical coordinates does not lead to
    cells of all the same size at each radial position.
    Cells near the poles have smaller sizes.

    >>> import pyvista as pv
    >>> import numpy as np
    >>> solid_sphere = pv.SolidSphereGeneric(
    ...     radius=np.linspace(0, 0.5, 2),
    ...     theta=np.linspace(180, 360, 30),
    ...     phi=np.linspace(0, 180, 30),
    ... )
    >>> solid_sphere = solid_sphere.compute_cell_sizes()
    >>> solid_sphere.plot(
    ...     scalars="Volume", show_edges=True, clim=[3e-5, 5e-4]
    ... )

    Sampling the polar angle in a nonlinear manner allows for consistent cell volumes.  See
    `Sphere Point Picking <https://mathworld.wolfram.com/SpherePointPicking.html>`_.

    >>> phi = np.rad2deg(np.arccos(np.linspace(1, -1, 30)))
    >>> solid_sphere = pv.SolidSphereGeneric(
    ...     radius=np.linspace(0, 0.5, 2),
    ...     theta=np.linspace(180, 360, 30),
    ...     phi=phi,
    ... )
    >>> solid_sphere = solid_sphere.compute_cell_sizes()
    >>> solid_sphere.plot(
    ...     scalars="Volume", show_edges=True, clim=[3e-5, 5e-4]
    ... )

    """
    if radius is None:
        radius = np.linspace(0, 0.5, 5)
    radius = np.asanyarray(radius)

    # Default tolerance from user is set in degrees
    # But code is in radians.
    if tol_angle is None:
        tol_angle = np.deg2rad(1e-8)
    elif not radians:
        tol_angle = np.deg2rad(tol_angle)

    if theta is None:
        theta = np.linspace(0, 2 * np.pi, 30)
    else:
        theta = np.asanyarray(theta) if radians else np.deg2rad(theta)

    if phi is None:
        phi = np.linspace(0, np.pi, 30)
    else:
        phi = np.asanyarray(phi) if radians else np.deg2rad(phi)

    # Hereafter all degrees are in radians
    # radius, phi, theta are now np.ndarrays

    nr = len(radius)
    ntheta = len(theta)
    nphi = len(phi)

    if nr < 2:
        raise ValueError("radius resolution must be 2 or more")
    if ntheta < 2:
        raise ValueError("theta resolution must be 2 or more")
    if nphi < 2:
        raise ValueError("phi resolution must be 2 or more")

    def _is_sorted(a):
        return np.all(a[:-1] < a[1:])

    if not _is_sorted(radius):
        raise ValueError("radius is not monotonically increasing")
    if not _is_sorted(theta):
        raise ValueError("theta is not monotonically increasing")
    if not _is_sorted(phi):
        raise ValueError("phi is not monotonically increasing")

    def _greater_than_equal_or_close(value1, value2, atol):
        return value1 >= value2 or np.isclose(value1, value2, rtol=0.0, atol=atol)

    def _less_than_equal_or_close(value1, value2, atol):
        return value1 <= value2 or np.isclose(value1, value2, rtol=0.0, atol=atol)

    if not _greater_than_equal_or_close(radius[0], 0.0, tol_radius):
        raise ValueError("minimum radius cannot be negative")

    # range of theta cannot be greater than 360 degrees
    if not _less_than_equal_or_close(theta[-1] - theta[0], 2 * np.pi, tol_angle):
        max_angle = "2 * np.pi" if radians else "360 degrees"
        raise ValueError(f"max theta and min theta must be within {max_angle}")

    if not _greater_than_equal_or_close(phi[0], 0.0, tol_angle):
        raise ValueError("minimum phi cannot be negative")
    if not _less_than_equal_or_close(phi[-1], np.pi, tol_angle):
        max_angle = "np.pi" if radians else "180 degrees"
        raise ValueError(f"maximum phi cannot be > {max_angle}")

    def _spherical_to_cartesian(r, phi, theta):
        """Convert spherical coordinate sequences to a ``(n,3)`` Cartesian coordinate array.

        Parameters
        ----------
        r : sequence[float]
            Ordered sequence of floats of radii.
        phi : sequence[float]
            Ordered sequence of floats for phi direction.
        theta : sequence[float]
            Ordered sequence of floats for theta direction.

        Returns
        -------
        np.ndarray
            ``(n, 3)`` Cartesian coordinate array.

        """
        r, phi, theta = np.meshgrid(r, phi, theta, indexing='ij')
        x, y, z = pyvista.spherical_to_cartesian(r, phi, theta)
        return np.vstack((x.ravel(), y.ravel(), z.ravel())).transpose()

    points = []

    npoints_on_axis = 0

    if np.isclose(radius[0], 0.0, rtol=0.0, atol=tol_radius):
        points.append([0.0, 0.0, 0.0])
        include_origin = True
        nr = nr - 1
        radius = radius[1:]
        npoints_on_axis += 1
    else:
        include_origin = False

    if np.isclose(theta[-1] - theta[0], 2 * np.pi, rtol=0.0, atol=tol_angle):
        duplicate_theta = True
        theta = theta[:-1]
    else:
        duplicate_theta = False

    if np.isclose(phi[0], 0.0, rtol=0.0, atol=tol_angle):
        points.extend(_spherical_to_cartesian(radius, 0.0, theta[0]))
        positive_axis = True
        phi = phi[1:]
        nphi = nphi - 1
        npoints_on_axis += nr
    else:
        positive_axis = False
    npoints_on_pos_axis = npoints_on_axis

    if np.isclose(phi[-1], np.pi, rtol=0.0, atol=tol_angle):
        points.extend(_spherical_to_cartesian(radius, np.pi, theta[0]))
        negative_axis = True
        phi = phi[:-1]
        nphi = nphi - 1
        npoints_on_axis += nr
    else:
        negative_axis = False

    # rest of points with theta changing quickest
    for ir, iphi in product(radius, phi):
        points.extend(_spherical_to_cartesian(ir, iphi, theta))

    cells = []
    celltypes = []

    def _index(ir, iphi, itheta):
        """Index for points not on axis.

