#!/usr/bin/env python
from __future__ import print_function
import sys
# import signal
if sys.hexversion < 0x03000000:
    from future_builtins import zip, map
################################################################################
#
#
#   task.py
#
#   Copyright (c) 10/9/2009 Leo Goodstadt
#
#   Permission is hereby granted, free of charge, to any person obtaining a copy
#   of this software and associated documentation files (the "Software"), to deal
#   in the Software without restriction, including without limitation the rights
#   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#   copies of the Software, and to permit persons to whom the Software is
#   furnished to do so, subject to the following conditions:
#
#   The above copyright notice and this permission notice shall be included in
#   all copies or substantial portions of the Software.
#
#   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#   THE SOFTWARE.
#################################################################################
"""

********************************************
:mod:`ruffus.task` -- Overview
********************************************

.. moduleauthor:: Leo Goodstadt <ruffus@llew.org.uk>

Initial implementation of @active_if by Jacob Biesinger

============================
Decorator syntax:
============================

    Pipelined tasks are created by "decorating" a function with the following syntax::

        def func_a():
            pass

        @follows(func_a)
        def func_b ():
            pass


    Each task is a single function which is applied one or more times to a list of parameters
    (typically input files to produce a list of output files).

    Each of these is a separate, independent job (sharing the same code) which can be
    run in parallel.


============================
Running the pipeline
============================
    To run the pipeline::

            pipeline_run(target_tasks, forcedtorun_tasks = [], multiprocess = 1,
                            logger = stderr_logger,
                            gnu_make_maximal_rebuild_mode  = True,
                            cleanup_log = "../cleanup.log")

            pipeline_cleanup(cleanup_log = "../cleanup.log")






"""

import os
import sys
import copy
import multiprocessing
import collections

# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   imports


# 88888888888888888888888888888888888888888888888888888888888888888888888888888
import logging
import re
from collections import defaultdict, deque
from multiprocessing import Pool
from multiprocessing.pool import ThreadPool
import traceback
import types
if sys.hexversion >= 0x03000000:
    # everything is unicode in python3
    from functools import reduce


import textwrap
import time
from multiprocessing.managers import SyncManager
from collections import namedtuple
from contextlib import contextmanager
try:
    import cPickle as pickle
except:
    import pickle as pickle
from . import dbdict


if __name__ == '__main__':
    import sys
    sys.path.insert(0, ".")

from .graph import *
from .print_dependencies import *
from .ruffus_exceptions import *
from .ruffus_utility import *
from .file_name_parameters import *

if sys.hexversion >= 0x03000000:
    # everything is unicode in python3
    path_str_type = str
else:
    path_str_type = basestring


#
# use simplejson in place of json for python < 2.6
#
try:
    import json
except ImportError:
    import simplejson
    json = simplejson
dumps = json.dumps

if sys.hexversion >= 0x03000000:
    import queue as queue
else:
    import Queue as queue


class Ruffus_Keyboard_Interrupt_Exception (Exception):
    pass

# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#
#   light weight logging objects
#
#
# 88888888888888888888888888888888888888888888888888888888888888888888888888888


class t_black_hole_logger:

    """
    Does nothing!
    """

    def info(self, message, *args, **kwargs):
        pass

    def debug(self, message, *args, **kwargs):
        pass

    def warning(self, message, *args, **kwargs):
        pass

    def error(self, message, *args, **kwargs):
        pass


class t_stderr_logger:

    """
    Everything to stderr
    """

    def __init__(self):
        self.unique_prefix = ""

    def add_unique_prefix(self):
        import random
        random.seed()
        self.unique_prefix = str(random.randint(0, 1000)) + " "

    def info(self, message):
        sys.stderr.write(self.unique_prefix + message + "\n")

    def warning(self, message):
        sys.stderr.write("\n\n" + self.unique_prefix + "WARNING:\n    " + message + "\n\n")

    def error(self, message):
        sys.stderr.write("\n\n" + self.unique_prefix + "ERROR:\n    " + message + "\n\n")

    def debug(self, message):
        sys.stderr.write(self.unique_prefix + message + "\n")


class t_stream_logger:

