from __future__ import annotations

import re

from hypothesis import given
from hypothesis.strategies import integers
from hypothesis.strategies import lists
import numpy as np
import platform
import pytest
import vtk

import pyvista as pv
from pyvista import examples
from pyvista.core.utilities.geometric_objects import translate

# test for i386/i486/i586/i686
machine_skip = (platform.machine()[0]+platform.machine()[2:] == 'i86')


@pytest.fixture
def axes_geometry_source():
    return pv.AxesGeometrySource()


@pytest.fixture
def cube_faces_source():
    return pv.CubeFacesSource()


@pytest.mark.needs_vtk_version(less_than=(9, 3))
def test_capsule_source():
    algo = pv.CapsuleSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert np.array_equal(algo.direction, (1.0, 0.0, 0.0))
    assert algo.radius == 0.5
    assert algo.cylinder_length == 1.0
    assert algo.theta_resolution == 30
    assert algo.phi_resolution == 30
    direction = np.random.default_rng().random(3)
    algo.direction = direction
    assert np.array_equal(algo.direction, direction)


def test_cone_source():
    algo = pv.ConeSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert np.array_equal(algo.direction, (1.0, 0.0, 0.0))
    assert algo.height == 1.0
    assert algo.radius == 0.5
    assert algo.capping
    assert algo.resolution == 6
    with pytest.raises(ValueError):  # noqa: PT011
        algo = pv.ConeSource(angle=0.0, radius=0.0)
    algo = pv.ConeSource(angle=0.0)
    assert algo.angle == 0.0
    algo = pv.ConeSource(radius=0.0)
    assert algo.radius == 0.0


@given(bounds=lists(integers()).filter(lambda x: len(x) != 6))
def test_box_source_bounds_raises(bounds):
    b = pv.BoxSource()
    match = re.escape(
        'Bounds must be given as length 6 tuple: (x_min, x_max, y_min, y_max, z_min, z_max)',
    )

    with pytest.raises(TypeError, match=match):
        b.bounds = bounds


def test_cylinder_source():
    algo = pv.CylinderSource()
    assert algo.radius == 0.5
    assert algo.height == 1.0
    assert algo.capping
    assert algo.resolution == 100
    center = np.random.default_rng().random(3)
    direction = np.random.default_rng().random(3)
    algo.center = center
    algo.direction = direction
    assert np.array_equal(algo.center, center)
    assert np.array_equal(algo.direction, direction)


@pytest.mark.needs_vtk_version(9, 3, 0)
def test_cylinder_capsule_cap():
    algo = pv.CylinderSource()
    algo.capsule_cap = True
    assert algo.capsule_cap


def test_multiple_lines_source():
    algo = pv.MultipleLinesSource()
    points = np.array([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]])
    assert np.array_equal(algo.points, points)
    points = np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 1.0]])
    algo = pv.MultipleLinesSource(points=points)
    assert np.array_equal(algo.points, points)
    with pytest.raises(ValueError, match='Array of points must have three values per point'):
        algo.points = points[:, :1]
    with pytest.raises(ValueError, match='>=2 points need to define multiple lines.'):
        algo.points = points[0, :]


@pytest.fixture
def bunny():
    return examples.download_bunny_coarse()


@pytest.mark.parametrize('is_negative', [True, False])
@pytest.mark.parametrize('delta', [([0, 0, 0]), ([1e-8, 0, 0]), ([0, 0, 1e-8])])
@pytest.mark.xfail(machine_skip, reason=f"test HTTP requests are refused on {platform.machine()}")
def test_translate_direction_collinear(is_negative, delta, bunny):
    mesh_in = bunny
    direction = np.array([0.0, 1.0, 0.0]) + delta
    if is_negative:
        direction *= -1
    mesh_out = mesh_in.copy()
    translate(mesh_out, direction=direction)
    points_in = mesh_in.points
    points_out = mesh_out.points

    if is_negative:
        assert np.allclose(points_in[:, 0], -points_out[:, 1])
        assert np.allclose(points_in[:, 1], points_out[:, 0])
        assert np.allclose(points_in[:, 2], points_out[:, 2])
    else:
        assert np.allclose(points_in[:, 0], points_out[:, 1])
        assert np.allclose(points_in[:, 1], -points_out[:, 0])
        assert np.allclose(points_in[:, 2], points_out[:, 2])


def test_translate_precision():
    """Test that specifying a 64bit float as an arg, will not
    introduce precision error for 32bit meshes.
    """
    val = np.float64(29380 / 18)