        Values of ir and phi here are relative to the first nonaxis values.
        """
        if duplicate_theta:
            ntheta_ = ntheta - 1
            itheta = itheta % ntheta_
        else:
            ntheta_ = ntheta

        return npoints_on_axis + ir * nphi * ntheta_ + iphi * ntheta_ + itheta

    if include_origin:
        # First make the tetras that form with origin and axis point
        #   origin is 0
        #   first axis point is 1
        #   other points at first phi position off axis
        if positive_axis:
            for itheta in range(ntheta - 1):
                cells.append(4)
                cells.extend([0, 1, _index(0, 0, itheta), _index(0, 0, itheta + 1)])
                celltypes.append(pyvista.CellType.TETRA)

        # Next tetras that form with origin and bottom axis point
        #   origin is 0
        #   axis point is first in negative dir
        #   other points at last phi position off axis
        if negative_axis:
            for itheta in range(ntheta - 1):
                cells.append(4)
                cells.extend(
                    [
                        0,
                        npoints_on_pos_axis,
                        _index(0, nphi - 1, itheta + 1),
                        _index(0, nphi - 1, itheta),
                    ],
                )
                celltypes.append(pyvista.CellType.TETRA)

        # Pyramids that form to origin but without an axis point
        for iphi, itheta in product(range(nphi - 1), range(ntheta - 1)):
            cells.append(5)
            cells.extend(
                [
                    _index(0, iphi, itheta),
                    _index(0, iphi, itheta + 1),
                    _index(0, iphi + 1, itheta + 1),
                    _index(0, iphi + 1, itheta),
                    0,
                ],
            )
            celltypes.append(pyvista.CellType.PYRAMID)

    # Wedges form between two r levels at first and last phi position
    #   At each r level, the triangle is formed with axis point,  two theta positions
    # First go upwards
    if positive_axis:
        for ir, itheta in product(range(nr - 1), range(ntheta - 1)):
            axis0 = ir + 1 if include_origin else ir
            axis1 = ir + 2 if include_origin else ir + 1
            cells.append(6)
            cells.extend(
                [
                    axis0,
                    _index(ir, 0, itheta + 1),
                    _index(ir, 0, itheta),
                    axis1,
                    _index(ir + 1, 0, itheta + 1),
                    _index(ir + 1, 0, itheta),
                ],
            )
            celltypes.append(pyvista.CellType.WEDGE)

    # now go downwards
    if negative_axis:
        for ir, itheta in product(range(nr - 1), range(ntheta - 1)):
            axis0 = npoints_on_pos_axis + ir
            axis1 = npoints_on_pos_axis + ir + 1
            cells.append(6)
            cells.extend(
                [
                    axis0,
                    _index(ir, nphi - 1, itheta),
                    _index(ir, nphi - 1, itheta + 1),
                    axis1,
                    _index(ir + 1, nphi - 1, itheta),
                    _index(ir + 1, nphi - 1, itheta + 1),
                ],
            )
            celltypes.append(pyvista.CellType.WEDGE)

    # Form Hexahedra
    # Hexahedra form between two r levels and two phi levels and two theta levels
    #   Order by r levels
    for ir, iphi, itheta in product(range(nr - 1), range(nphi - 1), range(ntheta - 1)):
        cells.append(8)
        cells.extend(
            [
                _index(ir, iphi, itheta),
                _index(ir, iphi + 1, itheta),
                _index(ir, iphi + 1, itheta + 1),
                _index(ir, iphi, itheta + 1),
                _index(ir + 1, iphi, itheta),
                _index(ir + 1, iphi + 1, itheta),
                _index(ir + 1, iphi + 1, itheta + 1),
                _index(ir + 1, iphi, itheta + 1),
            ],
        )
        celltypes.append(pyvista.CellType.HEXAHEDRON)

    mesh = pyvista.UnstructuredGrid(cells, celltypes, points)
    mesh.rotate_y(90, inplace=True)
    translate(mesh, center, direction)
    return mesh


def Plane(
    center=(0.0, 0.0, 0.0),
    direction=(0.0, 0.0, 1.0),
    i_size=1,
    j_size=1,
    i_resolution=10,
    j_resolution=10,
):
    """Create a plane.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Location of the centroid in ``[x, y, z]``.

    direction : sequence[float], default: (0.0, 0.0, 1.0)
        Direction of the plane's normal in ``[x, y, z]``.

    i_size : float, default: 1.0
        Size of the plane in the i direction.

    j_size : float, default: 1.0
        Size of the plane in the j direction.

    i_resolution : int, default: 10
        Number of points on the plane in the i direction.

    j_resolution : int, default: 10
        Number of points on the plane in the j direction.

    Returns
    -------
    pyvista.PolyData
        Plane mesh.

    Examples
    --------
    Create a default plane.

    >>> import pyvista as pv
    >>> mesh = pv.Plane()
    >>> mesh.point_data.clear()
    >>> mesh.plot(show_edges=True)
    """
    planeSource = PlaneSource(i_resolution=i_resolution, j_resolution=j_resolution)
    surf = planeSource.output

    surf.points[:, 0] *= i_size
    surf.points[:, 1] *= j_size
    surf.rotate_y(90, inplace=True)
    translate(surf, center, direction)
    return surf


def Line(pointa=(-0.5, 0.0, 0.0), pointb=(0.5, 0.0, 0.0), resolution=1):
    """Create a line.

    Parameters
    ----------
    pointa : sequence[float], default: (-0.5, 0.0, 0.0)
        Location in ``[x, y, z]``.

    pointb : sequence[float], default: (0.5, 0.0, 0.0)
        Location in ``[x, y, z]``.

    resolution : int, default: 1
        Number of pieces to divide line into.

    Returns
    -------
    pyvista.PolyData
        Line mesh.

    Examples
    --------
    Create a line between ``(0, 0, 0)`` and ``(0, 0, 1)``.

    >>> import pyvista as pv
    >>> mesh = pv.Line((0, 0, 0), (0, 0, 1))
    >>> mesh.plot(color='k', line_width=10)

    """
    src = LineSource(pointa, pointb, resolution)
    line = src.output
    # Compute distance of every point along line
    compute = lambda p0, p1: np.sqrt(np.sum((p1 - p0) ** 2, axis=1))
    distance = compute(np.array(pointa), line.points)
    line['Distance'] = distance
    return line


def MultipleLines(points=None):
    """Create multiple lines.

    Parameters
    ----------
    points : array_like[float], default: [[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]]
        List of points defining a broken line.

