from __future__ import annotations

from collections.abc import Generator
import importlib
import itertools
import pathlib
import re
import weakref

import numpy as np
import pytest
import vtk

import pyvista as pv
from pyvista import ImageData
from pyvista import MultiBlock
from pyvista import PolyData
from pyvista import PyVistaDeprecationWarning
from pyvista import RectilinearGrid
from pyvista import StructuredGrid
from pyvista import examples as ex
from pyvista.core.dataobject import USER_DICT_KEY


def test_multi_block_init_vtk():
    multi = vtk.vtkMultiBlockDataSet()
    multi.SetBlock(0, vtk.vtkRectilinearGrid())
    multi.SetBlock(1, vtk.vtkStructuredGrid())
    multi = MultiBlock(multi)
    assert isinstance(multi, MultiBlock)
    assert multi.n_blocks == 2
    assert isinstance(multi.GetBlock(0), RectilinearGrid)
    assert isinstance(multi.GetBlock(1), StructuredGrid)
    multi = vtk.vtkMultiBlockDataSet()
    multi.SetBlock(0, vtk.vtkRectilinearGrid())
    multi.SetBlock(1, vtk.vtkStructuredGrid())
    multi = MultiBlock(multi, deep=True)
    assert isinstance(multi, MultiBlock)
    assert multi.n_blocks == 2
    assert isinstance(multi.GetBlock(0), RectilinearGrid)
    assert isinstance(multi.GetBlock(1), StructuredGrid)
    # Test nested structure
    multi = vtk.vtkMultiBlockDataSet()
    multi.SetBlock(0, vtk.vtkRectilinearGrid())
    multi.SetBlock(1, vtk.vtkImageData())
    nested = vtk.vtkMultiBlockDataSet()
    nested.SetBlock(0, vtk.vtkUnstructuredGrid())
    nested.SetBlock(1, vtk.vtkStructuredGrid())
    multi.SetBlock(2, nested)
    # Wrap the nested structure
    multi = MultiBlock(multi)
    assert isinstance(multi, MultiBlock)
    assert multi.n_blocks == 3
    assert isinstance(multi.GetBlock(0), RectilinearGrid)
    assert isinstance(multi.GetBlock(1), ImageData)
    assert isinstance(multi.GetBlock(2), MultiBlock)


def test_multi_block_init_dict(rectilinear, airplane):
    data = {'grid': rectilinear, 'poly': airplane}
    multi = MultiBlock(data)
    assert isinstance(multi, MultiBlock)
    assert multi.n_blocks == 2
    # Note that dictionaries do not maintain order
    assert isinstance(multi.GetBlock(0), (RectilinearGrid, PolyData))
    assert multi.get_block_name(0) in ['grid', 'poly']
    assert isinstance(multi.GetBlock(1), (RectilinearGrid, PolyData))
    assert multi.get_block_name(1) in ['grid', 'poly']


def test_multi_block_keys(rectilinear, airplane):
    data = {'grid': rectilinear, 'poly': airplane}
    multi = MultiBlock(data)
    assert len(multi.keys()) == 2
    assert 'grid' in multi.keys()
    assert 'poly' in multi.keys()


def test_multi_block_init_list(rectilinear, airplane):
    data = [rectilinear, airplane]
    multi = MultiBlock(data)
    assert isinstance(multi, MultiBlock)
    assert multi.n_blocks == 2
    assert isinstance(multi.GetBlock(0), RectilinearGrid)
    assert isinstance(multi.GetBlock(1), PolyData)


def test_multi_block_append(ant, sphere, uniform, airplane, rectilinear):
    """This puts all of the example data objects into a a MultiBlock container"""
    multi = MultiBlock()
    # Add and test examples
    datasets = (ant, sphere, uniform, airplane, rectilinear)
    for i, dataset in enumerate(datasets):
        multi.append(dataset)
        assert multi.n_blocks == i + 1
        assert isinstance(multi[i], type(dataset))
    assert multi.bounds is not None
    # Now overwrite a block
    multi[4] = pv.Sphere()
    assert isinstance(multi[4], PolyData)
    multi[4] = vtk.vtkUnstructuredGrid()
    assert isinstance(multi[4], pv.UnstructuredGrid)

    with pytest.raises(ValueError, match='Cannot nest a composite dataset in itself.'):
        multi.append(multi)

    with pytest.raises(TypeError, match='dataset should not be or contain an array'):
        multi.append(vtk.vtkFloatArray())


def test_multi_block_set_get_ers():
    """This puts all of the example data objects into a a MultiBlock container"""
    multi = MultiBlock()
    # Set the number of blocks
    multi.n_blocks = 6
    assert multi.GetNumberOfBlocks() == 6  # Check that VTK side registered it
    assert multi.n_blocks == 6  # Check pyvista side registered it
    # Add data to the MultiBlock
    data = ex.load_rectilinear()
    multi[1] = data
    multi.set_block_name(1, 'rect')
    # Make sure number of blocks is constant
    assert multi.n_blocks == 6
    # Check content
    assert isinstance(multi[1], RectilinearGrid)
    for i in [0, 2, 3, 4, 5]:
        assert multi[i] is None
    # Check the bounds
    assert multi.bounds == data.bounds
    multi[5] = ex.load_uniform()
    multi.set_block_name(5, 'uni')
    multi.set_block_name(5, None)  # Make sure it doesn't get overwritten
    assert isinstance(multi.get(5), ImageData)
    # Test get by name
    assert isinstance(multi['uni'], ImageData)
    assert isinstance(multi['rect'], RectilinearGrid)
    assert isinstance(multi.get('uni'), ImageData)
    assert multi.get('no key') is None
    assert multi.get('no key', default=pv.Sphere()) == pv.Sphere()
    # Test the del operator
    del multi[0]
    assert multi.n_blocks == 5
    # Make sure the rect grid was moved up
    assert isinstance(multi[0], RectilinearGrid)
    assert multi.get_block_name(0) == 'rect'
    assert multi.get_block_name(2) is None
    # test del by name
    del multi['uni']
    assert multi.n_blocks == 4
    # test the pop operator
    pop = multi.pop(0)
    assert isinstance(pop, RectilinearGrid)
    assert multi.n_blocks == 3
    assert all(k is None for k in multi.keys())

    multi['new key'] = pv.Sphere()
    assert multi.n_blocks == 4
    assert multi[3] == pv.Sphere()

    multi['new key'] = pv.Cube()
    assert multi.n_blocks == 4
    assert multi[3] == pv.Cube()

    with pytest.raises(KeyError):
        _ = multi.get_index_by_name('foo')

    with pytest.raises(IndexError):
        multi[4] = ImageData()

    with pytest.raises(KeyError):
        multi['not a key']
    with pytest.raises(TypeError):
        data = multi[[0, 1]]

    with pytest.raises(TypeError):
        multi[1, 'foo'] = data


def test_set_block_name_by_name(ant):
    old_name = 'foo'
    new_name = 'bar'
    multi = pv.MultiBlock({old_name: ant})
    multi.set_block_name(old_name, new_name)
    assert multi.keys() == [new_name]


def test_replace():
    spheres = {f'{i}': pv.Sphere(phi_resolution=i + 3) for i in range(10)}
    multi = MultiBlock(spheres)
    cube = pv.Cube()
    multi.replace(3, cube)
    assert multi.get_block_name(3) == '3'
    assert multi[3] is cube