    # test indirectly using Plane, which will yield a float32 mesh
    mesh = pv.Plane(center=[0, val / 2, 0], j_size=val, i_resolution=1, j_resolution=1)
    assert mesh.points.dtype == np.float32

    expected = np.array(
        [[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [-0.5, 1632.2222, 0.0], [0.5, 1632.2222, 0.0]],
        dtype=np.float32,
    )

    # DO NOT USE np.all_close. This should match exactly
    assert np.array_equal(mesh.points, expected)


def test_text3d_source_empty_string():
    # Test empty string is processed to have a single point
    src = pv.Text3DSource(process_empty_string=True)
    assert src.process_empty_string
    out = src.output
    assert out.n_points == 1

    # Test setting an empty string is processed to have a single point
    src.process_empty_string = False
    assert not src.process_empty_string
    out = src.output
    assert out.n_points == 0

    if pv.vtk_version_info == (9, 0, 3):
        mx, mn = 1, -1
    else:
        mx, mn = vtk.VTK_DOUBLE_MAX, vtk.VTK_DOUBLE_MIN

    assert out.bounds == (mx, mn, mx, mn, mx, mn)


def test_text3d_source():
    src = pv.Text3DSource(string='Text')
    assert src.string == 'Text'
    out = src.output
    assert len(out.split_bodies()) == 4


@pytest.mark.parametrize('string', [' ', 'TEXT'])
@pytest.mark.parametrize('center', [(0, 0, 0), (1, -2, 3)])
@pytest.mark.parametrize('height', [None, 0, 2.1])
@pytest.mark.parametrize('width', [None, 0, 2.2])
@pytest.mark.parametrize('depth', [None, 0, 2.3])
@pytest.mark.parametrize('normal', [(0, 0, 1)])
def test_text3d_source_parameters(string, center, height, width, depth, normal):
    src = pv.Text3DSource(
        string=string,
        center=center,
        height=height,
        width=width,
        depth=depth,
        normal=normal,
    )
    out = src.output
    actual_width, actual_height, actual_depth = out.bounds_size

    # Compute expected values
    empty_string = string.isspace()
    if empty_string:
        expected_width, expected_height, expected_depth = 0.0, 0.0, 0.0
    else:
        expected_width, expected_height, expected_depth = width, height, depth

        # Determine expected values for cases where width, height, or depth is None
        if depth is None:
            expected_depth = actual_height * 0.5

        # For width and height, create an unscaled version for reference
        src_not_scaled = pv.Text3DSource(string=string, center=center)
        out_not_scaled = src_not_scaled.output
        unscaled_width, unscaled_height, _ = out_not_scaled.bounds_size
        if width is None and height is not None:
            expected_width = unscaled_width * actual_height / unscaled_height
        elif width is not None and height is None:
            expected_height = unscaled_height * actual_width / unscaled_width
        elif width is None and height is None:
            expected_width = unscaled_width
            expected_height = unscaled_height

    assert np.allclose(actual_width, expected_width)
    assert np.allclose(actual_height, expected_height)
    assert np.allclose(actual_depth, expected_depth)
    assert np.allclose(out.center, center)

    if not empty_string and width and height and depth == 0:
        # Test normal direction for planar 2D meshes
        actual_normal = np.mean(out.cell_normals, axis=0)
        assert np.allclose(actual_normal, normal)