    Returns
    -------
    pyvista.PolyData
        Line mesh.

    Examples
    --------
    Create a multiple lines between ``(0, 0, 0)``, ``(1, 1, 1)`` and ``(0, 0, 1)``.

    >>> import pyvista as pv
    >>> mesh = pv.MultipleLines(points=[[0, 0, 0], [1, 1, 1], [0, 0, 1]])
    >>> plotter = pv.Plotter()
    >>> actor = plotter.add_mesh(mesh, color='k', line_width=10)
    >>> plotter.camera.azimuth = 45
    >>> plotter.camera.zoom(0.8)
    >>> plotter.show()
    """
    if points is None:
        points = [[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]]
    return MultipleLinesSource(points=points).output


def Tube(pointa=(-0.5, 0.0, 0.0), pointb=(0.5, 0.0, 0.0), resolution=1, radius=1.0, n_sides=15):
    """Create a tube.

    Parameters
    ----------
    pointa : sequence[float], default: (-0.5, 0.0, 0.0)
        Location in ``[x, y, z]``.

    pointb : sequence[float], default: (0.5, 0.0, 0.0)
        Location in ``[x, y, z]``.

    resolution : int, default: 1
        Number of pieces to divide tube into.

    radius : float, default: 1.0
        Minimum tube radius (minimum because the tube radius may vary).

    n_sides : int, default: 15
        Number of sides for the tube.

    Returns
    -------
    pyvista.PolyData
        Tube mesh.

    Examples
    --------
    Create a tube between ``(0, 0, 0)`` and ``(0, 0, 1)``.

    >>> import pyvista as pv
    >>> mesh = pv.Tube((0, 0, 0), (0, 0, 1))
    >>> mesh.plot()

    """
    line_src = LineSource(pointa, pointb, resolution)
    return line_src.output.tube(radius=radius, n_sides=n_sides, capping=False)


def Cube(
    center=(0.0, 0.0, 0.0),
    x_length=1.0,
    y_length=1.0,
    z_length=1.0,
    bounds=None,
    clean=True,
    point_dtype='float32',
):
    """Create a cube.

    It's possible to specify either the center and side lengths or
    just the bounds of the cube. If ``bounds`` are given, all other
    arguments are ignored.

    .. versionchanged:: 0.33.0
        The cube is created using ``vtk.vtkCubeSource``. For
        compatibility with :func:`pyvista.PlatonicSolid`, face indices
        are also added as cell data. For full compatibility with
        :func:`PlatonicSolid() <pyvista.PlatonicSolid>`, one has to
        use ``x_length = y_length = z_length = 2 * radius / 3**0.5``.
        The cube points are also cleaned by default now, leaving only
        the 8 corners and a watertight (manifold) mesh.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center in ``[x, y, z]``.

    x_length : float, default: 1.0
        Length of the cube in the x-direction.

    y_length : float, default: 1.0
        Length of the cube in the y-direction.

    z_length : float, default: 1.0
        Length of the cube in the z-direction.

    bounds : sequence[float], optional
        Specify the bounding box of the cube. If given, all other size
        arguments are ignored. ``(xMin, xMax, yMin, yMax, zMin, zMax)``.

    clean : bool, default: True
        Whether to clean the raw points of the mesh, making the cube
        manifold. Note that this will degrade the texture coordinates
        that come with the mesh, so if you plan to map a texture on
        the cube, consider setting this to ``False``.

        .. versionadded:: 0.33.0

    point_dtype : str, default: 'float32'
        Set the desired output point types. It must be either 'float32' or 'float64'.

        .. versionadded:: 0.44.0

    Returns
    -------
    pyvista.PolyData
        Mesh of the cube.

    Examples
    --------
    Create a default cube.

    >>> import pyvista as pv
    >>> mesh = pv.Cube()
    >>> mesh.plot(show_edges=True, line_width=5)

    """
    algo = CubeSource(
        center=center,
        x_length=x_length,
        y_length=y_length,
        z_length=z_length,
        bounds=bounds,
        point_dtype=point_dtype,
    )
    cube = algo.output

    # add face index data for compatibility with PlatonicSolid
    # but make it inactive for backwards compatibility
    cube.cell_data.set_array([1, 4, 0, 3, 5, 2], 'FaceIndex')

    # clean duplicate points
    if clean:
        cube.clean(inplace=True)

    return cube


def Box(bounds=(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0), level=0, quads=True):
    """Create a box with solid faces for the given bounds.

    Parameters
    ----------
    bounds : sequence[float], default: (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
        Specify the bounding box of the cube.
        ``(xMin, xMax, yMin, yMax, zMin, zMax)``.

    level : int, default: 0
        Level of subdivision of the faces.

    quads : bool, default: True
        Flag to tell the source to generate either a quad or two
        triangle for a set of four points.

    Returns
    -------
    pyvista.PolyData
        Mesh of the box.

    Examples
    --------
    Create a box with subdivision ``level=2``.

    >>> import pyvista as pv
    >>> mesh = pv.Box(level=2)
    >>> mesh.plot(show_edges=True)

    """
    return BoxSource(level=level, quads=quads, bounds=bounds).output


def Cone(
    center=(0.0, 0.0, 0.0),
    direction=(1.0, 0.0, 0.0),
    height=1.0,
    radius=None,
    capping=True,
    angle=None,
    resolution=6,
):
    """Create a cone.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center in ``[x, y, z]``. Axis of the cone passes through this
        point.

    direction : sequence[float], default: (1.0, 0.0, 0.0)
        Direction vector in ``[x, y, z]``. Orientation vector of the
        cone.

    height : float, default: 1.0
        Height along the cone in its specified direction.

    radius : float, optional
        Base radius of the cone.

    capping : bool, optional
        Enable or disable the capping the base of the cone with a
        polygon.

    angle : float, optional
        The angle in degrees between the axis of the cone and a
        generatrix.

    resolution : int, default: 6
        Number of facets used to represent the cone.

    Returns
    -------
    pyvista.PolyData
        Cone mesh.

    Examples
    --------
    Create a default Cone.