    """
    Everything to stderr
    """

    def __init__(self, stream):
        self.stream = stream

    def info(self, message):
        self.stream.write(message + "\n")

    def warning(self, message):
        self.stream.write("\n\nWARNING:\n    " + message + "\n\n")

    def error(self, message):
        self.stream.write("\n\nERROR:\n    " + message + "\n\n")

    def debug(self, message):
        self.stream.write(message + "\n")

black_hole_logger = t_black_hole_logger()
stderr_logger = t_stderr_logger()


class t_verbose_logger:

    def __init__(self, verbose, verbose_abbreviated_path, logger, runtime_data):
        self.verbose = verbose
        self.logger = logger
        self.runtime_data = runtime_data
        self.verbose_abbreviated_path = verbose_abbreviated_path

# _____________________________________________________________________________
#
#   logging helper function
#
# _____________________________________________________________________________


def log_at_level(logger, message_level, verbose_level, msg):
    """
    writes to log if message_level > verbose level
    Returns anything written in case we might want to drop down and output at a
    lower log level
    """
    if message_level <= verbose_level:
        logger.info(msg)
        return True
    return False


# 88888888888888888888888888888888888888888888888888888888888888888888888888888


#   queue management objects

#       inserted into queue like job parameters to control multi-processing queue

# 88888888888888888888888888888888888888888888888888888888888888888888888888888

# fake parameters to signal in queue
class all_tasks_complete:
    pass


class waiting_for_more_tasks_to_complete:
    pass


#
# synchronisation data
#
# SyncManager()
# syncmanager.start()

#
# do nothing semaphore
#
@contextmanager
def do_nothing_semaphore():
    yield


# EXTRA pipeline_run DEBUGGING
EXTRA_PIPELINERUN_DEBUGGING = False


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   task_decorator

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
class task_decorator(object):

    """
        Forwards to functions within Task
    """

    def __init__(self, *decoratorArgs, **decoratorNamedArgs):
        """
            saves decorator arguments
        """
        self.args = decoratorArgs
        self.named_args = decoratorNamedArgs

    def __call__(self, task_func):
        """
            calls func in task with the same name as the class
        """
        # add task to main pipeline
        # check for duplicate tasks inside _create_task
        task = main_pipeline._create_task(task_func)

        # call the method called
        #   task.decorator_xxxx
        #   where xxxx = transform subdivide etc
        task_decorator_function = getattr(task, "_decorator_" + self.__class__.__name__)
        task.created_via_decorator = True
        # create empty placeholder with the args %s actually inside the task function
        task.description_with_args_placeholder = task._get_decorated_function(
            ).replace("...", "%s", 1)
        task_decorator_function(*self.args, **self.named_args)

        #
        #   don't change the function so we can call it unaltered
        #
        return task_func


#
#   Basic decorators
#
class follows(task_decorator):
    pass


class files(task_decorator):
    pass


#
#   Core
#
class split(task_decorator):
    pass


class transform(task_decorator):
    pass


class subdivide(task_decorator):

    """
    Splits a each set of input files into multiple output file names,
        where the number of output files may not be known beforehand.
    """
    pass


class originate(task_decorator):
    pass


class merge(task_decorator):
    pass


class posttask(task_decorator):
    pass


class jobs_limit(task_decorator):
    pass


#
#   Advanced
#
class collate(task_decorator):
    pass


class active_if(task_decorator):
    pass

#
#   Esoteric
#


class check_if_uptodate(task_decorator):
    pass


class parallel(task_decorator):
    pass


class graphviz(task_decorator):
    pass

#
#   Obsolete
#


class files_re(task_decorator):
    pass


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   indicator objects

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
# _____________________________________________________________________________

#   mkdir

# _____________________________________________________________________________
class mkdir(task_decorator):
    # def __init__ (self, *args):
    #    self.args = args
    pass

# _____________________________________________________________________________

#   touch_file

# _____________________________________________________________________________


class touch_file(object):

    def __init__(self, *args):
        self.args = args


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#       job descriptors

#           given parameters, returns strings describing job
#           First returned parameter is string in strong form
#           Second returned parameter is a list of strings for input,
#               output and extra parameters
#               intended to be reformatted with indentation
#           main use in error logging

