"""
DataFrame class
"""

import json
from bisect import bisect_left, bisect_right
from collections import OrderedDict, namedtuple
from itertools import compress
from typing import Any, Callable, Iterator, Literal, Self

from tabulate import tabulate

from raccoon.sort_utils import sorted_exists, sorted_index, sorted_list_indexes


class DataFrame(object):
    """
    DataFrame class. The raccoon DataFrame implements a simplified version of the pandas DataFrame with the key
    objective difference that the raccoon DataFrame is meant for use cases where the size of the DataFrame rows is
    expanding frequently. This is known to be slow with Pandas due to the use of numpy as the underlying data structure.
    Raccoon uses native lists, or any other provided drop-in replacement for lists, as the underlying data structure
    which is quick to expand and grow the size. The DataFrame can be designated as sort, in which case the rows will be
    sort by index on construction, and then any addition of a new row will insert it into the DataFrame so that the
    index remains sort.
    """

    # Define slots to make object faster
    __slots__ = ["_data", "_index", "_index_name", "_columns", "_sort", "_dropin"]

    def __init__(
        self,
        data: dict[Any, list | Any] | None = None,
        columns: list | None = None,
        index: list | None = None,
        index_name: str | tuple | None = "index",
        sort: bool | None = None,
        dropin: Callable = None,
    ):
        """
        :param data: (optional) dictionary of lists. The keys of the dictionary will be used for the column names and\
        the lists will be used for the column data.
        :param columns: (optional) list of column names that will define the order
        :param index: (optional) list of index values. If None then the index will be integers starting with zero
        :param index_name: (optional) name for the index. Default is "index"
        :param sort: if True then DataFrame will keep the index sort. If True all index values must be of same type.
            If None then will default to True if no index is provided.
        :param dropin: if supplied the drop-in replacement for list that will be used
        """
        # standard variable setup
        self._index = None
        self._index_name = index_name
        self._columns = None
        self._dropin = dropin

        # quality checks
        if (index is not None) and not (self._check_list(index) or isinstance(index, list)):
            raise TypeError("index must be a list. if dropin provided, must be of that type")
        if (columns is not None) and not (self._check_list(columns) or isinstance(columns, list)):
            raise TypeError("columns must be a list. if dropin provided, must be of that type")

        # define from dictionary
        if data is None:
            self._data = dropin() if dropin else list()
            if columns:
                # expand to the number of columns
                self._data = (
                    dropin([dropin() for _ in range(len(columns))]) if dropin else [[] for _ in range(len(columns))]
                )
                self.columns = columns
            else:
                self.columns = list()
            if index:
                if not columns:
                    raise ValueError("cannot initialize with index but no columns")
                # pad out to the number of rows
                self._pad_data(max_len=len(index))
                self.index = index
            else:
                self.index = list()
        elif isinstance(data, dict):
            # set data from dict values. If dict value is not a list, wrap it to make a single element list
            self._data = (
                dropin(
                    [dropin(x) if ((type(x) == dropin) or (type(x) == list)) else dropin([x]) for x in data.values()]
                )
                if dropin
                else [x if type(x) == list else [x] for x in data.values()]
            )
            # setup columns from directory keys
            self.columns = data.keys()
            # pad the data
            self._pad_data()
            # setup index
            if index:
                self.index = index
            else:
                self.index = range(len(self._data[0]))
        else:
            raise TypeError("Not valid data type.")

        # sort by columns if provided
        if columns:
            self._sort_columns(columns)

        # setup sort
        self._sort = None
        if sort is not None:
            self.sort = sort
        else:
            if index:
                self.sort = False
            else:
                self.sort = True

    def __repr__(self):
        return "object id: %s\ncolumns:\n%s\ndata:\n%s\nindex:\n%s\n" % (
            id(self),
            self._columns,
            self._data,
            self._index,
        )

    def __str__(self) -> str:
        return self._make_table()

    def _check_list(self, x: list) -> bool:
        return type(x) == (self._dropin if self._dropin else list)

    def _make_table(self, index: bool = True, **kwargs) -> str:
        kwargs["headers"] = "keys" if "headers" not in kwargs.keys() else kwargs["headers"]
        return tabulate(self.to_dict(ordered=True, index=index), **kwargs)

    def print(self, index: bool = True, **kwargs) -> None:
        """
        Print the contents of the DataFrame. This method uses the tabulate function from the tabulate package. Use the
        kwargs to pass along any arguments to the tabulate function.

        :param index: If True then include the indexes as a column in the output, if False ignore the index
        :param kwargs: Parameters to pass along to the tabulate function
        :return: output of the tabulate function
        """
        print(self._make_table(index=index, **kwargs))

    def _sort_columns(self, columns_list: list) -> None:
        """
        Given a list of column names will sort the DataFrame columns to match the given order

        :param columns_list: list of column names. Must include all column names
        :return: nothing
        """
        if not (all([x in columns_list for x in self._columns]) and all([x in self._columns for x in columns_list])):
            raise ValueError(
                "columns_list must be all in current columns, and all current columns must be in columns_list"
            )
        new_sort = [self._columns.index(x) for x in columns_list]
        self._data = (
            self._dropin([self._data[x] for x in new_sort]) if self._dropin else [self._data[x] for x in new_sort]
        )
        self._columns = (
            self._dropin([self._columns[x] for x in new_sort]) if self._dropin else [self._columns[x] for x in new_sort]
        )

    def _pad_data(self, max_len: int | None = None) -> None:
        """
        Pad the data in DataFrame with [None] to ensure that all columns have the same length.