    >>> import pyvista as pv
    >>> mesh = pv.Cone()
    >>> mesh.plot(show_edges=True, line_width=5)
    """
    algo = ConeSource(
        capping=capping,
        direction=direction,
        center=center,
        height=height,
        angle=angle,
        radius=radius,
        resolution=resolution,
    )
    return algo.output


def Polygon(center=(0.0, 0.0, 0.0), radius=1.0, normal=(0.0, 0.0, 1.0), n_sides=6, fill=True):
    """Create a polygon.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center in ``[x, y, z]``. Central axis of the polygon passes
        through this point.

    radius : float, default: 1.0
        The radius of the polygon.

    normal : sequence[float], default: (0.0, 0.0, 1.0)
        Direction vector in ``[x, y, z]``. Orientation vector of the polygon.

    n_sides : int, default: 6
        Number of sides of the polygon.

    fill : bool, default: True
        Enable or disable producing filled polygons.

    Returns
    -------
    pyvista.PolyData
        Mesh of the polygon.

    Examples
    --------
    Create an 8 sided polygon.

    >>> import pyvista as pv
    >>> mesh = pv.Polygon(n_sides=8)
    >>> mesh.plot(show_edges=True, line_width=5)

    """
    src = PolygonSource(fill=fill, center=center, n_sides=n_sides, radius=radius, normal=normal)
    return src.output


def Disc(center=(0.0, 0.0, 0.0), inner=0.25, outer=0.5, normal=(0.0, 0.0, 1.0), r_res=1, c_res=6):
    """Create a polygonal disk with a hole in the center.

    The disk has zero height. The user can specify the inner and outer
    radius of the disk, and the radial and circumferential resolution
    of the polygonal representation.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center in ``[x, y, z]``. Middle of the axis of the disc.

    inner : float, default: 0.25
        The inner radius.

    outer : float, default: 0.5
        The outer radius.

    normal : sequence[float], default: (0.0, 0.0, 1.0)
        Direction vector in ``[x, y, z]``. Orientation vector of the disc.

    r_res : int, default: 1
        Number of points in radial direction.

    c_res : int, default: 6
        Number of points in circumferential direction.

    Returns
    -------
    pyvista.PolyData
        Disk mesh.

    Examples
    --------
    Create a disc with 50 points in the circumferential direction.

    >>> import pyvista as pv
    >>> mesh = pv.Disc(c_res=50)
    >>> mesh.plot(show_edges=True, line_width=5)

    """
    algo = DiscSource(inner=inner, outer=outer, r_res=r_res, c_res=c_res)
    normal = np.array(normal)
    center = np.array(center)
    surf = algo.output
    surf.rotate_y(90, inplace=True)
    translate(surf, center, normal)
    return surf


def Text3D(string, depth=None, width=None, height=None, center=(0, 0, 0), normal=(0, 0, 1)):
    """Create 3D text from a string.

    The text may be configured to have a specified width, height or depth.

    Parameters
    ----------
    string : str
        String to generate 3D text from. If ``None`` or an empty string,
        the output mesh will have a single point at :attr:`center`.

    depth : float, optional
        Depth of the text. If ``None``, the depth is set to half
        the :attr:`height` by default. Set to ``0.0`` for planar
        text.

        .. versionchanged:: 0.43

            The default depth is now calculated dynamically as
            half the height. Previously, the default depth had
            a fixed value of ``0.5``.

    width : float, optional
        Width of the text. If ``None``, the width is scaled
        proportional to :attr:`height`.

        .. versionadded:: 0.43

    height : float, optional
        Height of the text. If ``None``, the height is scaled
        proportional to :attr:`width`.

        .. versionadded:: 0.43

    center : Sequence[float], default: (0.0, 0.0, 0.0)
        Center of the text, defined as the middle of the axis-aligned
        bounding box of the text.

        .. versionadded:: 0.43

    normal : Sequence[float], default: (0.0, 0.0, 1.0)
        Normal direction of the text. The direction is parallel to the
        :attr:`depth` of the text and points away from the front surface
        of the text.

        .. versionadded:: 0.43


    Returns
    -------
    pyvista.PolyData
        3D text mesh.

    Examples
    --------
    >>> import pyvista as pv
    >>> text_mesh = pv.Text3D('PyVista')
    >>> text_mesh.plot(cpos='xy')
    """
    return Text3DSource(
        string,
        width=width,
        height=height,
        depth=depth,
        center=center,
        normal=normal,
        process_empty_string=True,
    ).output


def Wavelet(
    extent=(-10, 10, -10, 10, -10, 10),
    center=(0.0, 0.0, 0.0),
    maximum=255.0,
    x_freq=60.0,
    y_freq=30.0,
    z_freq=40.0,
    x_mag=10.0,
    y_mag=18.0,
    z_mag=5.0,
    std=0.5,
    subsample_rate=1,
):
    """Create a wavelet.

    Produces images with pixel values determined by
    ``Maximum*Gaussian*x_mag*sin(x_freq*x)*sin(y_freq*y)*cos(z_freq*z)``

    Values are float scalars on point data with name ``"RTData"``.

    Parameters
    ----------
    extent : sequence[int], default: (-10, 10, -10, 10, -10, 10)
        Set/Get the extent of the whole output image.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center of the wavelet.

    maximum : float, default: 255.0
        Maximum of the wavelet function.

    x_freq : float, default: 60.0
        Natural frequency in the x direction.

    y_freq : float, default: 30.0
        Natural frequency in the y direction.

    z_freq : float, default: 40.0
        Natural frequency in the z direction.

    x_mag : float, default: 10.0
        Magnitude in the x direction.

    y_mag : float, default: 18.0
        Magnitude in the y direction.

    z_mag : float, default: 5.0
        Magnitude in the z direction.

    std : float, default: 0.5
        Standard deviation.

    subsample_rate : int, default: 1
        The sub-sample rate.

    Returns
    -------
    pyvista.PolyData
        Wavelet mesh.

    Examples
    --------
    >>> import pyvista as pv
    >>> wavelet = pv.Wavelet(
    ...     extent=(0, 50, 0, 50, 0, 10),
    ...     x_freq=20,
    ...     y_freq=10,
    ...     z_freq=1,
    ...     x_mag=100,
    ...     y_mag=100,
    ...     z_mag=1000,
    ... )
    >>> wavelet.plot(show_scalar_bar=False)

    Extract lower valued cells of the wavelet and create a surface from it.