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
def generic_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
    if unglobbed_params in ([], None):
        m = "Job"
    else:
        m = "Job  = %s" % ignore_unknown_encoder(unglobbed_params)
    return m, [m]


def io_files_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
    extra_param = ", " + shorten_filenames_encoder(unglobbed_params[2:], verbose_abbreviated_path)[1:-1] \
        if len(unglobbed_params) > 2 else ""
    out_param = shorten_filenames_encoder(unglobbed_params[1], verbose_abbreviated_path) \
        if len(unglobbed_params) > 1 else "??"
    in_param = shorten_filenames_encoder(unglobbed_params[0], verbose_abbreviated_path) \
        if len(unglobbed_params) > 0 else "??"

    return ("Job  = [%s -> %s%s]" % (in_param, out_param, extra_param),
            ["Job  = [%s" % in_param, "-> " + out_param + extra_param + "]"])


def io_files_one_to_many_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):

    extra_param = ", " + shorten_filenames_encoder(unglobbed_params[2:], verbose_abbreviated_path)[1:-1] \
        if len(unglobbed_params) > 2 else ""
    out_param = shorten_filenames_encoder(unglobbed_params[1], verbose_abbreviated_path) \
        if len(unglobbed_params) > 1 else "??"
    in_param = shorten_filenames_encoder(unglobbed_params[0], verbose_abbreviated_path) \
        if len(unglobbed_params) > 0 else "??"

    # start with input parameter
    ret_params = ["Job  = [%s" % in_param]

    # add output parameter to list,
    #   processing one by one if multiple output parameters
    if len(unglobbed_params) > 1:
        if isinstance(unglobbed_params[1], (list, tuple)):
            ret_params.extend(
                "-> " + shorten_filenames_encoder(p, verbose_abbreviated_path) for p in unglobbed_params[1])
        else:
            ret_params.append("-> " + out_param)

    # add extra
    if len(unglobbed_params) > 2:
        ret_params.append(
            " , " + shorten_filenames_encoder(unglobbed_params[2:], verbose_abbreviated_path)[1:-1])

    # add closing bracket
    ret_params[-1] += "]"

    return ("Job  = [%s -> %s%s]" % (in_param, out_param, extra_param), ret_params)


def mkdir_job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data):
    # input, output and parameters
    if len(unglobbed_params) == 1:
        m = "Make directories %s" % (shorten_filenames_encoder(unglobbed_params[0], verbose_abbreviated_path))
    elif len(unglobbed_params) == 2:
        m = "Make directories %s" % (shorten_filenames_encoder(unglobbed_params[1], verbose_abbreviated_path))
    else:
        return [], []
    return m, [m]


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#       job wrappers
#           registers files/directories for cleanup

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
# _____________________________________________________________________________

#   generic job wrapper

# _____________________________________________________________________________
def job_wrapper_generic(params, user_defined_work_func, register_cleanup, touch_files_only):
    """
    run func
    """
    assert(user_defined_work_func)
    return user_defined_work_func(*params)

# _____________________________________________________________________________

#   job wrapper for all that deal with i/o files

# _____________________________________________________________________________


def job_wrapper_io_files(params, user_defined_work_func, register_cleanup, touch_files_only,
                         output_files_only=False):
    """
    run func on any i/o if not up to date
    """
    assert(user_defined_work_func)

    i, o = params[0:2]

    if touch_files_only == 0:
        # @originate only uses output files
        if output_files_only:
            # TODOOO extra and named extras
            ret_val = user_defined_work_func(*(params[1:]))
        # all other decorators
        else:
            try:
                # TODOOO extra and named extras
                ret_val = user_defined_work_func(*params)
                # EXTRA pipeline_run DEBUGGING
                if EXTRA_PIPELINERUN_DEBUGGING:
                    sys.stderr.write("w" * 36 + "[[ task() done ]]" + "w" * 27 + "\n")
            except KeyboardInterrupt as e:
                # Reraise KeyboardInterrupt as a normal Exception
                # EXTRA pipeline_run DEBUGGING
                if EXTRA_PIPELINERUN_DEBUGGING:
                    sys.stderr.write("E" * 36 + "[[ KeyboardInterrupt from task() ]]" +
                                     "E" * 9 + "\n")
                raise Ruffus_Keyboard_Interrupt_Exception("KeyboardInterrupt")
            except:
                # sys.stderr.write("?? %s ??" % (tuple(params),))
                raise
    elif touch_files_only == 1:
        # job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)