        :param max_len: If provided will extend all columns to this length, if not then will use the longest column
        :return: nothing
        """
        if not max_len:
            max_len = max([len(x) for x in self._data])
        for _, col in enumerate(self._data):
            col.extend([None] * (max_len - len(col)))

    def __len__(self) -> int:
        return len(self._index)

    @property
    def data(self) -> list[list]:
        return self._data.copy()

    @property
    def columns(self) -> list:
        return self._columns.copy()

    @columns.setter
    def columns(self, columns_list: list) -> None:
        self._validate_columns(columns_list)
        self._columns = self._dropin(columns_list) if self._dropin else list(columns_list)

    @property
    def index(self) -> list:
        """
        Return a view of the index as a list. Because this is a view any change to the return list from this method
        will corrupt the DataFrame.

        :return: list
        """
        return self._index

    @index.setter
    def index(self, index_list: list) -> None:
        self._validate_index(index_list)
        self._index = self._dropin(index_list) if self._dropin else list(index_list)

    @property
    def index_name(self) -> str | tuple | None:
        return self._index_name

    @index_name.setter
    def index_name(self, name: str | tuple | None) -> None:
        self._index_name = name

    @property
    def dropin(self) -> Callable:
        return self._dropin

    @property
    def sort(self) -> bool:
        return self._sort

    @sort.setter
    def sort(self, boolean: bool) -> None:
        self._sort = boolean
        if self._sort:
            self.sort_index()

    def select_index(self, compare: Any | tuple, result: Literal["boolean", "value"] = "boolean") -> list[bool | Any]:
        """
        Finds the elements in the index that match the compare parameter and returns either a list of the values that
        match, or a boolean list the length of the index with True to each index that matches. If the indexes are
        tuples then the compare is a tuple where None in any field of the tuple will be treated as "*" and match all
        values.

        :param compare: value to compare as a singleton or tuple
        :param result: 'boolean' = returns a list of booleans, 'value' = returns a list of index values that match
        :return: list of booleans or values
        """
        if isinstance(compare, tuple):
            # this crazy list comprehension will match all the tuples in the list with None being an * wildcard
            booleans = [
                all([(compare[i] == w if compare[i] is not None else True) for i, w in enumerate(v)])
                for x, v in enumerate(self._index)
            ]
        else:
            booleans = [False] * len(self._index)
            if self._sort:
                booleans[sorted_index(self._index, compare)] = True
            else:
                booleans[self._index.index(compare)] = True
        if result == "boolean":
            return booleans
        elif result == "value":
            return list(compress(self._index, booleans))
        else:
            raise ValueError("only valid values for result parameter are: boolean or value.")

    def get(
        self,
        indexes: Any | list[Any | bool] = None,
        columns: Any | list = None,
        as_list: bool = False,
        as_dict: bool = False,
    ) -> Self | list | dict | Any:
        """
        Given indexes and columns will return a sub-set of the DataFrame. This method will direct to the below methods
        based on what types are passed in for the indexes and columns. The type of the return is determined by the
        types of the parameters.

        :param indexes: index value, list of index values, or a list of booleans. If None then all indexes are used
        :param columns: column name or list of column names. If None then all columns are used
        :param as_list: if True then return the values as a list, if False return a DataFrame. This is only used if
            the get is for a single column
        :param as_dict: if True then return the values as a dictionary, if False return a DataFrame. This is only used
            if the get is for a single row
        :return: either DataFrame, list, dict or single value. The return is a shallow copy
        """
        if (indexes is None) and (columns is not None) and (not self._check_list(columns)):
            return self.get_entire_column(columns, as_list)

        if indexes is None:
            indexes = [True] * len(self._index)
        if columns is None:
            columns = [True] * len(self._columns)

        if self._check_list(indexes) and self._check_list(columns):
            return self.get_matrix(indexes, columns)
        elif self._check_list(indexes) and (not self._check_list(columns)):
            return self.get_rows(indexes, columns, as_list)
        elif (not self._check_list(indexes)) and self._check_list(columns):
            return self.get_columns(indexes, columns, as_dict)
        else:
            return self.get_cell(indexes, columns)

    def get_cell(self, index: Any, column: Any) -> Any:
        """
        For a single index and column value return the value of the cell

        :param index: index value
        :param column: column name
        :return: value
        """
        i = sorted_index(self._index, index) if self._sort else self._index.index(index)
        c = self._columns.index(column)
        return self._data[c][i]

    def get_rows(self, indexes: list[bool | Any], column: Any, as_list: bool = False) -> Self | list:
        """
        For a list of indexes and a single column name return the values of the indexes in that column.

        :param indexes: either a list of index values or a list of booleans with same length as all indexes
        :param column: single column name
        :param as_list: if True return a list, if False return DataFrame
        :return: DataFrame is as_list if False, a list if as_list is True
        """
        c = self._columns.index(column)
        if all([isinstance(i, bool) for i in indexes]):  # boolean list
            if len(indexes) != len(self._index):
                raise ValueError("boolean index list must be same size of existing index")
            if all(indexes):  # the entire column
                data = self._data[c]
                index = self._index
            else:
                data = list(compress(self._data[c], indexes))
                index = list(compress(self._index, indexes))
        else:  # index values list
            locations = (
                [sorted_index(self._index, x) for x in indexes]
                if self._sort
                else [self._index.index(x) for x in indexes]
            )
            data = [self._data[c][i] for i in locations]
            index = [self._index[i] for i in locations]
        return (
            data
            if as_list
            else DataFrame(data={column: data}, index=index, index_name=self._index_name, sort=self._sort)
        )

    def get_columns(
        self,
        index: Any,
        columns: list[Any] = None,
        as_dict: bool = False,
        as_namedtuple: bool = False,
        name: str = "raccoon",
        include_index: bool = True,
    ) -> Self | dict | namedtuple:
        """
        For a single index and list of column names return a DataFrame of the values in that index as either a dict
        namedtuple or a DataFrame.