        # Since `direction` param is under-determined and may swap the
        # width and height, test normal again without testing the bounds
        # We also use a symmetric text string since the oriented mesh's
        # bounding box center and/or the mean of its points will otherwise
        # vary and is challenging to test
        new_normal = np.array((1, -2, 3))
        src = pv.Text3DSource(string='I', center=center, normal=new_normal, depth=0)
        out = src.output
        actual_normal = np.mean(out.cell_normals, axis=0)
        expected_normal = new_normal / np.linalg.norm(new_normal)
        assert np.allclose(actual_normal, expected_normal, atol=1e-4)

        points_center = np.mean(out.points, axis=0)
        assert np.allclose(points_center, center, atol=1e-4)


@pytest.fixture
def text3d_source_with_text():
    return pv.Text3DSource('TEXT')


def test_text3d_source_update(text3d_source_with_text):
    assert text3d_source_with_text._modified
    assert text3d_source_with_text._output.n_points == 0
    text3d_source_with_text.update()
    assert not text3d_source_with_text._modified
    assert text3d_source_with_text._output.n_points > 1

    # Test calling update has no effect on output when modified flag is not set
    points_before = text3d_source_with_text._output.GetPoints()
    text3d_source_with_text.update()
    points_after = text3d_source_with_text._output.GetPoints()
    assert not text3d_source_with_text._modified
    assert points_before is points_after


def text3d_source_test_params():
    return (
        ('string', 'TEXT'),
        ('center', (1, 2, 3)),
        ('normal', (4, 5, 6)),
        ('height', 2),
        ('width', 3),
        ('depth', 4),
    )


def test_text3d_source_output(text3d_source_with_text):
    # Store initial object references
    out1 = text3d_source_with_text._output
    out1_points = out1.GetPoints()
    assert out1.n_points == 0

    # Test getting output triggers an update
    assert text3d_source_with_text._modified
    out2 = text3d_source_with_text.output
    assert not text3d_source_with_text._modified

    # Test that output object reference is unchanged
    assert out2 is out1

    # Test that output points object reference is changed
    out2_points = out2.GetPoints()
    assert out2_points is not out1_points

    # Test correct output
    assert len(out2.split_bodies()) == len(text3d_source_with_text.string)


@pytest.mark.parametrize(
    'kwarg_tuple',
    text3d_source_test_params(),
)
def test_text3d_source_modified_init(kwarg_tuple):
    # Test init modifies source but does not update output
    name, value = kwarg_tuple
    kwarg_dict = {name: value}

    src = pv.Text3DSource(**kwarg_dict)
    assert src._modified
    assert src._output.n_points == 0


@pytest.mark.parametrize(
    'kwarg_tuple',
    text3d_source_test_params(),
)
def test_text3d_source_modified(text3d_source_with_text, kwarg_tuple):
    # Set test param
    name, value = kwarg_tuple
    setattr(text3d_source_with_text, name, value)
    assert text3d_source_with_text._modified

    # Call update to clear modified flag
    assert text3d_source_with_text._modified
    text3d_source_with_text.update()
    assert not text3d_source_with_text._modified

    # Test that setting the same value does not set the modified flag
    points_before = text3d_source_with_text._output.GetPoints()  # Manually set flag for test
    setattr(text3d_source_with_text, name, value)
    points_after = text3d_source_with_text._output.GetPoints()
    assert not text3d_source_with_text._modified
    assert points_before is points_after