def test_pop():
    spheres = {f'{i}': pv.Sphere(phi_resolution=i + 3) for i in range(10)}
    multi = MultiBlock(spheres)
    assert multi.pop() == spheres['9']
    assert spheres['9'] not in multi
    assert multi.pop(0) == spheres['0']
    assert spheres['0'] not in multi


def test_del_slice(sphere):
    multi = MultiBlock({f'{i}': sphere for i in range(10)})
    del multi[0:10:2]
    assert len(multi) == 5
    assert all(f'{i}' in multi.keys() for i in range(1, 10, 2))

    multi = MultiBlock({f'{i}': sphere for i in range(10)})
    del multi[5:2:-1]
    assert len(multi) == 7
    assert all(f'{i}' in multi.keys() for i in [0, 1, 2, 6, 7, 8, 9])


def test_slicing_multiple_in_setitem(sphere):
    # equal length
    multi = MultiBlock({f'{i}': sphere for i in range(10)})
    multi[1:3] = [pv.Cube(), pv.Cube()]
    assert multi[1] == pv.Cube()
    assert multi[2] == pv.Cube()
    assert multi.count(pv.Cube()) == 2
    assert len(multi) == 10

    # len(slice) < len(data)
    multi = MultiBlock({f'{i}': sphere for i in range(10)})
    multi[1:3] = [pv.Cube(), pv.Cube(), pv.Cube()]
    assert multi[1] == pv.Cube()
    assert multi[2] == pv.Cube()
    assert multi[3] == pv.Cube()
    assert multi.count(pv.Cube()) == 3
    assert len(multi) == 11

    # len(slice) > len(data)
    multi = MultiBlock({f'{i}': sphere for i in range(10)})
    multi[1:3] = [pv.Cube()]
    assert multi[1] == pv.Cube()
    assert multi.count(pv.Cube()) == 1
    assert len(multi) == 9


@pytest.fixture
def nested_fixture():
    image = pv.ImageData()
    poly = pv.PolyData()
    grid = pv.UnstructuredGrid()
    nested = pv.MultiBlock(dict(image=image, poly=poly))
    multi = pv.MultiBlock(dict(grid=grid))
    nested.insert(1, multi, 'multi')
    return nested


@pytest.mark.parametrize(
    'replace_indices',
    [
        (0,),
        (1, 0),
        (2,),
    ],
)
def test_replace_nested(nested_fixture, replace_indices):
    nested = nested_fixture
    expected_keys = ['image', 'multi', 'poly']
    expected_flat_keys = ['image', 'grid', 'poly']

    nested.replace(replace_indices, None)
    assert nested.get_block(replace_indices) is None
    assert nested.keys() == expected_keys
    assert nested.flatten().keys() == expected_flat_keys


@pytest.mark.parametrize(
    'invalid_indices',
    [
        ((0, 0, 0), 'Invalid indices (0, 0, 0).'),
        ((0, 0), 'Invalid indices (0, 0).'),
    ],
)
def test_replace_nested_invalid_indices(nested_fixture, invalid_indices):
    nested = nested_fixture
    match = re.escape(invalid_indices[1])
    with pytest.raises(IndexError, match=match):
        nested.replace(invalid_indices[0], None)


def test_get_block(nested_fixture):
    index = (1, 0)
    name = 'grid'
    block_by_index = nested_fixture[index[0]].get_block(index[1])
    block_by_nested_index = nested_fixture.get_block(index)
    block_by_name = nested_fixture[index[0]].get_block(name)
    assert block_by_name is block_by_index is block_by_nested_index


def test_reverse(sphere):
    multi = MultiBlock({f'{i}': sphere for i in range(3)})
    multi.append(pv.Cube(), 'cube')
    multi.reverse()
    assert multi[0] == pv.Cube()
    assert np.array_equal(multi.keys(), ['cube', '2', '1', '0'])


def test_insert(sphere):
    multi = MultiBlock({f'{i}': sphere for i in range(3)})
    cube = pv.Cube()
    multi.insert(0, cube)
    assert len(multi) == 4
    assert multi[0] is cube

    # test with negative index and name
    multi.insert(-1, pv.ImageData(), name='uni')
    assert len(multi) == 5
    # inserted before last element
    assert isinstance(multi[-2], pv.ImageData)  # inserted before last element
    assert multi.get_block_name(-2) == 'uni'


def test_extend(sphere, uniform, ant):
    # test with Iterable
    multi = MultiBlock([sphere, ant])
    new_multi = [uniform, uniform]
    multi.extend(new_multi)
    assert len(multi) == 4
    assert multi.count(uniform) == 2

    # test with a MultiBlock
    multi = MultiBlock([sphere, ant])
    new_multi = MultiBlock({'uniform1': uniform, 'uniform2': uniform})
    multi.extend(new_multi)
    assert len(multi) == 4
    assert multi.count(uniform) == 2
    assert multi.keys()[-2] == 'uniform1'
    assert multi.keys()[-1] == 'uniform2'


def test_multi_block_clean(rectilinear, uniform, ant):
    # now test a clean of the null values
    multi = MultiBlock()
    multi.n_blocks = 6
    multi[1] = rectilinear
    multi.set_block_name(1, 'rect')
    multi[2] = PolyData()
    multi.set_block_name(2, 'empty')
    multi[3] = MultiBlock()
    multi.set_block_name(3, 'mempty')
    multi[5] = uniform
    multi.set_block_name(5, 'uni')
    # perform the clean to remove all Null elements
    multi.clean()
    assert multi.n_blocks == 2
    assert multi.GetNumberOfBlocks() == 2
    assert isinstance(multi[0], RectilinearGrid)
    assert isinstance(multi[1], ImageData)
    assert multi.get_block_name(0) == 'rect'
    assert multi.get_block_name(1) == 'uni'
    # Test a nested data struct
    foo = MultiBlock()
    foo.n_blocks = 4
    foo[3] = ant
    assert foo.n_blocks == 4
    multi = MultiBlock()
    multi.n_blocks = 6
    multi[1] = rectilinear
    multi.set_block_name(1, 'rect')
    multi[5] = foo
    multi.set_block_name(5, 'multi')
    # perform the clean to remove all Null elements
    assert multi.n_blocks == 6
    multi.clean()
    assert multi.n_blocks == 2
    assert multi.GetNumberOfBlocks() == 2
    assert isinstance(multi[0], RectilinearGrid)
    assert isinstance(multi[1], MultiBlock)
    assert multi.get_block_name(0) == 'rect'
    assert multi.get_block_name(1) == 'multi'
    assert foo.n_blocks == 1


def test_multi_block_repr(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    assert multi._repr_html_() is not None
    pattern = (
        r'MultiBlock \(0x[0-9a-fA-F]+\)'
        r'\s+N Blocks:\s{3}\d+'
        r'\s+X Bounds:\s{3}[+-]?\d*\.\d{3}e[+-]\d+,\s+[-+]?\d\.\d+e[+-]\d+'
        r'\s+Y Bounds:\s{3}[+-]?\d*\.\d{3}e[+-]\d+,\s+[-+]?\d\.\d+e[+-]\d+'
        r'\s+Z Bounds:\s{3}[+-]?\d*\.\d{3}e[+-]\d+,\s+[-+]?\d\.\d+e[+-]\d+'
    )
    match = re.search(pattern, repr(multi))
    assert repr(multi) == match.string
    assert str(multi) == match.string


def test_multi_block_repr_bounds():
    empty_poly = pv.PolyData().extract_cells(0)
    poly_x_bounds = repr(empty_poly).splitlines()[3]
    poly_y_bounds = repr(empty_poly).splitlines()[4]
    poly_z_bounds = repr(empty_poly).splitlines()[5]

    empty_multiblock = pv.MultiBlock([empty_poly])
    multi_x_bounds = repr(empty_multiblock).splitlines()[2]
    multi_y_bounds = repr(empty_multiblock).splitlines()[3]
    multi_z_bounds = repr(empty_multiblock).splitlines()[4]

    assert multi_x_bounds == poly_x_bounds
    assert multi_y_bounds == poly_y_bounds
    assert multi_z_bounds == poly_z_bounds