        :param index: single index value
        :param columns: list of column names
        :param as_dict: if True then return the result as a dictionary
        :param as_namedtuple: if True then return the result as a named tuple
        :param name: if as_namedtuple is True, this will be the name of the tuple
        :param include_index: if True then include the index value in the result
        :return: DataFrame or dictionary
        """
        assert not (as_dict and as_namedtuple), "can only provide as_dict or as_namedtuple as True, not both"
        i = sorted_index(self._index, index) if self._sort else self._index.index(index)
        if as_namedtuple:
            dict_row = self.get_location(location=i, columns=columns, as_dict=True, index=include_index)
            return namedtuple(name, dict_row.keys())(**dict_row)
        return self.get_location(location=i, columns=columns, as_dict=as_dict, index=include_index)

    def get_entire_column(self, column: Any, as_list: bool = False) -> Self | list:
        """
        Shortcut method to retrieve a single column all rows. Since this is a common use case this method will be
        faster than the more general method.

        :param column: single column name
        :param as_list: if True return a list, if False return DataFrame
        :return: DataFrame is as_list if False, a list if as_list is True
        """
        c = self._columns.index(column)
        data = self._data[c]
        return (
            data
            if as_list
            else DataFrame(data={column: data}, index=self._index, index_name=self._index_name, sort=self._sort)
        )

    def get_matrix(self, indexes: list[Any | bool], columns: list[Any]) -> Self:
        """
        For a list of indexes and list of columns return a DataFrame of the values.

        :param indexes: either a list of index values or a list of booleans with same length as all indexes
        :param columns: list of column names
        :return: DataFrame
        """
        bool_indexes = []
        locations = []
        if all([isinstance(i, bool) for i in indexes]):  # boolean list
            is_bool_indexes = True
            if len(indexes) != len(self._index):
                raise ValueError("boolean index list must be same size of existing index")
            bool_indexes = indexes
            indexes = list(compress(self._index, indexes))
        else:
            is_bool_indexes = False
            locations = (
                [sorted_index(self._index, x) for x in indexes]
                if self._sort
                else [self._index.index(x) for x in indexes]
            )

        if all([isinstance(i, bool) for i in columns]):  # boolean list
            if len(columns) != len(self._columns):
                raise ValueError("boolean column list must be same size of existing columns")
            columns = list(compress(self._columns, columns))

        col_locations = [self._columns.index(x) for x in columns]
        data_dict = dict()

        for c in col_locations:
            data_dict[self._columns[c]] = (
                list(compress(self._data[c], bool_indexes))
                if is_bool_indexes
                else [self._data[c][i] for i in locations]
            )

        return DataFrame(data=data_dict, index=indexes, columns=columns, index_name=self._index_name, sort=self._sort)

    def get_location(
        self,
        location: int,
        columns: Any | list | None = None,
        as_dict: bool = False,
        as_namedtuple: bool = False,
        name: str = "raccoon",
        index: bool = True,
    ) -> Self | dict | namedtuple | Any:
        """
        For an index location and either (1) list of columns return a DataFrame or dictionary of the values or
        (2) single column name and return the value of that cell. This is optimized for speed because it does not need
        to look up the index location with a search. Also, can accept relative indexing from the end of the DataFrame
        in standard python notation [-3, -2, -1]

        :param location: index location in standard python form of positive or negative number
        :param columns: list of columns, single column name, or None to include all columns
        :param as_dict: if True then return a dictionary
        :param as_namedtuple: if True then return the result as a named tuple
        :param name: if as_namedtuple is True, this will be the name of the tuple
        :param index: if True then include the index in the dictionary if as_dict=True
        :return: DataFrame, dictionary or namedtuple if columns is a list or value if columns is a single column name
        """
        assert not (as_dict and as_namedtuple), "can only provide as_dict or as_namedtuple as True, not both"
        if columns is None:
            columns = self._columns
        elif not isinstance(columns, list):  # single value for columns
            c = self._columns.index(columns)
            return self._data[c][location]
        elif all([isinstance(i, bool) for i in columns]):
            if len(columns) != len(self._columns):
                raise ValueError("boolean column list must be same size of existing columns")
            columns = list(compress(self._columns, columns))
        data = dict()
        for column in columns:
            c = self._columns.index(column)
            data[column] = self._data[c][location]
        index_value = self._index[location]
        if as_dict:
            if index:
                data[self._index_name] = index_value
            return data
        elif as_namedtuple:
            if index:
                data[self._index_name] = index_value
            return namedtuple(name, data.keys())(**data)
        else:
            data = {k: [data[k]] for k in data}  # this makes the dict items lists
            return DataFrame(
                data=data, index=[index_value], columns=columns, index_name=self._index_name, sort=self._sort
            )

    def get_locations(self, locations: list, columns: Any | list | None = None, **kwargs) -> Self:
        """
        For list of locations and list of columns return a DataFrame of the values.