    # Test setting a new value sets modified flag but does not change output
    new_value = value + value if name == 'string' else np.array(value) * 2
    points_before = text3d_source_with_text._output.GetPoints()
    setattr(text3d_source_with_text, name, new_value)
    points_after = text3d_source_with_text._output.GetPoints()
    assert text3d_source_with_text._modified
    assert points_before is points_after


def test_disc_source():
    algo = pv.DiscSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert algo.inner == 0.25
    assert algo.outer == 0.5
    assert algo.r_res == 1
    assert algo.c_res == 6
    if pv.vtk_version_info >= (9, 2):
        center = (1.0, 2.0, 3.0)
        algo = pv.DiscSource(center=center)
        assert algo.center == center


def test_cube_source():
    algo = pv.CubeSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert algo.x_length == 1.0
    assert algo.y_length == 1.0
    assert algo.z_length == 1.0
    assert algo.bounds == (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5)
    bounds = (0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
    algo = pv.CubeSource(bounds=bounds)
    assert np.array_equal(algo.bounds, bounds)
    with pytest.raises(TypeError):
        algo = pv.CubeSource(bounds=0.0)


def test_sphere_source():
    algo = pv.SphereSource()
    assert algo.radius == 0.5
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert algo.theta_resolution == 30
    assert algo.phi_resolution == 30
    assert algo.start_theta == 0.0
    assert algo.end_theta == 360.0
    assert algo.start_phi == 0.0
    assert algo.end_phi == 180.0
    center = (1.0, 2.0, 3.0)
    if pv.vtk_version_info >= (9, 2):
        algo = pv.SphereSource(center=center)
        assert algo.center == center


def test_line_source():
    algo = pv.LineSource()
    assert np.array_equal(algo.pointa, (-0.5, 0.0, 0.0))
    assert np.array_equal(algo.pointb, (0.5, 0.0, 0.0))
    assert algo.resolution == 1


def test_polygon_source():
    algo = pv.PolygonSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert algo.radius == 1.0
    assert np.array_equal(algo.normal, (0.0, 0.0, 1.0))
    assert algo.n_sides == 6
    assert algo.fill


def test_platonic_solid_source():
    algo = pv.PlatonicSolidSource()
    assert algo.kind == 'tetrahedron'


def test_plane_source():
    algo = pv.PlaneSource()
    assert algo.i_resolution == 10
    assert algo.j_resolution == 10
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert np.array_equal(algo.origin, (-0.5, -0.5, 0.0))
    point_a = (0.5, -0.5, 0.0)
    point_b = (-0.5, 0.5, 0.0)
    normal = (0.0, 0.0, 1.0)
    assert np.array_equal(algo.point_a, point_a)
    assert np.array_equal(algo.point_b, point_b)
    assert np.array_equal(algo.normal, normal)
    algo.flip_normal()
    assert np.array_equal(algo.point_a, point_b)
    assert np.array_equal(algo.point_b, point_a)
    assert np.array_equal(algo.normal, np.array(normal) * -1)


def test_plane_source_push():
    algo = pv.PlaneSource()
    assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
    assert np.array_equal(algo.normal, (0.0, 0.0, 1.0))

    distance = 5.0
    algo.push(distance)
    assert np.array_equal(algo.center, (0, 0, distance))
    assert np.array_equal(algo.output.center, (0, 0, distance))

    algo.push(distance)
    assert np.array_equal(algo.center, (0, 0, distance * 2))
    assert np.array_equal(algo.output.center, (0, 0, distance * 2))


def test_superquadric_source():
    algo = pv.SuperquadricSource()
    assert algo.center == (0.0, 0.0, 0.0)
    assert algo.scale == (1.0, 1.0, 1.0)
    assert algo.size == 0.5
    assert algo.theta_roundness == 1.0
    assert algo.phi_roundness == 1.0
    assert algo.theta_resolution == 16
    assert algo.phi_resolution == 16
    assert not algo.toroidal
    assert algo.thickness == 1 / 3


def test_arrow_source():
    algo = pv.ArrowSource()
    assert algo.tip_length == 0.25
    assert algo.tip_radius == 0.1
    assert algo.tip_resolution == 20
    assert algo.shaft_radius == 0.05
    assert algo.shaft_resolution == 20


def test_box_source():
    algo = pv.BoxSource()
    assert np.array_equal(algo.bounds, [-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
    assert algo.level == 0
    assert algo.quads