@pytest.mark.xfail(importlib.util.find_spec("paraview"),
                   reason="paraview provides inconsistent vtk")
def test_multi_block_eq(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    other = multi.copy()

    assert multi is not other
    assert multi == other

    assert pv.MultiBlock() == pv.MultiBlock()

    other[0] = pv.Sphere()
    assert multi != other

    other = multi.copy()
    other.set_block_name(0, 'not matching')
    assert multi != other

    other = multi.copy()
    other.append(pv.Sphere())
    assert multi != other


@pytest.mark.parametrize('binary', [True, False])
@pytest.mark.parametrize('extension', pv.core.composite.MultiBlock._WRITERS)
@pytest.mark.parametrize('use_pathlib', [True, False])
def test_multi_block_io(
    extension, binary, tmpdir, use_pathlib, multiblock_all_with_nested_and_none
):
    filename = str(tmpdir.mkdir('tmpdir').join(f'tmp.{extension}'))
    if use_pathlib:
        pathlib.Path(filename)

    # Use non-nested multiblock with no None types for vtkhdf case
    # these cases are tested separately
    multi = (
        pv.MultiBlock([pv.PolyData(), pv.UnstructuredGrid()])
        if extension == '.vtkhdf'
        else multiblock_all_with_nested_and_none
    )

    # Save it out
    if extension == '.vtkhdf' and binary is False:
        match = '.vtkhdf files can only be written in binary format'
        with pytest.raises(ValueError, match=match):
            multi.save(filename, binary=binary)
        return
    multi.save(filename, binary=binary)

    foo = MultiBlock(filename)
    assert foo.n_blocks == multi.n_blocks
    foo = pv.read(filename)
    assert foo.n_blocks == multi.n_blocks


@pytest.mark.needs_vtk_version(at_least=(9, 4, 0), less_than=(9, 5))
def test_multi_block_hdf_invalid_block_types_vtk94(tmpdir):
    filename = tmpdir / 'multi.vtkhdf'

    multi = pv.MultiBlock([pv.MultiBlock()])
    match = (
        'Nested MultiBlocks are not supported by the .vtkhdf format in VTK 9.4.\n'
        'Upgrade to VTK>=9.5 for this functionality.'
    )
    with pytest.raises(TypeError, match=match):
        multi.save(filename)

    multi = pv.MultiBlock([None])
    match = (
        'Saving None blocks is not supported by the .vtkhdf format in VTK 9.4.\n'
        'Upgrade to VTK>=9.5 for this functionality.'
    )
    with pytest.raises(TypeError, match=match):
        multi.save(filename)


@pytest.mark.needs_vtk_version(at_least=(9, 4, 0))
def test_multi_block_hdf_invalid_block_type(tmpdir):
    filename = tmpdir / 'multi.vtkhdf'

    multi = pv.MultiBlock([pv.ImageData()])
    match = (
        "Block at index [0] with name 'Block-00' has type 'ImageData' which cannot be saved to "
        "the .vtkhdf format.\nSupported types are: ['PolyData', 'UnstructuredGrid', 'NoneType', "
        "'MultiBlock', 'PartitionedDataSet']."
    )
    with pytest.raises(TypeError, match=re.escape(match)):
        multi.save(filename)


@pytest.mark.needs_vtk_version(at_least=(9, 5, 0))
def test_multi_block_hdf_invalid_nested_block(tmpdir):
    filename = tmpdir / 'multi.vtkhdf'

    multi = pv.MultiBlock([pv.MultiBlock({'nested_block': pv.PointSet()})])
    match = (
        "Block at index [0][0] with name 'nested_block' has type 'PointSet' which cannot be saved "
        'to the .vtkhdf format.'
    )
    with pytest.raises(TypeError, match=re.escape(match)):
        multi.save(filename)


@pytest.mark.parametrize('binary', [True, False])
@pytest.mark.parametrize('extension', ['vtm', 'vtmb'])
def test_ensight_multi_block_io(extension, binary, tmpdir):
    filename = str(tmpdir.mkdir('tmpdir').join(f'tmp.{extension}'))
    # multi = ex.load_bfs()  # .case file
    multi = ex.download_backward_facing_step()  # .case file
    # Now check everything
    assert multi.n_blocks == 4
    array_names = ['v2', 'nut', 'k', 'nuTilda', 'p', 'omega', 'f', 'epsilon', 'U']
    for block in multi:
        assert block.array_names == array_names
    # Save it out
    multi.save(filename, binary=binary)
    foo = MultiBlock(filename)
    assert foo.n_blocks == multi.n_blocks
    for block in foo:
        assert block.array_names == array_names
    foo = pv.read(filename)
    assert foo.n_blocks == multi.n_blocks
    for block in foo:
        assert block.array_names == array_names


def test_invalid_arg():
    with pytest.raises(TypeError):
        pv.MultiBlock(np.empty(10))
    with pytest.raises(ValueError):  # noqa: PT011
        pv.MultiBlock(np.empty(10), np.empty(10))


def test_multi_io_erros(tmpdir):
    fdir = tmpdir.mkdir('tmpdir')
    multi = MultiBlock()
    # Check saving with bad extension
    bad_ext_name = str(fdir.join('tmp.npy'))
    with pytest.raises(ValueError):  # noqa: PT011
        multi.save(bad_ext_name)
    arr = np.random.default_rng().random((10, 10))
    np.save(bad_ext_name, arr)
    # Load non existing file
    with pytest.raises(FileNotFoundError):
        _ = MultiBlock('foo.vtm')
    # Load bad extension
    with pytest.raises(IOError):  # noqa: PT011
        _ = MultiBlock(bad_ext_name)


def test_extract_geometry(multiblock_all_with_nested_and_none):
    geom = multiblock_all_with_nested_and_none.extract_geometry()
    assert isinstance(geom, PolyData)


def test_combine_filter(multiblock_all_with_nested_and_none):
    geom = multiblock_all_with_nested_and_none.combine()
    assert isinstance(geom, pv.UnstructuredGrid)


@pytest.mark.parametrize('inplace', [True, False])
def test_transform_filter(ant, sphere, airplane, tetbeam, inplace):
    # Set up
    multi = pv.MultiBlock([ant, sphere])
    nested = pv.MultiBlock([airplane, tetbeam])
    nested.append(None)
    multi.append(nested)
    multi.append(None)
    for i, _ in enumerate(multi):
        multi.set_block_name(i, str(i))