        :param locations: list of index locations
        :param columns: list of column names
        :param kwargs: will pass along these parameters to the get() method
        :return: DataFrame
        """

        indexes = [self._index[x] for x in locations]
        return self.get(indexes, columns, **kwargs)

    def get_slice(
        self, start_index: Any = None, stop_index: Any = None, columns: list | None = None, as_dict: bool = False
    ) -> Self | tuple:
        """
        For sorted DataFrames will return either a DataFrame or dict of all the rows where the index is greater than
        or equal to the start_index if provided and less than or equal to the stop_index if provided. If either the
        start or stop index is None then will include from the first or last element, similar to standard python
        slide of [:5] or [:5]. Both end points are considered inclusive.

        :param start_index: lowest index value to include, or None to start from the first row
        :param stop_index: highest index value to include, or None to end at the last row
        :param columns: list of column names to include, or None for all columns
        :param as_dict: if True then return a tuple of (list of index, dict of column names: list data values)
        :return: DataFrame or tuple
        """
        if not self._sort:
            raise RuntimeError("Can only use get_slice on sorted DataFrames")

        if columns is None:
            columns = self._columns
        elif all([isinstance(i, bool) for i in columns]):
            if len(columns) != len(self._columns):
                raise ValueError("boolean column list must be same size of existing columns")
            columns = list(compress(self._columns, columns))

        start_location = bisect_left(self._index, start_index) if start_index is not None else None
        stop_location = bisect_right(self._index, stop_index) if stop_index is not None else None

        index = self._index[start_location:stop_location]
        data = dict()
        for column in columns:
            c = self._columns.index(column)
            data[column] = self._data[c][start_location:stop_location]

        if as_dict:
            return index, data
        else:
            data = data if data else None  # if the dict is empty, convert to None
            return DataFrame(
                data=data,
                index=index,
                columns=columns,
                index_name=self._index_name,
                sort=self._sort,
                dropin=self._dropin,
            )

    def _insert_row(self, i: int, index: Any) -> None:
        """
        Insert a new row in the DataFrame.

        :param i: index location to insert
        :param index: index value to insert into the index list
        :return: nothing
        """
        if i == len(self._index):
            self._add_row(index)
        else:
            self._index.insert(i, index)
            for c in range(len(self._columns)):
                self._data[c].insert(i, None)

    def _insert_missing_rows(self, indexes: list[Any]) -> None:
        """
        Given a list of indexes, find all the indexes that are not currently in the DataFrame and make a new row for
        that index, inserting into the index. This requires the DataFrame to be sort=True

        :param indexes: list of indexes
        :return: nothing
        """
        new_indexes = [x for x in indexes if x not in self._index]
        for x in new_indexes:
            self._insert_row(bisect_left(self._index, x), x)

    def _add_row(self, index: Any) -> None:
        """
        Add a new row to the DataFrame

        :param index: index of the new row
        :return: nothing
        """
        self._index.append(index)
        for c, _ in enumerate(self._columns):
            self._data[c].append(None)

    def _add_missing_rows(self, indexes: list[Any]) -> None:
        """
        Given a list of indexes, find all the indexes that are not currently in the DataFrame and make a new row for
        that index by appending to the DataFrame. This does not maintain sort order for the index.

        :param indexes: list of indexes
        :return: nothing
        """
        new_indexes = [x for x in indexes if x not in self._index]
        for x in new_indexes:
            self._add_row(x)

    def _add_column(self, column: Any) -> None:
        """
        Add a new column to the DataFrame

        :param column: column name
        :return: nothing
        """
        self._columns.append(column)
        if self._dropin:
            self._data.append(self._dropin([None] * len(self._index)))
        else:
            self._data.append([None] * len(self._index))

    def set(
        self, indexes: Any | list | list[bool] = None, columns: Any | None = None, values: Any | list = None
    ) -> None:
        """
        Given indexes and columns will set a sub-set of the DataFrame to the values provided. This method will direct
        to the below methods based on what types are passed in for the indexes and columns. If the indexes or columns
        contains values not in the DataFrame then new rows or columns will be added.

        :param indexes: indexes value, list of indexes values, or a list of booleans. If None then all indexes are used
        :param columns: columns name, if None then all columns are used. Currently, can only handle a single column or
            all columns
        :param values: value or list of values to set (index, column) to. If setting just a single row, then must be a
            dict where the keys are the column names. If a list then must be the same length as the indexes parameter, if
            indexes=None, then must be the same and length of DataFrame
        :return: nothing
        """
        if (indexes is not None) and (columns is not None):
            if self._check_list(indexes):
                self.set_column(indexes, columns, values)
            else:
                self.set_cell(indexes, columns, values)
        elif (indexes is not None) and (columns is None):
            self.set_row(indexes, values)
        elif (indexes is None) and (columns is not None):
            self.set_column(indexes, columns, values)
        else:
            raise ValueError("either or both of indexes or columns must be provided")

    def set_cell(self, index, column, value):
        """
        Sets the value of a single cell. If the index and/or column is not in the current index/columns then a new
        index and/or column will be created.

        :param index: index value
        :param column: column name
        :param value: value to set
        :return: nothing
        """
        if self._sort:
            exists, i = sorted_exists(self._index, index)
            if not exists:
                self._insert_row(i, index)
        else:
            try:
                i = self._index.index(index)
            except ValueError:
                i = len(self._index)
                self._add_row(index)
        try:
            c = self._columns.index(column)
        except ValueError:
            c = len(self._columns)
            self._add_column(column)
        self._data[c][i] = value

    def set_row(self, index, values):
        """
        Sets the values of the columns in a single row.