def test_axes_geometry_source_symmetric_set_get(axes_geometry_source):
    assert axes_geometry_source.symmetric is False
    axes_geometry_source.symmetric = True
    assert axes_geometry_source.symmetric is True


def test_axes_geometry_source_symmetric_init():
    axes_geometry_source = pv.AxesGeometrySource(symmetric=True)
    assert axes_geometry_source.output.bounds == (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)


def test_axes_geometry_source_symmetric_bounds_set_get(axes_geometry_source):
    assert axes_geometry_source.symmetric_bounds is False
    axes_geometry_source.symmetric_bounds = True
    assert axes_geometry_source.symmetric_bounds is True


def test_axes_geometry_source_symmetric_bounds_init():
    axes_geometry_source = pv.AxesGeometrySource(symmetric_bounds=True)
    assert axes_geometry_source.output.bounds == (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)


def test_axes_geometry_source_shaft_length_set_get(axes_geometry_source):
    assert axes_geometry_source.shaft_length == (0.8, 0.8, 0.8)
    new_length = (0.1, 0.2, 0.3)
    axes_geometry_source.shaft_length = new_length
    assert axes_geometry_source.shaft_length == new_length


def test_axes_geometry_source_shaft_length_init():
    axes_geometry_source = pv.AxesGeometrySource(shaft_length=0.9)
    assert axes_geometry_source.shaft_length == (0.9, 0.9, 0.9)


@pytest.mark.parametrize('part', ['x_shaft', 'y_shaft', 'z_shaft', 'x_tip', 'y_tip', 'z_tip'])
def test_axes_geometry_source_bounds(axes_geometry_source, part):
    x_shaft_len, y_shaft_len, z_shaft_len = 0.5, 0.6, 0.7
    shaft_radius = 0.05
    axes_geometry_source.shaft_length = x_shaft_len, y_shaft_len, z_shaft_len
    axes_geometry_source.shaft_radius = shaft_radius

    x_tip_len, y_tip_len, z_tip_len = 0.2, 0.3, 0.4
    tip_radius = 0.2
    axes_geometry_source.tip_length = x_tip_len, y_tip_len, z_tip_len
    axes_geometry_source.tip_radius = tip_radius

    x_shaft, y_shaft, z_shaft, x_tip, y_tip, z_tip = axes_geometry_source.output

    if part == 'x_shaft':
        actual_bounds = x_shaft.bounds
        expected_bounds = (
            0,
            x_shaft_len,
            -shaft_radius,
            shaft_radius,
            -shaft_radius,
            shaft_radius,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    elif part == 'y_shaft':
        actual_bounds = y_shaft.bounds
        expected_bounds = (
            -shaft_radius,
            shaft_radius,
            0,
            y_shaft_len,
            -shaft_radius,
            shaft_radius,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    elif part == 'z_shaft':
        actual_bounds = z_shaft.bounds
        expected_bounds = (
            -shaft_radius,
            shaft_radius,
            -shaft_radius,
            shaft_radius,
            0,
            z_shaft_len,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    elif part == 'x_tip':
        actual_bounds = x_tip.bounds
        expected_bounds = (
            x_shaft_len,
            x_shaft_len + x_tip_len,
            -tip_radius,
            tip_radius,
            -tip_radius,
            tip_radius,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    elif part == 'y_tip':
        actual_bounds = y_tip.bounds
        expected_bounds = (
            -tip_radius,
            tip_radius,
            y_shaft_len,
            y_shaft_len + y_tip_len,
            -tip_radius,
            tip_radius,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    elif part == 'z_tip':
        actual_bounds = z_tip.bounds
        expected_bounds = (
            -tip_radius,
            tip_radius,
            -tip_radius,
            tip_radius,
            z_shaft_len,
            z_shaft_len + z_tip_len,
        )
        assert np.allclose(actual_bounds, expected_bounds)