        #
        #   Do not touch any output files which are the same as any input
        #       i.e. which are just being passed through
        #
        # list of input files
        real_input_file_names = set()
        for f in get_strings_in_flattened_sequence(i):
            real_input_file_names.add(os.path.realpath(f))

        #
        #   touch files only
        #
        for f in get_strings_in_flattened_sequence(o):

            if os.path.realpath(f) in real_input_file_names:
                continue

            #
            #   race condition still possible...
            #
            with open(f, 'a') as ff:
                os.utime(f, None)
            # if not os.path.exists(f):
            #    open(f, 'w')
            #    mtime = os.path.getmtime(f)
            # else:
            #    os.utime(f, None)
            #    mtime = os.path.getmtime(f)

            # job_history[f] = chksum  # update file times and job details in
            # history

    #
    # register strings in output file for cleanup
    #
    for f in get_strings_in_flattened_sequence(o):
        register_cleanup(f, "file")


# _____________________________________________________________________________

#   job wrapper for all that only deals with output files

# _____________________________________________________________________________
def job_wrapper_output_files(params, user_defined_work_func, register_cleanup, touch_files_only):
    """
    run func on any output file if not up to date
    """
    job_wrapper_io_files(params, user_defined_work_func, register_cleanup, touch_files_only,
                         output_files_only=True)


# _____________________________________________________________________________

#   job wrapper for mkdir

# _____________________________________________________________________________
def job_wrapper_mkdir(params, user_defined_work_func, register_cleanup, touch_files_only):
    """
    Make missing directories including any intermediate directories on the specified path(s)
    """
    #
    #   Just in case, swallow file exist errors because some other makedirs
    #       might be subpath of this directory
    #   Should not be necessary because of "sorted" in task_mkdir
    #
    #
    if len(params) == 1:
        dirs = params[0]

    # if there are two parameters, they are i/o, and the directories to be
    # created are the output
    elif len(params) >= 2:
        dirs = params[1]
    else:
        raise Exception("No arguments in mkdir check %s" % (params,))

    # get all file names in flat list
    dirs = get_strings_in_flattened_sequence(dirs)

    for d in dirs:
        try:
            # Please email the authors if an uncaught exception is raised here
            os.makedirs(d)
            register_cleanup(d, "makedirs")
        except:
            #
            #   ignore exception if
            #      exception == OSError      + "File exists" or      // Linux
            #      exception == WindowsError + "file already exists" // Windows
            #   Are other exceptions raised by other OS?
            #
            #
            exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
            # exceptionType == OSError and
            if "File exists" in str(exceptionValue):
                continue
            # exceptionType == WindowsError and
            elif "file already exists" in str(exceptionValue):
                continue
            raise

        #   changed for compatibility with python 3.x
        # except OSError, e:
        #    if "File exists" not in e:
        #        raise


JOB_ERROR = 0
JOB_SIGNALLED_BREAK = 1
JOB_UP_TO_DATE = 2
JOB_COMPLETED = 3

# _____________________________________________________________________________

#   t_job_result
#       Previously a collections.namedtuple (introduced in python 2.6)
#       Now using implementation from running
#           t_job_result = namedtuple('t_job_result',
#                'task_name state job_name return_value exception', verbose =1)
#           for compatibility with python 2.5

# _____________________________________________________________________________
t_job_result = namedtuple('t_job_result',
                          'task_name '
                          'node_index state '
                          'job_name '
                          'return_value '
                          'exception '
                          'params '
                          'unglobbed_params ',
                          verbose=0)