        :param index: index value
        :param values: dict with the keys as the column names and the values what to set that column to
        :return: nothing
        """
        if self._sort:
            exists, i = sorted_exists(self._index, index)
            if not exists:
                self._insert_row(i, index)
        else:
            try:
                i = self._index.index(index)
            except ValueError:  # new row
                i = len(self._index)
                self._add_row(index)
        if isinstance(values, dict):
            if not (set(values.keys()).issubset(self._columns)):
                raise ValueError("keys of values are not all in existing columns")
            for c, column in enumerate(self._columns):
                self._data[c][i] = values.get(column, self._data[c][i])
        else:
            raise TypeError("cannot handle values of this type.")

    def set_column(self, index=None, column=None, values=None):
        """
        Set a column to a single value or list of values. If any of the index values are not in the current indexes
        then a new row will be created.

        :param index: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :param column: column name
        :param values: either a single value or a list. The list must be the same length as the index list if the index\
        list is values, or the length of the True values in the index list if the index list is booleans
        :return: nothing
        """
        try:
            c = self._columns.index(column)
        except ValueError:  # new column
            c = len(self._columns)
            self._add_column(column)
        if index:  # index was provided
            if all([isinstance(i, bool) for i in index]):  # boolean list
                if not self._check_list(values):  # single value provided, not a list, so turn values into list
                    values = [values for x in index if x]
                if len(index) != len(self._index):
                    raise ValueError("boolean index list must be same size of existing index")
                if len(values) != index.count(True):
                    raise ValueError("length of values list must equal number of True entries in index list")
                indexes = [i for i, x in enumerate(index) if x]
                for x, i in enumerate(indexes):
                    self._data[c][i] = values[x]
            else:  # list of index
                if not self._check_list(values):  # single value provided, not a list, so turn values into list
                    values = [values for _ in index]
                if len(values) != len(index):
                    raise ValueError("length of values and index must be the same.")
                # insert or append indexes as needed
                if self._sort:
                    exists_tuples = list(zip(*[sorted_exists(self._index, x) for x in index]))
                    exists = exists_tuples[0]
                    indexes = exists_tuples[1]
                    if not all(exists):
                        self._insert_missing_rows(index)
                        indexes = [sorted_index(self._index, x) for x in index]
                else:
                    try:  # all index in current index
                        indexes = [self._index.index(x) for x in index]
                    except ValueError:  # new rows need to be added
                        self._add_missing_rows(index)
                        indexes = [self._index.index(x) for x in index]
                for x, i in enumerate(indexes):
                    self._data[c][i] = values[x]
        else:  # no index, only values
            if not self._check_list(values):  # values not a list, turn into one of length same as index
                values = [values for _ in self._index]
            if len(values) != len(self._index):
                raise ValueError("values list must be at same length as current index length.")
            else:
                self._data[c] = self._dropin(values) if self._dropin else values

    def set_location(self, location, values, missing_to_none=False):
        """
        Sets the column values, as given by the keys of the values dict, for the row at location to the values of the
        values dict. If missing_to_none is False then columns not in the values dict will be left unchanged, if it is
        True then they are set to None. This method does not add new columns and raises an error.

        :param location: location
        :param values: dict of column names as keys and the value as the value to set the row for that column to
        :param missing_to_none: if True set any column missing in the values to None, otherwise leave unchanged
        :return: nothing
        """
        if missing_to_none:
            # populate the dict with None in any column missing
            for column in self._columns:
                if column not in values:
                    values[column] = None

        for column in values:
            i = self._columns.index(column)
            self._data[i][location] = values[column]

    def set_locations(self, locations, column, values):
        """
        For a list of locations and a column set the values.

        :param locations: list of index locations
        :param column: column name
        :param values: list of values or a single value
        :return: nothing
        """
        indexes = [self._index[x] for x in locations]
        self.set(indexes, column, values)

    def append_row(self, index, values, new_cols=True):
        """
        Appends a row of values to the end of the data. If there are new columns in the values and new_cols is True
        they will be added. Be very careful with this function as for sort DataFrames it will not enforce sort order.
        Use this only for speed when needed, be careful.

        :param index: value of the index
        :param values: dictionary of values
        :param new_cols: if True add new columns in values, if False ignore
        :return: nothing
        """

        if index in self._index:
            raise IndexError("index already in DataFrame")

        if new_cols:
            for col in values:
                if col not in self._columns:
                    self._add_column(col)

        # append index value
        self._index.append(index)

        # add data values, if not in values then use None
        for c, col in enumerate(self._columns):
            self._data[c].append(values.get(col, None))

    def append_rows(self, indexes, values, new_cols=True):
        """
        Appends rows of values to the end of the data. If there are new columns in the values and new_cols is True
        they will be added. Be very careful with this function as for sort DataFrames it will not enforce sort order.
        Use this only for speed when needed, be careful.

        :param indexes: list of indexes
        :param values: dictionary of values where the key is the column name and the value is a list
        :param new_cols: if True add new columns in values, if False ignore
        :return: nothing
        """

        # check that the values data is less than or equal to the length of the indexes
        for column in values:
            if len(values[column]) > len(indexes):
                raise ValueError("length of %s column in values is longer than indexes" % column)

        # check the indexes are not duplicates
        combined_index = self._index + indexes
        if len(set(combined_index)) != len(combined_index):
            raise IndexError("duplicate indexes in DataFrames")

        if new_cols:
            for col in values:
                if col not in self._columns:
                    self._add_column(col)