    >>> thresh = wavelet.threshold(800).extract_surface()
    >>> thresh.plot(show_scalar_bar=False)

    Smooth it to create "waves"

    >>> waves = thresh.smooth(n_iter=100, relaxation_factor=0.1)
    >>> waves.plot(color='white', smooth_shading=True, show_edges=True)

    """
    wavelet_source = _vtk.vtkRTAnalyticSource()
    wavelet_source.SetWholeExtent(*extent)
    wavelet_source.SetCenter(center)
    wavelet_source.SetMaximum(maximum)
    wavelet_source.SetXFreq(x_freq)
    wavelet_source.SetYFreq(y_freq)
    wavelet_source.SetZFreq(z_freq)
    wavelet_source.SetXMag(x_mag)
    wavelet_source.SetYMag(y_mag)
    wavelet_source.SetZMag(z_mag)
    wavelet_source.SetStandardDeviation(std)
    wavelet_source.SetSubsampleRate(subsample_rate)
    wavelet_source.Update()
    return wrap(wavelet_source.GetOutput())


def CircularArc(pointa, pointb, center, resolution=100, negative=False):
    """Create a circular arc defined by two endpoints and a center.

    The number of segments composing the polyline is controlled by
    setting the object resolution.

    Parameters
    ----------
    pointa : sequence[float]
        Position of the first end point.

    pointb : sequence[float]
        Position of the other end point.

    center : sequence[float]
        Center of the circle that defines the arc.

    resolution : int, default: 100
        The number of segments of the polyline that draws the arc.
        Resolution of 1 will just create a line.

    negative : bool, default: False
        By default the arc spans the shortest angular sector between
        ``pointa`` and ``pointb``.

        By setting this to ``True``, the longest angular sector is
        used instead (i.e. the negative coterminal angle to the
        shortest one).

    Returns
    -------
    pyvista.PolyData
        Circular arc mesh.

    Examples
    --------
    Create a quarter arc centered at the origin in the xy plane.

    >>> import pyvista as pv
    >>> arc = pv.CircularArc([-1, 0, 0], [0, 1, 0], [0, 0, 0])
    >>> pl = pv.Plotter()
    >>> _ = pl.add_mesh(arc, color='k', line_width=10)
    >>> _ = pl.show_bounds(location='all', font_size=30, use_2d=True)
    >>> _ = pl.view_xy()
    >>> pl.show()
    """
    check_valid_vector(pointa, 'pointa')
    check_valid_vector(pointb, 'pointb')
    check_valid_vector(center, 'center')
    if not np.isclose(
        np.linalg.norm(np.array(pointa) - np.array(center)),
        np.linalg.norm(np.array(pointb) - np.array(center)),
    ):
        raise ValueError("pointa and pointb are not equidistant from center")

    # fix half-arc bug: if a half arc travels directly through the
    # center point, it becomes a line
    pointb = list(pointb)
    pointb[0] -= 1e-10
    pointb[1] -= 1e-10

    arc = _vtk.vtkArcSource()
    arc.SetPoint1(*pointa)
    arc.SetPoint2(*pointb)
    arc.SetCenter(*center)
    arc.SetResolution(resolution)
    arc.SetNegative(negative)

    arc.Update()
    angle = np.deg2rad(arc.GetAngle())
    arc = wrap(arc.GetOutput())
    # Compute distance of every point along circular arc
    center = np.array(center).ravel()
    radius = np.sqrt(np.sum((arc.points[0] - center) ** 2, axis=0))
    angles = np.linspace(0.0, 1.0, arc.n_points) * angle
    arc['Distance'] = radius * angles
    return arc


def CircularArcFromNormal(center, resolution=100, normal=None, polar=None, angle=None):
    """Create a circular arc defined by normal to the plane of the arc, and an angle.

    The number of segments composing the polyline is controlled by
    setting the object resolution.

    Parameters
    ----------
    center : sequence[float]
        Center of the circle that defines the arc.

    resolution : int, default: 100
        The number of segments of the polyline that draws the arc.
        Resolution of 1 will just create a line.

    normal : sequence[float], optional
        The normal vector to the plane of the arc.  By default it
        points in the positive Z direction.

    polar : sequence[float], optional
        Starting point of the arc in polar coordinates.  By default it
        is the unit vector in the positive x direction.

    angle : float, optional
        Arc length (in degrees) beginning at the polar vector.  The
        direction is counterclockwise.  By default it is 90.

    Returns
    -------
    pyvista.PolyData
        Circular arc mesh.

    Examples
    --------
    Quarter arc centered at the origin in the xy plane.

    >>> import pyvista as pv
    >>> normal = [0, 0, 1]
    >>> polar = [-1, 0, 0]
    >>> arc = pv.CircularArcFromNormal(
    ...     [0, 0, 0], normal=normal, polar=polar
    ... )
    >>> pl = pv.Plotter()
    >>> _ = pl.add_mesh(arc, color='k', line_width=10)
    >>> _ = pl.show_bounds(location='all', font_size=30, use_2d=True)
    >>> _ = pl.view_xy()
    >>> pl.show()
    """
    check_valid_vector(center, 'center')
    if normal is None:
        normal = [0, 0, 1]
    if polar is None:
        polar = [1, 0, 0]
    if angle is None:
        angle = 90.0

    arc = _vtk.vtkArcSource()
    arc.SetCenter(*center)
    arc.SetResolution(resolution)
    arc.UseNormalAndAngleOn()
    check_valid_vector(normal, 'normal')
    arc.SetNormal(*normal)
    check_valid_vector(polar, 'polar')
    arc.SetPolarVector(*polar)
    arc.SetAngle(angle)
    arc.Update()
    angle = np.deg2rad(arc.GetAngle())
    arc = wrap(arc.GetOutput())
    # Compute distance of every point along circular arc
    center = np.array(center)
    radius = np.sqrt(np.sum((arc.points[0] - center) ** 2, axis=0))
    angles = np.linspace(0.0, angle, resolution + 1)
    arc['Distance'] = radius * angles
    return arc


def Pyramid(points=None):
    """Create a pyramid defined by 5 points.

    Parameters
    ----------
    points : array_like[float], optional
        Points of the pyramid.  Points are ordered such that the first
        four points are the four counterclockwise points on the
        quadrilateral face, and the last point is the apex.

        Defaults to pyramid in example.