    NUMBER = 42
    transform = pv.Transform().translate(NUMBER, NUMBER, NUMBER)
    bounds_before = np.array(multi.bounds)
    n_blocks_before = multi.n_blocks
    keys_before = multi.keys()

    # Do test
    output = multi.transform(
        transform,
        inplace=inplace,
        transform_all_input_vectors=False,
        progress_bar=False,
    )
    bounds_after = np.array(output.bounds)
    n_blocks_after = output.n_blocks
    keys_after = output.keys()

    assert (output is multi) == inplace
    for block_in, block_out in zip(multi, output):
        assert (block_in is block_out) == inplace or (block_in is None)
    assert np.allclose(bounds_before + NUMBER, bounds_after)
    assert n_blocks_before == n_blocks_after
    assert keys_before == keys_after


@pytest.mark.parametrize('deep', [True, False])
def test_multi_block_copy(deep, multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    multi_copy = multi.copy(deep=deep)
    assert multi.n_blocks == multi_copy.n_blocks
    for i in range(multi_copy.n_blocks):
        block = multi_copy.GetBlock(i)
        assert pv.is_pyvista_dataset(block) or block is None
        assert (multi[i] is multi_copy[i]) != deep or (multi[i] is None)


@pytest.mark.parametrize('recursive', [True, False])
def test_multi_block_shallow_copy(recursive, multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    multi_copy = MultiBlock()
    multi_copy.shallow_copy(multi, recursive=recursive)
    assert multi.n_blocks == multi_copy.n_blocks
    for i, block in enumerate(multi_copy):
        assert pv.is_pyvista_dataset(block) or block is None
        if isinstance(multi[i], MultiBlock):
            assert (multi[i] is block) != recursive
        else:
            assert block is multi[i]


def test_multi_block_negative_index(ant, sphere, uniform, airplane, tetbeam):
    multi = pv.MultiBlock([ant, sphere, uniform, airplane, tetbeam])
    # Now check everything
    assert id(multi[-1]) == id(multi[4])
    assert id(multi[-2]) == id(multi[3])
    assert id(multi[-3]) == id(multi[2])
    assert id(multi[-4]) == id(multi[1])
    assert id(multi[-5]) == id(multi[0])
    with pytest.raises(IndexError):
        _ = multi[-6]

    multi[-1] = ant
    assert multi[4] == ant
    multi[-5] = tetbeam
    assert multi[0] == tetbeam

    with pytest.raises(IndexError):
        multi[-6] = uniform


def test_multi_slice_index(ant, sphere, uniform, airplane, tetbeam):
    multi = pv.MultiBlock([ant, sphere, uniform, airplane, tetbeam])
    # Now check everything
    sub = multi[0:3]
    assert len(sub) == 3
    for i in range(len(sub)):
        assert sub[i] is multi[i]
        assert sub.get_block_name(i) == multi.get_block_name(i)
    sub = multi[0:-1]
    assert len(sub) + 1 == len(multi)
    for i in range(len(sub)):
        assert sub[i] is multi[i]
        assert sub.get_block_name(i) == multi.get_block_name(i)
    sub = multi[0:-1:2]
    assert len(sub) == 2
    for i in range(len(sub)):
        j = i * 2
        assert sub[i] is multi[j]
        assert sub.get_block_name(i) == multi.get_block_name(j)

    sub = [airplane, tetbeam]
    multi[0:2] = sub
    assert multi[0] is airplane
    assert multi[1] is tetbeam


def test_slice_defaults(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    assert multi[:] == multi[0 : len(multi)]


def test_slice_negatives(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    test_multi = pv.MultiBlock({key: multi[key] for key in multi.keys()[::-1]})
    assert multi[::-1] == test_multi

    test_multi = pv.MultiBlock({key: multi[key] for key in multi.keys()[-2:]})
    assert multi[-2:] == test_multi

    test_multi = pv.MultiBlock({key: multi[key] for key in multi.keys()[:-1]})
    assert multi[:-1] == test_multi

    test_multi = pv.MultiBlock({key: multi[key] for key in multi.keys()[-1:-4:-2]})
    assert multi[-1:-4:-2] == test_multi


def test_multi_block_volume(ant, airplane, sphere, uniform):
    multi = pv.MultiBlock([ant, sphere, uniform, airplane, None])
    vols = ant.volume + sphere.volume + uniform.volume + airplane.volume
    assert multi.volume == pytest.approx(vols)


def test_multi_block_length(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    assert multi.length == pv.Box(bounds=multi.bounds).length


def test_multi_block_save_lines(tmpdir):
    radius = 1
    xr = np.random.default_rng().random(10)
    yr = np.random.default_rng().random(10)
    x = radius * np.sin(yr) * np.cos(xr)
    y = radius * np.sin(yr) * np.sin(xr)
    z = radius * np.cos(yr)
    xyz = np.stack((x, y, z), axis=1)

    poly = pv.lines_from_points(xyz, close=False)
    blocks = pv.MultiBlock()
    for _ in range(2):
        blocks.append(poly)

    path = tmpdir.mkdir('tmpdir')
    line_filename = str(path.join('lines.vtk'))
    block_filename = str(path.join('blocks.vtmb'))
    poly.save(line_filename)
    blocks.save(block_filename)

    poly_load = pv.read(line_filename)
    assert np.allclose(poly_load.points, poly.points)

    blocks_load = pv.read(block_filename)
    assert np.allclose(blocks_load[0].points, blocks[0].points)


def test_multi_block_data_range():
    # Create ambiguous point and cell data
    volume = pv.ImageData(dimensions=(10, 10, 10))
    point_data_value = 99
    cell_data_value = 42
    volume.point_data['data'] = np.ones((volume.n_points,)) * point_data_value
    volume.cell_data['data'] = np.ones((volume.n_cells,)) * cell_data_value

    # Create multiblock
    a = volume.slice_along_axis(5, 'x')
    with pytest.raises(KeyError):
        a.get_data_range('foo')
    mi, ma = a.get_data_range(volume.active_scalars_name, preference='point')
    assert mi == point_data_value
    assert ma == point_data_value

    mi, ma = a.get_data_range(volume.active_scalars_name, preference='cell')
    assert mi == cell_data_value
    assert ma == cell_data_value

    # Test on a nested MultiBlock
    b = volume.slice_along_axis(5, 'y')
    slices = pv.MultiBlock([a, b])
    with pytest.raises(KeyError):
        slices.get_data_range('foo')
    mi, ma = slices.get_data_range(volume.active_scalars_name)
    assert mi is not None
    assert ma is not None


def test_multiblock_ref():
    # can't use fixtures here as we need to remove all references for
    # garbage collection
    sphere = pv.Sphere()
    cube = pv.Cube()

    block = MultiBlock([sphere, cube])
    block[0]['a_new_var'] = np.zeros(block[0].n_points)
    assert 'a_new_var' in block[0].array_names

    assert sphere is block[0]
    assert cube is block[1]

    wref_sphere = weakref.ref(sphere)
    wref_cube = weakref.ref(cube)