        # append index value
        self._index.extend(indexes)

        # add data values, if not in values then use None
        for c, col in enumerate(self._columns):
            self._data[c].extend(values.get(col, [None] * len(indexes)))
        self._pad_data()

    def _slice_index(self, slicer):
        try:
            start_index = sorted_index(self._index, slicer.start) if self._sort else self._index.index(slicer.start)
        except ValueError:
            raise IndexError("start of slice not in the index")
        try:
            end_index = sorted_index(self._index, slicer.stop) if self._sort else self._index.index(slicer.stop)
        except ValueError:
            raise IndexError("end of slice not in the index")
        if end_index < start_index:
            raise IndexError("end of slice is before start of slice")

        pre_list = [False] * start_index
        mid_list = [True] * (end_index - start_index + 1)
        post_list = [False] * (len(self._index) - 1 - end_index)

        pre_list.extend(mid_list)
        pre_list.extend(post_list)
        return pre_list

    def __getitem__(self, index):
        """
        Convenience wrapper around the get() method for using df[]
        Usage...
        df['a'] -- get column
        df[['a','b',c']] -- get columns
        df[5, 'b']  -- get cell at index=5, column='b'
        df[[4, 5], 'c'] -- get indexes=[4, 5], column='b'
        df[[4, 5], ['a', 'b']]  -- get indexes=[4, 5], columns=['a', 'b']
        Can also use a boolean list for anything. If the DataFrame is sort=True then the indexes slice values do not
        need to be in the index, will use greater than or equal to / less than equal to. For sort=False the provided
        slide values must be in the index.

        :param index: any of the parameters above
        :return: DataFrame of the subset slice
        """
        if isinstance(index, tuple):  # index and column
            if isinstance(index[0], slice) and self._sort:  # faster for sorted DF
                columns = index[1] if isinstance(index[1], list) else [index[1]]
                return self.get_slice(index[0].start, index[0].stop, columns)
            else:
                indexes = self._slice_index(index[0]) if isinstance(index[0], slice) else index[0]
                return self.get(indexes=indexes, columns=index[1])
        if isinstance(index, slice):  # just a slice of index
            if self._sort:  # faster for sorted DF
                return self.get_slice(index.start, index.stop)
            else:
                return self.get(indexes=self._slice_index(index))
        else:  # just the columns
            return self.get(columns=index)

    def __setitem__(self, index, value):
        """
        Convenience wrapper around the set() method for using df[] = X
        Usage...

        df[1, 'a'] -- set cell at index=1, column=a
        df[[0, 3], 'b'] -- set index=[0, 3], column=b
        df[1:2, 'b'] -- set index slice 1:2, column=b

        :param index: any of the parameter examples above
        :param value: single value or list of values
        :return: nothing
        """
        if isinstance(index, tuple):  # index and column
            indexes = self._slice_index(index[0]) if isinstance(index[0], slice) else index[0]
            return self.set(indexes=indexes, columns=index[1], values=value)
        else:  # just the columns
            return self.set(indexes=None, columns=index, values=value)

    def to_list(self):
        """
        For a single column DataFrame returns a list of the values. Raises error if more than one column.

        :return: list
        """
        if len(self._columns) > 1:
            raise TypeError("tolist() only works with a single column DataFrame")
        return self._data[0]

    def to_dict(self, index=True, ordered=False):
        """
        Returns a dict where the keys are the column names and the values are lists of the values for that column.

        :param index: If True then include the index in the dict with the index_name as the key
        :param ordered: If True then return an OrderedDict() to preserve the order of the columns in the DataFrame
        :return: dict or OrderedDict()
        """
        result = OrderedDict() if ordered else dict()
        if index:
            result.update({self._index_name: self._index})
        if ordered:
            data_dict = [(column, self._data[i]) for i, column in enumerate(self._columns)]
        else:
            data_dict = {column: self._data[i] for i, column in enumerate(self._columns)}
        result.update(data_dict)
        return result

    def to_json(self) -> str:
        """
        Returns a JSON of the entire DataFrame that can be reconstructed back with raccoon.from_json(input). Any object
        that cannot be serialized will be replaced with the representation of the object using repr(). In that instance
        the DataFrame will have a string representation in place of the object and will not reconstruct exactly.

        If there is a dropin supplied then the output will have a string representation of the droping func class
        in the metadata as the dropin function cannot be stored with the JSON.

        :return: json string
        """
        input_dict = {"data": self.to_dict(index=False), "index": list(self._index)}

        # if self._dropin, turn into lists
        if self._dropin:
            input_dict["index"] = list(input_dict["index"])
            for key in input_dict["data"]:
                input_dict["data"][key] = list(input_dict["data"][key])

        meta_data = dict()
        for key in self.__slots__:
            if key not in ["_data", "_index"]:
                value = self.__getattribute__(key)
                meta_data[key.lstrip("_")] = value if not type(value) == self._dropin else list(value)
        input_dict["meta_data"] = meta_data
        return json.dumps(input_dict, default=repr)

    def rename_columns(self, rename_dict):
        """
        Renames the columns

        :param rename_dict: dict where the keys are the current column names and the values are the new names
        :return: nothing
        """
        if not all([x in self._columns for x in rename_dict.keys()]):
            raise ValueError("all dictionary keys must be in current columns")
        for current in rename_dict.keys():
            self._columns[self._columns.index(current)] = rename_dict[current]

    def head(self, rows):
        """
        Return a DataFrame of the first N rows

        :param rows: number of rows
        :return: DataFrame
        """
        rows_bool = [True] * min(rows, len(self._index))
        rows_bool.extend([False] * max(0, len(self._index) - rows))
        return self.get(indexes=rows_bool)

    def tail(self, rows):
        """
        Return a DataFrame of the last N rows

        :param rows: number of rows
        :return: DataFrame
        """
        rows_bool = [False] * max(0, len(self._index) - rows)
        rows_bool.extend([True] * min(rows, len(self._index)))
        return self.get(indexes=rows_bool)

    def delete_rows(self, indexes):
        """
        Delete rows from the DataFrame