    else:
        raise NotImplementedError


def test_axes_geometry_source_tip_length_set_get(axes_geometry_source):
    assert axes_geometry_source.tip_length == (0.2, 0.2, 0.2)
    axes_geometry_source.tip_length = (0.1, 0.2, 0.3)
    assert axes_geometry_source.tip_length == (0.1, 0.2, 0.3)


def test_axes_geometry_source_tip_length_init():
    axes_geometry_source = pv.AxesGeometrySource(tip_length=0.9)
    assert axes_geometry_source.tip_length == (0.9, 0.9, 0.9)


def test_axes_geometry_source_tip_radius_set_get(axes_geometry_source):
    assert axes_geometry_source.tip_radius == 0.1
    axes_geometry_source.tip_radius = 0.8
    assert axes_geometry_source.tip_radius == 0.8


def test_axes_geometry_source_tip_radius_init():
    axes_geometry_source = pv.AxesGeometrySource(tip_radius=9)
    assert axes_geometry_source.tip_radius == 9


@pytest.mark.parametrize(
    'shaft_type',
    pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_shaft_type_set_get(shaft_type, axes_geometry_source):
    axes_geometry_source.shaft_type = shaft_type
    assert axes_geometry_source.shaft_type == shaft_type


def test_axes_geometry_source_custom_part(axes_geometry_source):
    axes_geometry_source.shaft_type = pv.ParametricKlein()
    assert axes_geometry_source.shaft_type == 'custom'

    axes_geometry_source.tip_type = pv.ParametricKlein()
    assert axes_geometry_source.tip_type == 'custom'

    match = (
        'Custom axes part must be 3D. Got bounds:\n'
        'BoundsTuple(x_min = -0.5,\n'
        '            x_max =  0.5,\n'
        '            y_min = -0.5,\n'
        '            y_max =  0.5,\n'
        '            z_min =  0.0,\n'
        '            z_max =  0.0).'
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        axes_geometry_source.shaft_type = pv.Plane()

    match = (
        "Geometry 'foo' is not valid. Geometry must be one of: "
        "\n\t('cylinder', 'sphere', 'hemisphere', 'cone', 'pyramid', 'cube', 'octahedron')"
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        axes_geometry_source.shaft_type = 'foo'

    match = "Geometry must be a string or pyvista.DataSet. Got <class 'int'>."
    with pytest.raises(TypeError, match=match):
        axes_geometry_source.shaft_type = 42


@pytest.mark.parametrize(
    'shaft_type',
    pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_shaft_type_init(shaft_type):
    axes_geometry_source = pv.AxesGeometrySource(shaft_type=shaft_type)
    assert axes_geometry_source.shaft_type == shaft_type


@pytest.mark.parametrize(
    'tip_type',
    pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_tip_type_set_get(tip_type, axes_geometry_source):
    axes_geometry_source.tip_type = tip_type
    assert axes_geometry_source.tip_type == tip_type


@pytest.mark.parametrize(
    'tip_type',
    pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_tip_type_init(tip_type):
    axes_geometry_source = pv.AxesGeometrySource(tip_type=tip_type)
    assert axes_geometry_source.tip_type == tip_type


def test_axes_geometry_source_shaft_radius_set_get(axes_geometry_source):
    assert axes_geometry_source.shaft_radius == 0.025
    axes_geometry_source.shaft_radius = 0.1
    assert axes_geometry_source.shaft_radius == 0.1


def test_axes_geometry_source_shaft_radius_init():
    axes_geometry_source = pv.AxesGeometrySource(shaft_radius=3)
    assert axes_geometry_source.shaft_radius == 3


def test_axes_geometry_source_update_output(axes_geometry_source):
    out1 = axes_geometry_source.output
    assert isinstance(out1, pv.MultiBlock)
    assert out1.keys() == ['x_shaft', 'y_shaft', 'z_shaft', 'x_tip', 'y_tip', 'z_tip']