# _____________________________________________________________________________

#   multiprocess_callback
#
# _____________________________________________________________________________
def run_pooled_job_without_exceptions(process_parameters):
    """
    handles running jobs in parallel
    Make sure exceptions are caught here:
        Otherwise, these will kill the thread/process
        return any exceptions which will be rethrown at the other end:
        See RethrownJobError /  run_all_jobs_in_task
    """
    # signal.signal(signal.SIGINT, signal.SIG_IGN)
    (params, unglobbed_params, task_name, node_index, job_name, job_wrapper, user_defined_work_func,
     job_limit_semaphore, death_event, touch_files_only) = process_parameters

    # #job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)
    #  outfile = params[1] if len(params) > 1 else None   # mkdir has no output
    #  if not isinstance(outfile, list):
    # #    outfile = [outfile]
    #  for o in outfile:
    #  job_history.pop(o, None)  # remove outfile from history if it exists

    if job_limit_semaphore is None:
        job_limit_semaphore = do_nothing_semaphore()

    try:
        with job_limit_semaphore:
            # EXTRA pipeline_run DEBUGGING
            if EXTRA_PIPELINERUN_DEBUGGING:
                sys.stderr.write(">" * 36 + "[[ job_wrapper ]]" + ">" * 27 + "\n")
            return_value = job_wrapper(params, user_defined_work_func,
                                       register_cleanup, touch_files_only)

            #
            #   ensure one second between jobs
            #
            # if one_second_per_job:
            #    time.sleep(1.01)
            # EXTRA pipeline_run DEBUGGING
            if EXTRA_PIPELINERUN_DEBUGGING:
                sys.stderr.write("<" * 36 + "[[ job_wrapper done ]]" + "<" * 22 + "\n")
            return t_job_result(task_name, node_index, JOB_COMPLETED, job_name, return_value, None,
                                params, unglobbed_params)
    except KeyboardInterrupt as e:
        # Reraise KeyboardInterrupt as a normal Exception.
        #   Should never be necessary here
        # EXTRA pipeline_run DEBUGGING
        if EXTRA_PIPELINERUN_DEBUGGING:
            sys.stderr.write("E" * 36 + "[[ KeyboardInterrupt ]]" + "E" * 21 + "\n")
        death_event.set()
        raise Ruffus_Keyboard_Interrupt_Exception("KeyboardInterrupt")
    except:
        # EXTRA pipeline_run DEBUGGING
        if EXTRA_PIPELINERUN_DEBUGGING:
            sys.stderr.write("E" * 36 + "[[ Other Interrupt ]]" + "E" * 23 + "\n")
        #   Wrap up one or more exceptions rethrown across process boundaries
        #
        # See multiprocessor.Server.handle_request/serve_client for an
        # analogous function
        exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
        exception_stack = traceback.format_exc()
        exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
        exception_value = str(exceptionValue)
        if len(exception_value):
            exception_value = "(%s)" % exception_value

        if exceptionType == Ruffus_Keyboard_Interrupt_Exception:
            death_event.set()
            job_state = JOB_SIGNALLED_BREAK
        elif exceptionType == JobSignalledBreak:
            job_state = JOB_SIGNALLED_BREAK
        else:
            job_state = JOB_ERROR
        return t_job_result(task_name, node_index, job_state, job_name, None,
                            [task_name,
                             job_name,
                             exception_name,
                             exception_value,
                             exception_stack], params, unglobbed_params)


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   Helper function

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
def subprocess_checkcall_wrapper(**named_args):
    """
    Splits string at semicolons and runs with subprocess.check_call
    """
    for cmd in named_args["command_str"].split(";"):
        cmd = cmd.replace("\n", " ").strip()
        if not len(cmd):
            continue
        cmd = cmd.format(**named_args)
        subprocess.check_call(cmd, shell = True)


def exec_string_as_task_func(input_args, output_args, **named_args):
    """
    Ruffus provided function for tasks which are just strings
        (no Python function provided)
    The task executor function is given as a paramter which is
        then called with the arguments.
    Convoluted but avoids special casing too much
    """
    if not "__RUFFUS_TASK_CALLBACK__" in named_args or \
        not callable(named_args["__RUFFUS_TASK_CALLBACK__"]):
        raise Exception("Missing call back function")
    if not "command_str" in named_args or \
        not isinstance(named_args["command_str"], (path_str_type,)):
        raise Exception("Missing call back function string")


    callback = named_args["__RUFFUS_TASK_CALLBACK__"]
    del named_args["__RUFFUS_TASK_CALLBACK__"]

    named_args["input"] = input_args
    named_args["output"] = output_args
    callback(**named_args)