        :param indexes: either a list of values or list of booleans for the rows to delete
        :return: nothing
        """
        indexes = [indexes] if not self._check_list(indexes) else indexes
        if all([isinstance(i, bool) for i in indexes]):  # boolean list
            if len(indexes) != len(self._index):
                raise ValueError("boolean indexes list must be same size of existing indexes")
            indexes = [i for i, x in enumerate(indexes) if x]
        else:
            indexes = (
                [sorted_index(self._index, x) for x in indexes]
                if self._sort
                else [self._index.index(x) for x in indexes]
            )
        indexes = sorted(indexes, reverse=True)  # need to sort and reverse list so deleting works
        for c, _ in enumerate(self._columns):
            for i in indexes:
                del self._data[c][i]
        # now remove from index
        for i in indexes:
            del self._index[i]

    def delete_all_rows(self):
        """
        Deletes the contents of all rows in the DataFrame. This function is faster than delete_rows() to remove all
        information, and at the same time it keeps the container lists for the columns and index so if there is another
        object that references this DataFrame, like a ViewSeries, the reference remains intact.

        :return: nothing
        """
        del self._index[:]
        for c in range(len(self._columns)):
            del self._data[c][:]

    def delete_columns(self, columns):
        """
        Delete columns from the DataFrame

        :param columns: list of columns to delete
        :return: nothing
        """
        columns = [columns] if not self._check_list(columns) else columns
        if not all([x in self._columns for x in columns]):
            raise ValueError("all columns must be in current columns")
        for column in columns:
            c = self._columns.index(column)
            del self._data[c]
            del self._columns[c]
        if not len(self._data):  # if all the columns have been deleted, remove index
            self.index = list()

    def sort_index(self):
        """
        Sort the DataFrame by the index. The sort modifies the DataFrame inplace

        :return: nothing
        """
        sort = sorted_list_indexes(self._index)
        # sort index
        self._index = self._dropin([self._index[x] for x in sort]) if self._dropin else [self._index[x] for x in sort]
        # each column
        for c in range(len(self._data)):
            self._data[c] = (
                self._dropin([self._data[c][i] for i in sort]) if self._dropin else [self._data[c][i] for i in sort]
            )

    def sort_columns(self, column, key=None, reverse=False):
        """
        Sort the DataFrame by one of the columns. The sort modifies the DataFrame inplace. The key and reverse
        parameters have the same meaning as for the built-in sort() function.

        :param column: column name to use for the sort
        :param key: if not None then a function of one argument that is used to extract a comparison key from each
                    list element
        :param reverse: if True then the list elements are sort as if each comparison were reversed.
        :return: nothing
        """
        if self._check_list(column):
            raise TypeError("Can only sort by a single column  ")
        sort = sorted_list_indexes(self._data[self._columns.index(column)], key, reverse)
        # sort index
        self._index = self._dropin([self._index[x] for x in sort]) if self._dropin else [self._index[x] for x in sort]
        # each column
        for c in range(len(self._data)):
            self._data[c] = (
                self._dropin([self._data[c][i] for i in sort]) if self._dropin else [self._data[c][i] for i in sort]
            )

    def _validate_index(self, indexes):
        if len(indexes) != len(set(indexes)):
            raise ValueError("index contains duplicates")
        if self._data:
            if len(indexes) != len(self._data[0]):
                raise ValueError("index length does not match data length")

    def _validate_columns(self, columns):
        if len(columns) != len(set(columns)):
            raise ValueError("columns contains duplicates")
        if self._data:
            if len(columns) != len(self._data):
                raise ValueError("number of column names does not match number of data columns")

    def _validate_data(self):
        if self._data:
            max_rows = max([len(x) for x in self._data])
            same_lens = all([len(x) == max_rows for x in self._data])
            if not same_lens:
                raise ValueError("data is corrupted, each column not all same length")

    def validate_integrity(self):
        """
        Validate the integrity of the DataFrame. This checks that the indexes, column names and internal data are not
        corrupted. Will raise an error if there is a problem.

        :return: nothing
        """
        self._validate_columns(self._columns)
        self._validate_index(self._index)
        self._validate_data()

    def append(self, data_frame):
        """
        Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current
        DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the
        current indexes or will raise an error.

        :param data_frame: DataFrame to append
        :return: nothing
        """
        if len(data_frame) == 0:  # empty DataFrame, do nothing
            return
        data_frame_index = data_frame.index
        combined_index = self._index + data_frame_index
        if len(set(combined_index)) != len(combined_index):
            raise ValueError("duplicate indexes in DataFrames")

        for c, column in enumerate(data_frame.columns):
            self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy())

    def equality(self, column, indexes=None, value=None):
        """
        Math helper method. Given a column and optional indexes will return a list of booleans on the equality of the
        value for that index in the DataFrame to the value parameter.

        :param column: column name to compare
        :param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :param value: value to compare
        :return: list of booleans
        """
        indexes = [True] * len(self._index) if indexes is None else indexes
        compare_list = self.get_rows(indexes, column, as_list=True)
        return [x == value for x in compare_list]

    def _get_lists(self, left_column, right_column, indexes):
        indexes = [True] * len(self._index) if indexes is None else indexes
        left_list = self.get_rows(indexes, left_column, as_list=True)
        right_list = self.get_rows(indexes, right_column, as_list=True)
        return left_list, right_list

    def add(self, left_column, right_column, indexes=None):
        """
        Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
        on that sub-set of the columns.