    # verify reference remains
    assert wref_sphere() is sphere
    del sphere
    assert wref_sphere() is not None

    # verify __delitem__ works and removes reference
    del block[0]
    assert wref_sphere() is None

    # verify reference remains
    assert wref_cube() is cube

    # verify the __setitem__(index, None) edge case
    del cube
    block[0] = None
    assert wref_cube() is None


def test_set_active_scalars(multiblock_all):
    for block in multiblock_all:
        block.clear_data()
        block.point_data['data'] = range(block.n_points)
        block.point_data['point_data_a'] = range(block.n_points)
        block.point_data['point_data_b'] = range(block.n_points)

        block.cell_data['data'] = range(block.n_cells)
        block.cell_data['cell_data_a'] = range(block.n_cells)
        block.cell_data['cell_data_b'] = range(block.n_cells)

    # test none
    multiblock_all.set_active_scalars(None)
    for block in multiblock_all:
        assert block.point_data.active_scalars_name is None
        assert block.cell_data.active_scalars_name is None

    # test set point_data
    active_scalars_name = 'point_data_a'
    multiblock_all.set_active_scalars(active_scalars_name)
    for block in multiblock_all:
        assert block.point_data.active_scalars_name == active_scalars_name

    # test set point_data
    active_scalars_name = 'cell_data_a'
    multiblock_all.set_active_scalars(active_scalars_name)
    for block in multiblock_all:
        assert block.cell_data.active_scalars_name == active_scalars_name

    # test set point_data
    multiblock_all.set_active_scalars(None)
    active_scalars_name = 'data'
    multiblock_all.set_active_scalars(active_scalars_name, preference='point')
    for block in multiblock_all:
        assert block.point_data.active_scalars_name == active_scalars_name
        assert block.cell_data.active_scalars_name is None

    multiblock_all.set_active_scalars(None)
    active_scalars_name = 'data'
    multiblock_all.set_active_scalars(active_scalars_name, preference='cell')
    for block in multiblock_all:
        assert block.point_data.active_scalars_name is None
        assert block.cell_data.active_scalars_name == active_scalars_name

    # test partial
    multiblock_all[0].clear_data()
    multiblock_all.set_active_scalars(None)
    with pytest.raises(KeyError, match='does not exist'):
        multiblock_all.set_active_scalars('point_data_a')
    multiblock_all.set_active_scalars('point_data_a', allow_missing=True)
    assert multiblock_all[1].point_data.active_scalars_name == 'point_data_a'

    with pytest.raises(KeyError, match='is missing from all'):
        multiblock_all.set_active_scalars('does not exist', allow_missing=True)


def test_set_active_scalars_multi(multiblock_poly):
    multiblock_poly.set_active_scalars(None)

    block = multiblock_poly[0]
    block.point_data.set_array(range(block.n_points), 'data')
    block.cell_data.set_array(range(block.n_cells), 'data')

    block = multiblock_poly[1]
    block.point_data.set_array(range(block.n_points), 'data')

    multiblock_poly.set_active_scalars('data', preference='point', allow_missing=True)
    for block in multiblock_poly:
        if 'data' in block.point_data:
            assert block.point_data.active_scalars_name == 'data'
        else:
            assert block.point_data.active_scalars_name is None

    multiblock_poly.set_active_scalars('data', preference='cell', allow_missing=True)
    for block in multiblock_poly:
        if 'data' in block.cell_data:
            assert block.cell_data.active_scalars_name == 'data'
        else:
            assert block.cell_data.active_scalars_name is None


def test_set_active_scalars_components(multiblock_poly):
    multiblock_poly[0].point_data['data'] = range(multiblock_poly[0].n_points)
    multiblock_poly[1].point_data['data'] = range(multiblock_poly[1].n_points)
    multiblock_poly[2].point_data['data'] = range(multiblock_poly[2].n_points)

    multiblock_poly.set_active_scalars(None)
    multiblock_poly.set_active_scalars('data')
    for block in multiblock_poly:
        assert block.point_data.active_scalars_name == 'data'

    data = np.zeros((multiblock_poly[2].n_points, 3))
    multiblock_poly[2].point_data['data'] = data
    with pytest.raises(ValueError, match='Inconsistent dimensions'):
        multiblock_poly.set_active_scalars('data')

    data = np.arange(multiblock_poly[2].n_points, dtype=np.complex128)
    multiblock_poly[2].point_data['data'] = data
    with pytest.raises(ValueError, match='Inconsistent complex and real'):
        multiblock_poly.set_active_scalars('data')


def test_set_active_multi_multi(multiblock_poly):
    multi_multi = MultiBlock([multiblock_poly, multiblock_poly])
    with pytest.raises(KeyError, match='missing from all'):
        multi_multi.set_active_scalars('does-not-exist', allow_missing=True)

    multi_multi.set_active_scalars('multi-comp', allow_missing=True)


def test_set_active_scalars_mixed(multiblock_poly):
    for block in multiblock_poly:
        block.clear_data()
        block.point_data.set_array(range(block.n_points), 'data')
        block.cell_data.set_array(range(block.n_cells), 'data')

    # remove data from the last block
    del multiblock_poly[-1].point_data['data']
    del multiblock_poly[-1].cell_data['data']

    multiblock_poly.set_active_scalars('data', preference='cell', allow_missing=True)

    for block in multiblock_poly:
        if 'data' in block.cell_data:
            assert block.cell_data.active_scalars_name == 'data'

    multiblock_poly.set_active_scalars('data', preference='point', allow_missing=True)

    for block in multiblock_poly:
        if 'data' in block.point_data:
            assert block.point_data.active_scalars_name == 'data'


def test_as_polydata_blocks(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    if pv.vtk_version_info >= (9, 1, 0):
        multi.append(pv.PointSet([0.0, 0.0, 1.0]))  # missing pointset
    assert not multi.is_all_polydata
    # Get a polydata block for copy test
    poly_index = 3
    poly = multi[poly_index]
    assert isinstance(poly, pv.PolyData)

    dataset_a = multi.as_polydata_blocks()
    assert dataset_a[poly_index] is poly
    if pv.vtk_version_info >= (9, 1, 0):
        assert dataset_a[-1].n_points == 1
    assert not multi.is_all_polydata
    assert dataset_a.is_all_polydata

    # Test shallow copy
    dataset_copy = multi.as_polydata_blocks(copy=True)
    assert dataset_copy[poly_index] is not poly
    copied_points = dataset_copy[poly_index].points
    expected_points = poly.points
    assert np.shares_memory(copied_points, expected_points)

    # verify nested works
    nested_mblock = pv.MultiBlock([multi, multi])
    assert not nested_mblock.is_all_polydata
    dataset_b = nested_mblock.as_polydata_blocks()
    assert dataset_b.is_all_polydata


def test_as_unstructured_grid_blocks(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    if pv.vtk_version_info >= (9, 1, 0):
        multi.append(pv.PointSet([0.0, 0.0, 1.0]))  # missing pointset
    # Get a UnstructuredGrid block for copy test
    grid_index = 2
    grid = multi[grid_index]
    assert isinstance(grid, pv.UnstructuredGrid)

    new_multi = multi.as_unstructured_grid_blocks()
    assert all(isinstance(block, pv.UnstructuredGrid) for block in new_multi.recursive_iterator())
    assert new_multi[grid_index] is grid

    # Test shallow copy
    dataset_copy = multi.as_unstructured_grid_blocks(copy=True)
    assert dataset_copy[grid_index] is not grid
    copied_points = dataset_copy[grid_index].points
    expected_points = grid.points
    assert np.shares_memory(copied_points, expected_points)


def test_compute_normals(multiblock_poly):
    for block in multiblock_poly:
        block.clear_data()
        block['point_data'] = range(block.n_points)
    mblock = multiblock_poly._compute_normals(
        cell_normals=False,
        split_vertices=True,
        track_vertices=True,
    )
    for block in mblock:
        assert 'Normals' in block.point_data
        assert 'point_data' in block.point_data
        assert 'pyvistaOriginalPointIds' in block.point_data