# _____________________________________________________________________________

#   register_cleanup

#       to do

# _____________________________________________________________________________
def register_cleanup(file_name, operation):
    pass

# _____________________________________________________________________________

#   pipeline functions only have "name" as a named parameter

# _____________________________________________________________________________


def get_name_from_args(named_args):
    if "name" in named_args:
        name = named_args["name"]
        del named_args["name"]
        return name
    else:
        return None

# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   Pipeline


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

class Pipeline(dict):
    pipelines = dict()
    cnt_mkdir = 0

    def __init__(self, name, *arg, **kw):
        """
        Each Ruffus Pipeline object has to have a unique name.
        "main" is reserved for "main_pipeline", the default pipeline for all
            Ruffus decorators.
        """
        # initialise dict
        super(Pipeline, self).__init__(*arg, **kw)

        # set of tasks
        self.tasks = set()
        self.task_names = set()

        # add self to list of all pipelines
        self.name = name
        self.original_name = name
        if name in Pipeline.pipelines:
            raise Exception("Error:\nDuplicate pipeline. "
                            "A pipeline named '%s' already exists.\n" % name)
        Pipeline.pipelines[name] = self
        self.head_tasks = []
        self.tail_tasks = []
        self.lookup = dict()

        self.command_str_callback = subprocess_checkcall_wrapper


    # _________________________________________________________________________

    #   _create_task

    # _________________________________________________________________________
    def _create_task(self, task_func, task_name=None):
        """
        Create task with a function
        """

        #
        #   If string, this is a command to be executed later
        #   Derive task name from command
        #
        #
        if isinstance(task_func, (path_str_type,)):
            task_str = task_func
            task_func = exec_string_as_task_func
            if not task_name:
                elements = task_str.split()
                use_n_elements = 1
                while use_n_elements < len(elements):
                    task_name = " ".join(elements[0:use_n_elements])
                    if task_name not in self.task_names:
                        break
                else:
                    raise error_duplicate_task_name("The task string '%s' is ambiguous for "
                                                    "Pipeline '%s'. You must disambiguate "
                                                    "explicitly with different task names "
                                                    % (task_str, self.name))
            return Task(task_func, task_name, self)


        #
        #   Derive task name from Python Task function name
        #
        if not task_name:
            if task_func.__module__ == "__main__":
                task_name = task_func.__name__
            else:
                task_name = str(task_func.__module__) + \
                    "." + task_func.__name__

        if task_name not in self:
            return Task(task_func, task_name, self)

        # task_name already there as the identifying task_name.
        # If the task_func also matches everything is fine
        elif (task_name in self.task_names and
              self[task_name].user_defined_work_func == task_func):
            return self[task_name]

        # If the task name is already taken but with a different function,
        #   this will blow up
        # But if the function is being reused and with a previously different
        # task name then OK
        else:
            return Task(task_func, task_name, self)



    # _________________________________________________________________________

    #   _complete_task_setup

    # _________________________________________________________________________
    def _complete_task_setup(self, processed_tasks):
        """
        Finishes initialising all tasks
        Make sure all tasks in dependency list are linked to real functions
        """


        processed_pipelines = set([self.name])
        unprocessed_tasks = deque(self.tasks)
        while len(unprocessed_tasks):
            task = unprocessed_tasks.popleft()
            if task in processed_tasks:
                continue
            processed_tasks.add(task)
            for ancestral_task in task._complete_setup():
                if ancestral_task not in processed_tasks:
                    unprocessed_tasks.append(ancestral_task)
                    processed_pipelines.add(ancestral_task.pipeline.name)
            #
            #   some jobs single state status mirrors parent's state
            #       and parent task not known until dependencies resolved
            #   Is this legacy code?
            #       Breaks @merge otherwise
            #
            if isinstance(task._is_single_job_single_output, Task):
                task._is_single_job_single_output = \
                    task._is_single_job_single_output._is_single_job_single_output