    Returns
    -------
    pyvista.UnstructuredGrid
        Unstructured grid containing a single pyramid cell.

    Examples
    --------
    >>> import pyvista as pv
    >>> pointa = [1.0, 1.0, 0.0]
    >>> pointb = [-1.0, 1.0, 0.0]
    >>> pointc = [-1.0, -1.0, 0.0]
    >>> pointd = [1.0, -1.0, 0.0]
    >>> pointe = [0.0, 0.0, 1.608]
    >>> pyramid = pv.Pyramid([pointa, pointb, pointc, pointd, pointe])
    >>> pyramid.plot(show_edges=True, line_width=5)
    """
    if points is None:
        points = [
            [1.0, 1.0, 0.0],
            [-1.0, 1.0, 0.0],
            [-1.0, -1.0, 0.0],
            [1.0, -1.0, 0.0],
            [0.0, 0.0, (4 - 2**0.5) ** 0.5],
        ]

    if len(points) != 5:
        raise TypeError('Points must be given as length 5 np.ndarray or list.')

    check_valid_vector(points[0], 'points[0]')
    check_valid_vector(points[1], 'points[1]')
    check_valid_vector(points[2], 'points[2]')
    check_valid_vector(points[3], 'points[3]')
    check_valid_vector(points[4], 'points[4]')

    pyramid = _vtk.vtkPyramid()
    pyramid.GetPointIds().SetId(0, 0)
    pyramid.GetPointIds().SetId(1, 1)
    pyramid.GetPointIds().SetId(2, 2)
    pyramid.GetPointIds().SetId(3, 3)
    pyramid.GetPointIds().SetId(4, 4)

    ug = _vtk.vtkUnstructuredGrid()
    ug.SetPoints(pyvista.vtk_points(np.array(points), False))
    ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds())

    return wrap(ug)


def Triangle(points=None):
    """Create a triangle defined by 3 points.

    Parameters
    ----------
    points : array_like[float], optional
        Points of the triangle.  Defaults to a right isosceles
        triangle (see example).

    Returns
    -------
    pyvista.PolyData
        Triangle mesh.

    Examples
    --------
    >>> import pyvista as pv
    >>> pointa = [0, 0, 0]
    >>> pointb = [1, 0, 0]
    >>> pointc = [0.5, 0.707, 0]
    >>> triangle = pv.Triangle([pointa, pointb, pointc])
    >>> triangle.plot(show_edges=True, line_width=5)
    """
    if points is None:
        points = [[0, 0, 0], [1, 0, 0], [0.5, 0.5**0.5, 0]]

    if len(points) != 3:
        raise TypeError('Points must be given as length 3 np.ndarray or list')

    check_valid_vector(points[0], 'points[0]')
    check_valid_vector(points[1], 'points[1]')
    check_valid_vector(points[2], 'points[2]')

    cells = np.array([[3, 0, 1, 2]])
    return wrap(pyvista.PolyData(points, cells))


def Rectangle(points=None):
    """Create a rectangle defined by 3 points.

    The 3 points must define an orthogonal set of vectors.

    Parameters
    ----------
    points : array_like[float], optional
        Points of the rectangle. Defaults to a unit square in xy-plane.

    Returns
    -------
    pyvista.PolyData
        Rectangle mesh.

    Examples
    --------
    >>> import pyvista as pv
    >>> pointa = [1.0, 0.0, 0.0]
    >>> pointb = [1.0, 1.0, 0.0]
    >>> pointc = [0.0, 1.0, 0.0]
    >>> rectangle = pv.Rectangle([pointa, pointb, pointc])
    >>> rectangle.plot(show_edges=True, line_width=5)
    """
    if points is None:
        points = [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]
    if len(points) != 3:
        raise TypeError('Points must be given as length 3 np.ndarray or list')

    points, _ = _coerce_pointslike_arg(points)

    point_0 = points[0]
    point_1 = points[1]
    point_2 = points[2]

    vec_01 = point_1 - point_0
    vec_02 = point_2 - point_0
    vec_12 = point_2 - point_1

    mag_01 = np.linalg.norm(vec_01)
    mag_02 = np.linalg.norm(vec_02)
    mag_12 = np.linalg.norm(vec_12)

    if np.isclose(mag_01, 0) or np.isclose(mag_02, 0) or np.isclose(mag_12, 0):
        raise ValueError("Unable to build a rectangle with less than three different points")

    scalar_pdct_01_02 = np.dot(vec_01, vec_02) / min(mag_01, mag_02) ** 2
    scalar_pdct_01_12 = np.dot(vec_01, vec_12) / min(mag_01, mag_12) ** 2
    scalar_pdct_02_12 = np.dot(vec_02, vec_12) / min(mag_02, mag_12) ** 2

    null_scalar_products = [
        val
        for val in [scalar_pdct_01_02, scalar_pdct_01_12, scalar_pdct_02_12]
        if np.isclose(val, 0)
    ]
    if len(null_scalar_products) == 0:
        raise ValueError("The three points should defined orthogonal vectors")

    points = np.array([point_0, point_1, point_2, point_0])
    if np.isclose(scalar_pdct_01_02, 0):
        points[3] = point_0 + vec_01 + vec_02
        cells = np.array([[4, 0, 1, 3, 2]])
    elif np.isclose(scalar_pdct_01_12, 0):
        points[3] = point_1 + vec_12 - vec_01
        cells = np.array([[4, 0, 1, 2, 3]])
    else:
        points[3] = point_2 - vec_02 - vec_12
        cells = np.array([[4, 0, 2, 1, 3]])

    return pyvista.PolyData(points, cells)


def Quadrilateral(points=None):
    """Create a quadrilateral defined by 4 points.

    Parameters
    ----------
    points : array_like[float], optional
        Points of the quadrilateral.  Defaults to a unit square in xy-plane.

    Returns
    -------
    pyvista.PolyData
        Quadrilateral mesh.