    # test non-poly raises
    multiblock_poly.append(pv.UnstructuredGrid())
    with pytest.raises(RuntimeError, match='This multiblock contains non-PolyData'):
        multiblock_poly._compute_normals()


def test_activate_scalars(multiblock_poly):
    for block in multiblock_poly:
        data = np.array(['a'] * block.n_points)
        block.point_data.set_array(data, 'data')


def test_clear_all_data(multiblock_all):
    for block in multiblock_all:
        block.point_data['data'] = range(block.n_points)
        block.cell_data['data'] = range(block.n_cells)
    multiblock_all.append(multiblock_all.copy())
    multiblock_all.clear_all_data()
    for block in multiblock_all:
        if isinstance(block, MultiBlock):
            for subblock in block:
                assert subblock.point_data.keys() == []
                assert subblock.cell_data.keys() == []
        else:
            assert block.point_data.keys() == []
            assert block.cell_data.keys() == []


def test_clear_all_point_data(multiblock_all):
    for block in multiblock_all:
        block.point_data['data'] = range(block.n_points)
        block.cell_data['data'] = range(block.n_cells)
    multiblock_all.append(multiblock_all.copy())
    multiblock_all.clear_all_point_data()
    for block in multiblock_all:
        if isinstance(block, MultiBlock):
            for subblock in block:
                assert subblock.point_data.keys() == []
                assert subblock.cell_data.keys() != []
        else:
            assert block.point_data.keys() == []
            assert block.cell_data.keys() != []


def test_clear_all_cell_data(multiblock_all):
    for block in multiblock_all:
        block.point_data['data'] = range(block.n_points)
        block.cell_data['data'] = range(block.n_cells)
    multiblock_all.append(multiblock_all.copy())
    multiblock_all.clear_all_cell_data()
    for block in multiblock_all:
        if isinstance(block, MultiBlock):
            for subblock in block:
                assert subblock.point_data.keys() != []
                assert subblock.cell_data.keys() == []
        else:
            assert block.point_data.keys() != []
            assert block.cell_data.keys() == []


@pytest.mark.parametrize('container', [pv.MultiBlock, pv.PartitionedDataSet])
def test_multiblock_partitioned_zip(container):
    # Test `__iter__` and `__next__` inheritance
    list_ = [None, None]
    composite = container(list_)
    zipped_container = list(zip(composite, composite))
    zipped_list = list(zip(list_, list_))

    assert len(zipped_container) == len(zipped_list)
    assert len(zipped_container[0]) == len(zipped_list[0])
    for i, j in itertools.product(range(2), repeat=2):
        assert zipped_container[i][j] is zipped_list[i][j] is None


def test_transform_filter_inplace_default_warns(multiblock_poly):
    expected_msg = (
        'The default value of `inplace` for the filter `MultiBlock.transform` '
        'will change in the future.'
    )
    with pytest.warns(PyVistaDeprecationWarning, match=expected_msg):
        _ = multiblock_poly.transform(np.eye(4))


def test_recursive_iterator(multiblock_all_with_nested_and_none):
    # include an empty mesh
    multiblock_all_with_nested_and_none.append(pv.PolyData())

    # Test default does not skip None blocks or empty meshes by default
    iterator = multiblock_all_with_nested_and_none.recursive_iterator()
    assert isinstance(iterator, Generator)
    iterator_list = list(iterator)
    assert None in iterator_list
    assert all(isinstance(item, pv.DataSet) or item is None for item in iterator_list)
    assert any(item.n_points == 0 for item in iterator_list if item is not None)

    # Test skip None blocks
    iterator = multiblock_all_with_nested_and_none.recursive_iterator(skip_none=True)
    assert isinstance(iterator, Generator)
    iterator_list = list(iterator)
    assert None not in iterator_list
    assert all(isinstance(item, pv.DataSet) for item in iterator_list)

    # Test skip empty blocks
    iterator = multiblock_all_with_nested_and_none.recursive_iterator(skip_empty=True)
    assert isinstance(iterator, Generator)
    iterator_list = list(iterator)
    assert all(item.n_points > 0 for item in iterator_list if item is not None)


def test_recursive_iterator_node_type():
    empty = pv.MultiBlock()
    assert len(list(empty.recursive_iterator(node_type='parent'))) == 0

    nested_empty = pv.MultiBlock([empty])
    assert len(list(nested_empty.recursive_iterator(node_type='parent'))) == 1
    assert len(list(nested_empty.recursive_iterator(node_type='parent', skip_empty=True))) == 0

    nested_empty2 = pv.MultiBlock([nested_empty])
    assert len(list(nested_empty2.recursive_iterator(node_type='parent'))) == 2
    assert len(list(nested_empty2.recursive_iterator(node_type='parent', skip_empty=True))) == 1

    match = "Cannot skip None blocks when the node type is 'parent'."
    with pytest.raises(ValueError, match=match):
        empty.recursive_iterator(skip_none=True, node_type='parent')
    match = "Cannot set order when the node type is 'parent'."
    with pytest.raises(TypeError, match=match):
        empty.recursive_iterator(order='nested_first', node_type='parent')


@pytest.mark.parametrize(
    ('node_type', 'expected_types'),
    [('parent', pv.MultiBlock), ('child', (pv.DataSet, type(None)))],
)
def test_recursive_iterator_contents(
    multiblock_all_with_nested_and_none, node_type, expected_types
):
    iterator = multiblock_all_with_nested_and_none.recursive_iterator('ids', node_type=node_type)
    assert all(isinstance(item, tuple) and isinstance(item[0], int) for item in iterator)

    iterator = multiblock_all_with_nested_and_none.recursive_iterator('names', node_type=node_type)
    assert all(isinstance(item, str) for item in iterator)

    iterator = multiblock_all_with_nested_and_none.recursive_iterator(
        'blocks', node_type=node_type
    )
    assert all(isinstance(item, expected_types) for item in iterator)

    iterator = multiblock_all_with_nested_and_none.recursive_iterator('items', node_type=node_type)
    for name, block in iterator:
        assert isinstance(name, str)
        assert isinstance(block, expected_types)

    iterator = multiblock_all_with_nested_and_none.recursive_iterator('all', node_type=node_type)
    for id_, name, block in iterator:
        assert isinstance(id_, tuple)
        assert isinstance(name, str)
        assert isinstance(block, expected_types)


@pytest.mark.parametrize('prepend_names', [True, False])
@pytest.mark.parametrize('separator', ['::', '--'])
def test_recursive_iterator_prepend_names(separator, prepend_names):
    nested = MultiBlock(dict(a=MultiBlock(dict(b=MultiBlock(dict(c=None)), d=None)), e=None))
    expected_names = ['a::b::c', 'a::d', 'e'] if prepend_names else ['c', 'd', 'e']
    expected_names = [name.replace('::', separator) for name in expected_names]

    iterator = nested.recursive_iterator(
        'names', prepend_names=prepend_names, separator=separator, skip_none=False
    )
    names = list(iterator)
    assert names == expected_names