    # Test output object references are unchanged when updating
    out2 = axes_geometry_source.output
    assert out1 is out2

    assert out1[0] is out2[0]
    assert out1[1] is out2[1]
    assert out1[2] is out2[2]
    assert out1[3] is out2[3]
    assert out1[4] is out2[4]
    assert out1[5] is out2[5]

    assert out1['x_shaft'] is out2['x_shaft']
    assert out1['y_shaft'] is out2['y_shaft']
    assert out1['z_shaft'] is out2['z_shaft']
    assert out1['x_tip'] is out2['x_tip']
    assert out1['y_tip'] is out2['y_tip']
    assert out1['z_tip'] is out2['z_tip']


def test_axes_geometry_source_repr(axes_geometry_source):
    repr_ = repr(axes_geometry_source)
    actual_lines = repr_.splitlines()[1:]
    expected_lines = [
        "  Shaft type:                 'cylinder'",
        '  Shaft radius:               0.025',
        '  Shaft length:               (0.8, 0.8, 0.8)',
        "  Tip type:                   'cone'",
        '  Tip radius:                 0.1',
        '  Tip length:                 (0.2, 0.2, 0.2)',
        '  Symmetric:                  False',
        '  Symmetric bounds:           False',
    ]
    assert len(actual_lines) == len(expected_lines)
    assert actual_lines == expected_lines

    axes_geometry_source.shaft_type = pv.ParametricTorus()
    repr_ = repr(axes_geometry_source)
    assert "Shaft type:                 'custom'" in repr_


def test_orthogonal_planes_source():
    planes_source = pv.OrthogonalPlanesSource()
    output = planes_source.output
    assert isinstance(output, pv.MultiBlock)
    assert output.keys() == ['yz', 'zx', 'xy']
    assert all(isinstance(poly, pv.PolyData) for poly in output)


def test_orthogonal_planes_source_bounds():
    # Test set get
    bounds = (1, 2, 3, 4, 5, 6)
    xmin, xmax, ymin, ymax, zmin, zmax = bounds
    planes_source = pv.OrthogonalPlanesSource(bounds=bounds)
    assert planes_source.bounds == bounds
    # Test multiblock bounds
    output = planes_source.output
    assert output.bounds == bounds
    # Test plane bounds
    xmid, ymid, zmid = output.center
    assert output['xy'].bounds == (xmin, xmax, ymin, ymax, zmid, zmid)
    assert output['yz'].bounds == (xmid, xmid, ymin, ymax, zmin, zmax)
    assert output['zx'].bounds == (xmin, xmax, ymid, ymid, zmin, zmax)


def test_orthogonal_planes_source_names():
    planes_source = pv.OrthogonalPlanesSource(names=['a', 'b', 'c'])
    assert planes_source.names == ('a', 'b', 'c')

    match = (
        "names must be an instance of any type (<class 'tuple'>, <class 'list'>). "
        "Got <class 'str'> instead."
    )
    with pytest.raises(TypeError, match=re.escape(match)):
        planes_source.names = 'abc'


@pytest.mark.parametrize('distance', [(10, 20, 30), [(10, 20, 30)]])
def test_orthogonal_planes_source_push(distance):
    planes_source = pv.OrthogonalPlanesSource()
    planes_source.push(*distance)
    output = planes_source.output
    assert np.array_equal(output['yz'].bounds, (10.0, 10.0, -1.0, 1.0, -1.0, 1.0))
    assert np.array_equal(output['zx'].bounds, (-1.0, 1.0, 20.0, 20.0, -1.0, 1.0))
    assert np.array_equal(output['xy'].bounds, (-1.0, 1.0, -1.0, 1.0, 30.0, 30.0))


def test_orthogonal_planes_source_normal_sign():
    planes_source = pv.OrthogonalPlanesSource()
    output = planes_source.output
    assert planes_source.normal_sign == ('+', '+', '+')
    assert np.all(pv.merge(output)['Normals'] >= 0)

    planes_source.normal_sign = '-'
    planes_source.update()
    assert planes_source.normal_sign == ('-', '-', '-')
    assert np.all(pv.merge(output)['Normals'] <= 0)