    Examples
    --------
    >>> import pyvista as pv
    >>> pointa = [1.0, 0.0, 0.0]
    >>> pointb = [1.0, 1.0, 0.0]
    >>> pointc = [0.0, 1.0, 0.0]
    >>> pointd = [0.0, 0.0, 0.0]
    >>> quadrilateral = pv.Quadrilateral([pointa, pointb, pointc, pointd])
    >>> quadrilateral.plot(show_edges=True, line_width=5)

    """
    if points is None:
        points = [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]
    if len(points) != 4:
        raise TypeError('Points must be given as length 4 np.ndarray or list')

    points, _ = _coerce_pointslike_arg(points)

    cells = np.array([[4, 0, 1, 2, 3]])
    return wrap(pyvista.PolyData(points, cells))


def Circle(radius=0.5, resolution=100):
    """Create a single PolyData circle defined by radius in the XY plane.

    Parameters
    ----------
    radius : float, default: 0.5
        Radius of circle.

    resolution : int, default: 100
        Number of points on the circle.

    Returns
    -------
    pyvista.PolyData
        Circle mesh.

    Notes
    -----
    .. versionchanged:: 0.38.0
       Prior to version 0.38, this method had incorrect results, producing
       inconsistent edge lengths and a duplicated point which is now fixed.

    Examples
    --------
    >>> import pyvista as pv
    >>> radius = 0.5
    >>> circle = pv.Circle(radius)
    >>> circle.plot(show_edges=True, line_width=5)

    """
    points = np.zeros((resolution, 3))
    theta = np.linspace(0.0, 2.0 * np.pi, resolution, endpoint=False)
    points[:, 0] = radius * np.cos(theta)
    points[:, 1] = radius * np.sin(theta)
    cells = np.array([np.append(np.array([resolution]), np.arange(resolution))])
    return wrap(pyvista.PolyData(points, cells))


def Ellipse(semi_major_axis=0.5, semi_minor_axis=0.2, resolution=100):
    """Create a single PolyData ellipse defined by the Semi-major and Semi-minor axes in the XY plane.

    Parameters
    ----------
    semi_major_axis : float, default: 0.5
        Semi-major axis of ellipse.

    semi_minor_axis : float, default: 0.2
        Semi-minor axis of ellipse.

    resolution : int, default: 100
        Number of points on the ellipse.

    Returns
    -------
    pyvista.PolyData
        Ellipse mesh.

    Notes
    -----
    .. versionchanged:: 0.38.0
       Prior to version 0.38, this method had incorrect results, producing
       inconsistent edge lengths and a duplicated point which is now fixed.

    Examples
    --------
    >>> import pyvista as pv
    >>> ellipse = pv.Ellipse(semi_major_axis=8, semi_minor_axis=4)
    >>> ellipse.plot(show_edges=True, line_width=5)
    """
    points = np.zeros((resolution, 3))
    theta = np.linspace(0.0, 2.0 * np.pi, resolution, endpoint=False)
    points[:, 0] = semi_major_axis * np.cos(theta)
    points[:, 1] = semi_minor_axis * np.sin(theta)
    cells = np.array([np.append(np.array([resolution]), np.arange(resolution))])
    return wrap(pyvista.PolyData(points, cells))


def Superquadric(
    center=(0.0, 0.0, 0.0),
    scale=(1.0, 1.0, 1.0),
    size=0.5,
    theta_roundness=1.0,
    phi_roundness=1.0,
    theta_resolution=16,
    phi_resolution=16,
    toroidal=False,
    thickness=1 / 3,
):
    """Create a superquadric.

    Parameters
    ----------
    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center of the superquadric in ``[x, y, z]``.

    scale : sequence[float], default: (1.0, 1.0, 1.0)
        Scale factors of the superquadric in ``[x, y, z]``.

    size : float, default: 0.5
        Superquadric isotropic size.

    theta_roundness : float, default: 1.0
        Superquadric east/west roundness.
        Values range from 0 (rectangular) to 1 (circular) to higher orders.

    phi_roundness : float, default: 1.0
        Superquadric north/south roundness.
        Values range from 0 (rectangular) to 1 (circular) to higher orders.

    theta_resolution : int, default: 16
        Number of points in the longitude direction.
        Values are rounded to nearest multiple of 4.

    phi_resolution : int, default: 16
        Number of points in the latitude direction.
        Values are rounded to nearest multiple of 8.

    toroidal : bool, default: False
        Whether or not the superquadric is toroidal (``True``)
        or ellipsoidal (``False``).

    thickness : float, default: 0.3333333333
        Superquadric ring thickness.
        Only applies if toroidal is set to ``True``.

    Returns
    -------
    pyvista.PolyData
        Superquadric mesh.

    See Also
    --------
    pyvista.ParametricSuperEllipsoid :
        Parametric superquadric if toroidal is ``False``.
    pyvista.ParametricSuperToroid :
        Parametric superquadric if toroidal is ``True``.

    Examples
    --------
    >>> import pyvista as pv
    >>> superquadric = pv.Superquadric(
    ...     scale=(3.0, 1.0, 0.5),
    ...     phi_roundness=0.1,
    ...     theta_roundness=0.5,
    ... )
    >>> superquadric.plot(show_edges=True)

    """
    source = SuperquadricSource(
        center=center,
        scale=scale,
        size=size,
        theta_roundness=theta_roundness,
        phi_roundness=phi_roundness,
        theta_resolution=theta_resolution,
        phi_resolution=phi_resolution,
        toroidal=toroidal,
        thickness=thickness,
    )
    return source.output


def PlatonicSolid(kind='tetrahedron', radius=1.0, center=(0.0, 0.0, 0.0)):
    """Create a Platonic solid of a given size.

    Parameters
    ----------
    kind : str | int, default: 'tetrahedron'
        The kind of Platonic solid to create. Either the name of the
        polyhedron or an integer index:

            * ``'tetrahedron'`` or ``0``
            * ``'cube'`` or ``1``
            * ``'octahedron'`` or ``2``
            * ``'icosahedron'`` or ``3``
            * ``'dodecahedron'`` or ``4``

    radius : float, default: 1.0
        The radius of the circumscribed sphere for the solid to create.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Sequence defining the center of the solid to create.

    Returns
    -------
    pyvista.PolyData
        One of the five Platonic solids. Cell scalars are defined that
        assign integer labels to each face (with array name
        ``"FaceIndex"``).

    Examples
    --------
    Create and plot a dodecahedron.

    >>> import pyvista as pv
    >>> dodeca = pv.PlatonicSolid('dodecahedron')
    >>> dodeca.plot(categories=True)

    See :ref:`platonic_example` for more examples using this filter.