    # Test iterator with flatten method
    name_mode = 'prepend' if prepend_names else 'preserve'
    flattened = nested.flatten(name_mode=name_mode, separator=separator)
    assert flattened.keys() == expected_names


@pytest.mark.parametrize('nested_ids', [True, False])
def test_recursive_iterator_ids(nested_ids):
    nested = MultiBlock(dict(a=MultiBlock(dict(b=MultiBlock(dict(c=None)), d=None)), e=None))
    expected_ids = [(0, 0, 0), (0, 1), (1,)] if nested_ids else [0, 1, 1]

    iterator = nested.recursive_iterator('ids', nested_ids=nested_ids, skip_none=False)
    ids = list(iterator)
    assert ids == expected_ids


def test_recursive_iterator_raises():
    multi = pv.MultiBlock()

    match = 'Nested ids option only applies when ids are returned.'
    with pytest.raises(ValueError, match=match):
        multi.recursive_iterator('names', nested_ids=True)
    with pytest.raises(ValueError, match=match):
        multi.recursive_iterator('items', nested_ids=True)

    match = 'Prepend names option only applies when names are returned.'
    with pytest.raises(ValueError, match=match):
        multi.recursive_iterator('ids', prepend_names=True)
    with pytest.raises(ValueError, match=match):
        multi.recursive_iterator('blocks', prepend_names=True)

    with pytest.raises(ValueError, match='String separator cannot be empty.'):
        multi.recursive_iterator(separator='')


@pytest.mark.parametrize(
    ('order', 'expected_ids', 'expected_names'),
    [
        ('nested_first', [(1, 0), (0,), (2,)], ['grid', 'image', 'poly']),
        ('nested_last', [(0,), (2,), (1, 0)], ['image', 'poly', 'grid']),
        (None, [(0,), (1, 0), (2,)], ['image', 'grid', 'poly']),
    ],
)
def test_recursive_iterator_order(nested_fixture, order, expected_ids, expected_names):
    # Store instances of each mesh for testing iterator blocks
    expected_meshes = dict(
        image=nested_fixture['image'],
        poly=nested_fixture['poly'],
        grid=nested_fixture['multi']['grid'],
    )

    common_kwargs = dict(skip_empty=False, nested_ids=True, contents='all')
    iterator = nested_fixture.recursive_iterator(order=order, **common_kwargs)
    for i, (ids, name, block) in enumerate(iterator):
        assert ids == expected_ids[i]
        assert name == expected_names[i]
        assert block is expected_meshes[name]


@pytest.mark.parametrize('copy', [True, False, None])
@pytest.mark.parametrize(
    ('field_data_mode', 'separator', 'name_in', 'name_out'),
    [('prepend', '//', 'data', 'Block-00//data'), ('preserve', '::', 'data', 'data')],
)
def test_move_nested_field_data_to_root(copy, field_data_mode, separator, name_in, name_out):
    value = [42]
    multi = pv.MultiBlock()
    multi.field_data[name_in] = value
    root = pv.MultiBlock([multi])
    root.move_nested_field_data_to_root(
        copy=copy, field_data_mode=field_data_mode, separator=separator
    )
    assert root.field_data.keys() == [name_out]
    assert np.array_equal(root.field_data[name_out], value)

    if copy is None:
        assert name_in not in multi.field_data
    else:
        assert name_in in multi.field_data
        data_in = multi.field_data[name_in]
        data_out = root.field_data[name_out]
        assert np.shares_memory(data_in, data_out) == (copy is False)


def _make_nested_multiblock(
    *,
    root_field_data=None,
    root_user_dict=None,
    nested1_field_data=None,
    nested1_user_dict=None,
    nested1_block_name=None,
    nested2_field_data=None,
    nested2_user_dict=None,
    nested2_block_name=None,
):
    nested2 = pv.MultiBlock()
    if nested2_field_data:
        nested2.field_data.update(nested2_field_data)
    if nested2_user_dict:
        nested2.user_dict.update(nested2_user_dict)

    nested1 = pv.MultiBlock([nested2])
    if nested2_block_name:
        nested1.set_block_name(0, nested2_block_name)
    if nested1_field_data:
        nested1.field_data.update(nested1_field_data)
    if nested1_user_dict:
        nested1.user_dict.update(nested1_user_dict)

    root = pv.MultiBlock([nested1])
    if nested1_block_name:
        root.set_block_name(0, nested1_block_name)
    if root_field_data:
        root.field_data.update(root_field_data)
    if root_user_dict:
        root.user_dict.update(root_user_dict)
    return root


def test_move_nested_field_data_to_root_check_duplicate_keys():
    NAME1 = 'name1'
    VALUE1 = 'value1'
    NAME2 = 'name2'
    VALUE2 = 'value2'

    # Test nested field data key overrides root field data key
    root = _make_nested_multiblock(
        root_field_data={NAME1: VALUE1}, nested1_field_data={NAME1: VALUE1}
    )
    match = (
        "The field data array 'name1' from nested MultiBlock at index [0] with name 'Block-00'\n"
        "also exists in the root MultiBlock's field data and cannot be moved.\n"
        "Use `field_data_mode='prepend'` to make the array names unique."
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        root.move_nested_field_data_to_root()
    root.move_nested_field_data_to_root(check_duplicate_keys=False)

    # Test block name key overrides root user dict key
    root = _make_nested_multiblock(
        root_user_dict={NAME1: VALUE1},
        nested1_user_dict={NAME2: VALUE2},
        nested1_block_name=NAME1,
    )
    match = (
        'The root user dict cannot be updated with data from nested MultiBlock '
        "at index [0] with name 'name1'.\n"
        "The key 'name1' already exists in the root user dict and would be overwritten."
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        root.move_nested_field_data_to_root(user_dict_mode='prepend')
    root.move_nested_field_data_to_root(check_duplicate_keys=False)

    # Test nested user dict key overrides root user dict key
    root = _make_nested_multiblock(
        root_user_dict={NAME1: VALUE1}, nested1_user_dict={NAME1: VALUE1}
    )
    match = (
        'The root user dict cannot be updated with data from nested MultiBlock '
        "at index [0] with name 'Block-00'.\n"
        "The key 'name1' already exists in the root user dict and would be overwritten."
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        root.move_nested_field_data_to_root()
    root.move_nested_field_data_to_root(check_duplicate_keys=False)


@pytest.mark.parametrize('user_dict_mode', ['preserve', 'prepend', 'flat', 'nested'])
def test_move_nested_field_data_user_dict_mode(user_dict_mode):
    block_name1 = 'level1'
    block_name2 = 'level2'
    root_dict = {'root': 0}
    nested_dict1 = {'nested1': 1}
    nested_dict2 = {'nested2': 2}
    separator = ';'

    expected_user_dict = root_dict.copy()
    if user_dict_mode == 'flat':
        expected_user_dict[block_name1] = nested_dict1
        expected_user_dict[block_name2] = nested_dict2
    elif user_dict_mode == 'prepend':
        expected_user_dict[block_name1] = nested_dict1
        expected_user_dict[block_name1 + separator + block_name2] = nested_dict2
    elif user_dict_mode == 'preserve':
        expected_user_dict.update(nested_dict1)
        expected_user_dict.update(nested_dict2)
    elif user_dict_mode == 'nested':
        nested_dict = nested_dict1.copy()
        nested_dict[block_name2] = nested_dict2
        expected_user_dict[block_name1] = nested_dict

    root = _make_nested_multiblock(
        root_user_dict=root_dict,
        nested1_user_dict=nested_dict1,
        nested1_block_name=block_name1,
        nested2_user_dict=nested_dict2,
        nested2_block_name=block_name2,
    )