    planes_source.normal_sign = ['+', '+', '+']
    assert planes_source.normal_sign == ('+', '+', '+')

    match = "must be one of: \n\t['+', '-']"
    with pytest.raises(ValueError, match=re.escape(match)):
        planes_source.normal_sign = 'a'

    match = "must be one of: \n\t['+', '-']"
    with pytest.raises(ValueError, match=re.escape(match)):
        planes_source.normal_sign = ['a', 'b', 'c']

    match = "must be an instance of any type (<class 'tuple'>, <class 'list'>, <class 'str'>)"
    with pytest.raises(TypeError, match=re.escape(match)):
        planes_source.normal_sign = 0


def test_cube_faces_source(cube_faces_source):
    output = cube_faces_source.output
    assert isinstance(output, pv.MultiBlock)
    assert output.keys() == ['+X', '-X', '+Y', '-Y', '+Z', '-Z']
    assert all(isinstance(poly, pv.PolyData) for poly in output)
    assert output.bounds == pv.CubeSource().output.bounds


def test_cube_faces_source_update(cube_faces_source):
    output_before = cube_faces_source.output
    cube_faces_source.z_length = 2  # Make an arbitrary modification
    cube_faces_source.update()
    output_after = cube_faces_source.output
    assert output_before is output_after
    assert all(output_after[i] is output_after[i] for i in range(6))


@pytest.mark.parametrize('attr', ['shrink_factor', 'explode_factor', 'frame_width'])
def test_cube_faces_source_set_get_factor(attr):
    source = pv.CubeFacesSource(**{attr: 0.5})
    assert getattr(source, attr) == 0.5
    setattr(source, attr, 0.1)
    assert getattr(source, attr) == 0.1


@pytest.mark.parametrize(
    ('face_name', 'bounds'),
    [
        ('+X', (0.5, 0.5, -0.5, 0.5, -0.5, 0.5)),
        ('-X', (-0.5, -0.5, -0.5, 0.5, -0.5, 0.5)),
        ('+Y', (-0.5, 0.5, 0.5, 0.5, -0.5, 0.5)),
        ('-Y', (-0.5, 0.5, -0.5, -0.5, -0.5, 0.5)),
        ('+Z', (-0.5, 0.5, -0.5, 0.5, 0.5, 0.5)),
        ('-Z', (-0.5, 0.5, -0.5, 0.5, -0.5, -0.5)),
    ],
)
@pytest.mark.parametrize(('attr', 'value'), [('shrink_factor', 1.0), ('explode_factor', 0.0)])
def test_cube_faces_source_output_bounds(cube_faces_source, attr, value, face_name, bounds):
    # Make sure bounds of each face are correct
    # Parametrize with shrink and explode to ensure they do not modify order of points and faces
    poly = cube_faces_source.output[face_name]
    default_points = poly.points.tolist()
    default_faces = poly.regular_faces.tolist()

    setattr(cube_faces_source, attr, value)
    cube_faces_source.update()

    modified_points = poly.points.tolist()
    modified_faces = poly.regular_faces.tolist()

    assert default_points == modified_points
    assert default_faces == modified_faces
    assert poly.bounds == bounds


def test_cube_faces_source_frame(cube_faces_source):
    assert cube_faces_source.frame_width is None
    cube_faces_source = pv.CubeFacesSource(frame_width=0.2)
    assert cube_faces_source.frame_width == 0.2
    cube_faces_source.frame_width = 0.3
    assert cube_faces_source.frame_width == 0.3


@pytest.mark.parametrize(
    ('name', 'value'),
    [
        ('center', (1, 2, 3)),
        ('x_length', 42),
        ('y_length', 42),
        ('z_length', 42),
        ('bounds', (0, 1, 2, 3, 4, 5)),
    ],
)
def test_cube_faces_source_parent_attr(name, value):
    source = pv.CubeFacesSource(**{name: value})
    setattr(source, name, value)