    """
    check_valid_vector(center, 'center')

    source = PlatonicSolidSource()
    source.kind = kind
    solid = source.output
    # rename and activate cell scalars
    cell_data = solid.cell_data.get_array(0)
    solid.clear_data()
    solid.cell_data['FaceIndex'] = cell_data
    # scale and translate
    solid.scale(radius, inplace=True)
    solid.points += np.asanyarray(center) - solid.center
    return solid


def Tetrahedron(radius=1.0, center=(0.0, 0.0, 0.0)):
    """Create a tetrahedron of a given size.

    A tetrahedron is composed of four congruent equilateral triangles.

    Parameters
    ----------
    radius : float, default: 1.0
        The radius of the circumscribed sphere for the tetrahedron.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Three-length sequence defining the center of the tetrahedron.

    Returns
    -------
    pyvista.PolyData
        Mesh for the tetrahedron. Cell scalars are defined that assign
        integer labels to each face (with array name ``"FaceIndex"``).

    Examples
    --------
    Create and plot a tetrahedron.

    >>> import pyvista as pv
    >>> tetra = pv.Tetrahedron()
    >>> tetra.plot(categories=True)

    See :ref:`platonic_example` for more examples using this filter.

    """
    return PlatonicSolid(kind='tetrahedron', radius=radius, center=center)


def Octahedron(radius=1.0, center=(0.0, 0.0, 0.0)):
    """Create an octahedron of a given size.

    An octahedron is composed of eight congruent equilateral
    triangles.

    Parameters
    ----------
    radius : float, default: 1.0
        The radius of the circumscribed sphere for the octahedron.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Three-length sequence defining the center of the octahedron.

    Returns
    -------
    pyvista.PolyData
        Mesh for the octahedron. Cell scalars are defined that assign
        integer labels to each face (with array name ``"FaceIndex"``).

    Examples
    --------
    Create and plot an octahedron.

    >>> import pyvista as pv
    >>> tetra = pv.Octahedron()
    >>> tetra.plot(categories=True)

    See :ref:`platonic_example` for more examples using this filter.

    """
    return PlatonicSolid(kind='octahedron', radius=radius, center=center)


def Dodecahedron(radius=1.0, center=(0.0, 0.0, 0.0)):
    """Create a dodecahedron of a given size.

    A dodecahedron is composed of twelve congruent regular pentagons.

    Parameters
    ----------
    radius : float, default: 1.0
        The radius of the circumscribed sphere for the dodecahedron.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Three-length sequence defining the center of the dodecahedron.

    Returns
    -------
    pyvista.PolyData
        Mesh for the dodecahedron. Cell scalars are defined that assign
        integer labels to each face (with array name ``"FaceIndex"``).

    Examples
    --------
    Create and plot a dodecahedron.

    >>> import pyvista as pv
    >>> tetra = pv.Dodecahedron()
    >>> tetra.plot(categories=True)

    See :ref:`platonic_example` for more examples using this filter.

    """
    return PlatonicSolid(kind='dodecahedron', radius=radius, center=center)


def Icosahedron(radius=1.0, center=(0.0, 0.0, 0.0)):
    """Create an icosahedron of a given size.

    An icosahedron is composed of twenty congruent equilateral
    triangles.

    Parameters
    ----------
    radius : float, default: 1.0
        The radius of the circumscribed sphere for the icosahedron.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Three-length sequence defining the center of the icosahedron.

    Returns
    -------
    pyvista.PolyData
        Mesh for the icosahedron. Cell scalars are defined that assign
        integer labels to each face (with array name ``"FaceIndex"``).

    Examples
    --------
    Create and plot an icosahedron.

    >>> import pyvista as pv
    >>> tetra = pv.Icosahedron()
    >>> tetra.plot(categories=True)

    See :ref:`platonic_example` for more examples using this filter.

    """
    return PlatonicSolid(kind='icosahedron', radius=radius, center=center)


def Icosphere(radius=1.0, center=(0.0, 0.0, 0.0), nsub=3):
    """Create an icosphere.

    An icosphere is a `geodesic polyhedron
    <https://en.wikipedia.org/wiki/Geodesic_polyhedron>`_, which is a
    convex polyhedron made from triangles.

    Geodesic polyhedra are constructed by subdividing faces of simpler
    polyhedra, and then projecting the new vertices onto the surface of
    a sphere. A geodesic polyhedron has straight edges and flat faces
    that approximate a sphere,

    Parameters
    ----------
    radius : float, default: 1.0
        Radius of the icosphere.

    center : sequence[float], default: (0.0, 0.0, 0.0)
        Center of the icosphere.

    nsub : int, default: 3
        This is the number of times each triangle of the original
        :func:`pyvista.Icosahedron` is subdivided.

    Returns
    -------
    pyvista.PolyData
        Mesh of the icosphere.

    See Also
    --------
    pyvista.Sphere

    Examples
    --------
    Create the icosphere and plot it with edges.

    >>> import pyvista as pv
    >>> icosphere = pv.Icosphere()
    >>> icosphere.plot(show_edges=True)

    Show how this icosphere was created.

    >>> import numpy as np
    >>> icosahedron = pv.Icosahedron()
    >>> icosahedron.clear_data()  # remove extra scalars
    >>> icosahedron_sub = icosahedron.subdivide(nsub=3)
    >>> pl = pv.Plotter(shape=(1, 3))
    >>> _ = pl.add_mesh(icosahedron, show_edges=True)
    >>> pl.subplot(0, 1)
    >>> _ = pl.add_mesh(icosahedron_sub, show_edges=True)
    >>> pl.subplot(0, 2)
    >>> _ = pl.add_mesh(icosphere, show_edges=True)
    >>> pl.show()

    Show how the triangles are not uniform in area. This is because the
    ones farther from the edges from the original triangles have farther
    to travel to the sphere.

    >>> icosphere = pv.Icosphere(nsub=4)
    >>> icosphere.compute_cell_sizes().plot(scalars='Area')

    """
    mesh = Icosahedron()
    mesh.clear_data()
    mesh = mesh.subdivide(nsub=nsub)

    # scale to desired radius and translate origin
    dist = np.linalg.norm(mesh.points, axis=1, keepdims=True)  # distance from origin
    mesh.points = mesh.points * (radius / dist) + center
    return mesh