        :param left_column: first column name
        :param right_column: second column name
        :param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :return: list
        """
        left_list, right_list = self._get_lists(left_column, right_column, indexes)
        return [l + r for l, r in zip(left_list, right_list)]

    def subtract(self, left_column, right_column, indexes=None):
        """
        Math helper method that subtracts element-wise two columns. If indexes are not None then will only perform the
        math on that sub-set of the columns.

        :param left_column: first column name
        :param right_column: name of column to subtract from the left_column
        :param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :return: list
        """
        left_list, right_list = self._get_lists(left_column, right_column, indexes)
        return [l - r for l, r in zip(left_list, right_list)]

    def multiply(self, left_column, right_column, indexes=None):
        """
        Math helper method that multiplies element-wise two columns. If indexes are not None then will only perform the
        math on that sub-set of the columns.

        :param left_column: first column name
        :param right_column: second column name
        :param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :return: list
        """
        left_list, right_list = self._get_lists(left_column, right_column, indexes)
        return [l * r for l, r in zip(left_list, right_list)]

    def divide(self, left_column, right_column, indexes=None):
        """
        Math helper method that divides element-wise two columns. If indexes are not None then will only perform the
        math on that sub-set of the columns.

        :param left_column: column name of dividend
        :param right_column: column name of divisor
        :param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
        length as the DataFrame
        :return: list
        """
        left_list, right_list = self._get_lists(left_column, right_column, indexes)
        return [l / r for l, r in zip(left_list, right_list)]

    def isin(self, column: Any, compare_list: list) -> list[bool]:
        """
        Returns a boolean list where each element is whether that element in the column is in the compare_list.

        :param column: single column name, does not work for multiple columns
        :param compare_list: list of items to compare to
        :return: list of booleans
        """
        return [x in compare_list for x in self._data[self._columns.index(column)]]

    def iterrows(self, index: bool = True) -> Iterator[dict]:
        """
        Iterates over DataFrame rows as dictionary of the values. The index will be included.

        :param index: if True include the index in the results
        :return: dictionary
        """
        for i in range(len(self._index)):
            row = {self._index_name: self._index[i]} if index else dict()
            for c, col in enumerate(self._columns):
                row[col] = self._data[c][i]
            yield row

    def itertuples(self, index: bool = True, name: str = "Raccoon") -> Iterator[namedtuple]:
        """
        Iterates over DataFrame rows as tuple of the values.

        :param index: if True then include the index
        :param name: name of the namedtuple
        :return: namedtuple
        """
        fields = [self._index_name] if index else list()
        fields.extend(self._columns)
        row_tuple = namedtuple(name, fields)
        for i in range(len(self._index)):
            row = {self._index_name: self._index[i]} if index else dict()
            for c, col in enumerate(self._columns):
                row[col] = self._data[c][i]
            yield row_tuple(**row)

    def reset_index(self, drop: bool = False) -> None:
        """
        Resets the index of the DataFrame to simple integer list and the index name to 'index'. If drop is True then
        the existing index is dropped, if drop is False then the current index is made a column in the DataFrame with
        the index name the name of the column. If the index is a tuple multi-index then each element of the tuple is
        converted into a separate column. If the index name was 'index' then the column name will be 'index_0' to not
        conflict on print().

        :param drop: if True then the current index is dropped, if False then index converted to columns
        :return: nothing
        """
        if not drop:
            if isinstance(self.index_name, tuple):
                index_data = list(map(list, zip(*self._index)))
                for i in range(len(self.index_name)):
                    self.set_column(column=self.index_name[i], values=index_data[i])
            else:
                col_name = self.index_name if self.index_name != "index" else "index_0"
                self.set_column(column=col_name, values=self._index)
        self.index = list(range(self.__len__()))
        self.index_name = "index"

    # DataFrame creation functions
    @classmethod
    def from_json(cls, json_string: str, dropin_func: Callable | None = None) -> Self:
        """
        Creates and return a DataFrame from a JSON of the type created by to_json.

        If a dropin is in the metadata from the JSON, then the same dropin class must be provided here to
        allow construction as the dropin function cannot be stored with the JSON. If required use a pickle
        object for that.

        :param json_string: JSON
        :param dropin_func: drop-in replacement for list that was used in the JSON
        :return: DataFrame
        """
        input_dict = json.loads(json_string)
        # convert index to tuple if required
        if input_dict["index"] and isinstance(input_dict["index"][0], list):
            input_dict["index"] = [tuple(x) for x in input_dict["index"]]
        # convert index_name to tuple if required
        if isinstance(input_dict["meta_data"]["index_name"], list):
            input_dict["meta_data"]["index_name"] = tuple(input_dict["meta_data"]["index_name"])
        data = input_dict["data"] if input_dict["data"] else None
        # confirm the dropin and replace with the actual class
        if input_dict["meta_data"]["dropin"]:
            if not dropin_func:
                raise AttributeError(
                    "the JSON has a dropin : %s : but the dropin parameter was not supplied"
                    % input_dict["meta_data"]["dropin"]
                )
            elif input_dict["meta_data"]["dropin"] == dropin_func.__str__(dropin_func):
                input_dict["meta_data"]["dropin"] = dropin_func
            else:
                raise AttributeError(
                    "the supplied dropin parameter: %s : does not match the value in "
                    "the JSON: %s" % (dropin_func, input_dict["meta_data"]["dropin"])
                )
        return cls(data=data, index=input_dict["index"], **input_dict["meta_data"])