    # Test root user dict is updated with nested user dict data
    root.move_nested_field_data_to_root(user_dict_mode=user_dict_mode, separator=separator)
    actual_user_dict = dict(root.user_dict)
    assert actual_user_dict == expected_user_dict
    assert USER_DICT_KEY not in root[0].field_data
    assert root[0].user_dict == {}
    assert USER_DICT_KEY not in root[0][0].field_data
    assert root[0][0].user_dict == {}


def test_flatten(multiblock_all_with_nested_and_none):
    # Add field data
    ROOT_KEY = 'root'
    NESTED_KEY = 'nested'
    root_multi = multiblock_all_with_nested_and_none
    root_multi.field_data[ROOT_KEY] = ['root data']
    nested_multi = multiblock_all_with_nested_and_none[-1]
    nested_multi.field_data[NESTED_KEY] = ['nested data']
    assert isinstance(nested_multi, pv.MultiBlock)

    def assert_field_data_keys(flat_, root_, nested_):
        # Test that input block field data isn't accidentally cleared
        assert flat_.field_data.keys() == [ROOT_KEY, NESTED_KEY]
        assert root_.field_data.keys() == [ROOT_KEY]
        assert nested_.field_data.keys() == [NESTED_KEY]

    root_names = root_multi.keys()[:-1]
    nested_names = nested_multi.keys()
    expected_names = [*root_names, *nested_names]
    expected_n_blocks = len(root_names) + len(nested_names)

    match = (
        "Block at index [6][0] with name 'Block-00' cannot be flattened. Another block \n"
        "with the same name already exists. Use `name_mode='reset'` "
        'or `check_duplicate_keys=False`.'
    )
    with pytest.raises(ValueError, match=re.escape(match)):
        _ = root_multi.flatten()
    flat = root_multi.flatten(name_mode='preserve', check_duplicate_keys=False)
    assert all(isinstance(item, pv.DataSet) or item is None for item in flat)
    assert len(flat) == expected_n_blocks
    assert flat.keys() == expected_names

    # Test field data keys with copy
    assert nested_multi[0] is not flat[0]
    assert_field_data_keys(flat, root_multi, nested_multi)

    flat = root_multi.flatten(name_mode='reset', copy=False)
    expected_names = [f'Block-{i:02}' for i in range(expected_n_blocks)]
    assert flat.keys() == expected_names

    # Test field data keys without copy
    assert nested_multi[0] is flat[0]
    assert_field_data_keys(flat, root_multi, nested_multi)


@pytest.mark.parametrize('copy', [True, False])
def test_flatten_copy(multiblock_all, copy):
    multi_in = multiblock_all
    data_before = np.array([1, 2, 3])
    multi_in.field_data['foo'] = data_before

    multi_out = multiblock_all.flatten(copy=copy)
    assert multi_in is not multi_out
    for block_in, block_out in zip(multi_in, multi_out):
        assert block_in == block_out
        assert (block_in is block_out) == (not copy)

    data_after = multi_out.field_data['foo']
    shares_memory = np.shares_memory(data_after, data_before)
    assert shares_memory == (not copy)


@pytest.mark.parametrize(
    'function', [lambda x: x.cast_to_unstructured_grid(), 'cast_to_unstructured_grid']
)
def test_generic_filter(multiblock_all_with_nested_and_none, function):
    # Include empty mesh
    empty_mesh = pv.PolyData()
    multiblock_all_with_nested_and_none.append(empty_mesh)

    output = multiblock_all_with_nested_and_none.generic_filter(function)
    flat_output = output.flatten(check_duplicate_keys=False)
    # Make sure no `None` blocks were removed
    assert None in flat_output
    # Check output
    for block in flat_output:
        assert isinstance(block, pv.UnstructuredGrid) or block is None


@pytest.mark.parametrize('inplace', [True, False])
def test_generic_filter_inplace(multiblock_all_with_nested_and_none, inplace):
    # Include empty mesh
    input_ = multiblock_all_with_nested_and_none
    empty_mesh = pv.PolyData()
    multiblock_all_with_nested_and_none.append(empty_mesh)
    flat_inputs = multiblock_all_with_nested_and_none.flatten(
        copy=False, check_duplicate_keys=False
    )

    output = multiblock_all_with_nested_and_none.generic_filter(
        'extract_largest',
        inplace=inplace,
    )
    flat_output = output.flatten(copy=False, check_duplicate_keys=False)

    assert flat_inputs.n_blocks == flat_output.n_blocks
    for block_in, block_out in zip(flat_inputs, flat_output):
        assert ((block_in is block_out) == inplace) or block_out is None

    # Test root MultiBlock
    assert (input_ is output) == inplace
    # Test nested MultiBlock container
    assert isinstance(input_[6], pv.MultiBlock)
    assert (input_[6] is output[6]) == inplace


def test_generic_filter_raises(multiblock_all_with_nested_and_none):
    match = (
        "The filter 'resample'\ncould not be applied to the block at index 1 with name "
        "'Block-01' and type RectilinearGrid."
    )
    with pytest.raises(RuntimeError, match=match):
        multiblock_all_with_nested_and_none.generic_filter(
            'resample',
        )
    # Test with nested index
    multi = pv.MultiBlock([multiblock_all_with_nested_and_none])
    match = (
        "The filter 'resample'\ncould not be applied to the nested block at index [0][1] "
        "with name 'Block-01' and type RectilinearGrid."
    )
    with pytest.raises(RuntimeError, match=re.escape(match)):
        multi.generic_filter(
            'resample',
        )
    # Test with invalid kwargs
    match = "The filter '<bound method DataSetFilters.align_xyz of ImageData"
    with pytest.raises(RuntimeError, match=re.escape(match)):
        multiblock_all_with_nested_and_none.generic_filter('align_xyz', foo='bar')
    # Test with function
    match = "The filter '<function test_generic_filter_raises"
    with pytest.raises(RuntimeError, match=match):
        multiblock_all_with_nested_and_none.generic_filter(
            test_generic_filter_raises,
        )


def test_block_types(multiblock_all_with_nested_and_none):
    multi = multiblock_all_with_nested_and_none
    types = {
        type(None),
        pv.RectilinearGrid,
        pv.ImageData,
        pv.PolyData,
        pv.UnstructuredGrid,
        pv.StructuredGrid,
    }
    assert multi.nested_block_types == types
    types.add(pv.MultiBlock)
    assert multi.block_types == types


def test_is_homogeneous_is_heterogeneous(multiblock_all_with_nested_and_none):
    # Empty case
    assert pv.MultiBlock().is_homogeneous is False
    assert pv.MultiBlock().is_heterogeneous is False

    # Heterogeneous case
    heterogeneous = multiblock_all_with_nested_and_none
    assert heterogeneous.is_homogeneous is False
    assert heterogeneous.is_heterogeneous is True

    # Homogeneous case
    homogeneous = multiblock_all_with_nested_and_none.as_polydata_blocks()
    assert homogeneous.is_homogeneous is True
    assert homogeneous.is_heterogeneous is False