        for pipeline_name in list(processed_pipelines):
            if pipeline_name != self.name:
                processed_pipelines |= self.pipelines[pipeline_name]._complete_task_setup(processed_tasks)

        return processed_pipelines

    # _________________________________________________________________________

    #   command_str_callback

    # _________________________________________________________________________
    def set_command_str_callback(self, command_str_callback):
        if not callable(command_str_callback):
            raise Exception("set_command_str_callback() takes a python function or a callable object.")
        self.command_str_callback = command_str_callback

    # _________________________________________________________________________

    #   get_head_tasks

    # _________________________________________________________________________
    def get_head_tasks(self):
        """
        Return tasks at the head of the pipeline,
            i.e. with only descendants/dependants
        N.B. Head and Tail sets can overlap

        Most of the time when self.head_tasks == [], it has been left undefined by mistake.
            So we usually throw an exception at the point of use
        """
        return self.head_tasks

    # _________________________________________________________________________

    #   set_head_tasks

    # _________________________________________________________________________
    def set_head_tasks(self, head_tasks):
        """
        Specifies tasks at the head of the pipeline,
            i.e. with only descendants/dependants
        """
        if not isinstance(head_tasks, (list,)):
            raise Exception("Pipelines['{pipeline_name}'].set_head_tasks() expects a "
                            "list not {head_tasks_type}".format(pipeline_name = self.name,
                                                                head_tasks_type = type(head_tasks)))

        for tt in head_tasks:
            if not isinstance(tt, (Task,)):
                raise Exception("Pipelines['{pipeline_name}'].set_head_tasks() expects a "
                                "list of tasks not {task_type} {task}".format(  pipeline_name = self.name,
                                                                                task_type = type(tt),
                                                                                task = 1))
        self.head_tasks = head_tasks

    # _________________________________________________________________________

    #   get_tail_tasks

    # _________________________________________________________________________
    def get_tail_tasks(self):
        """
        Return tasks at the tail of the pipeline,
            i.e. without descendants/dependants
        N.B. Head and Tail sets can overlap

        Most of the time when self.tail_tasks == [],
            it has been left undefined by mistake.
            So we usually throw an exception at the point of use
        """
        return self.tail_tasks

    # _________________________________________________________________________

    #   set_tail_tasks

    # _________________________________________________________________________
    def set_tail_tasks(self, tail_tasks):
        """
        Specifies tasks at the tail of the pipeline,
            i.e. with only descendants/dependants
        """
        self.tail_tasks = tail_tasks

    # _________________________________________________________________________

    #   set_input

    #       forward to head tasks

    # _________________________________________________________________________
    def set_input(self, **args):
        """
        Change the input parameter(s) of the designated "head" tasks of the pipeline
        """
        if not len(self.get_head_tasks()):
            raise error_no_head_tasks("Pipeline '{pipeline_name}' has no head tasks defined.\n"
                                      "Which task in '{pipeline_name}' do you want "
                                      "to set_input() for?".format(pipeline_name = self.name))

        for tt in self.get_head_tasks():
            tt.set_input(**args)

    # _________________________________________________________________________

    #   set_output

    #       forward to head tasks

    # _________________________________________________________________________
    def set_output(self, **args):
        """
        Change the output parameter(s) of the designated "head" tasks of the pipeline
        """
        if not len(self.get_head_tasks()):
            raise error_no_head_tasks("Pipeline '{pipeline_name}' has no head tasks defined.\n"
                                      "Which task in '{pipeline_name}' do you want "
                                      "to set_output() for?".format(pipeline_name = self.name))

        for tt in self.get_head_tasks():
            tt.set_output(**args)
    # _________________________________________________________________________

    #   clone

    # _________________________________________________________________________
    def clone(self, new_name, *arg, **kw):
        """
        Make a deep copy of the pipeline
        """

        # setup new pipeline
        new_pipeline = Pipeline(new_name, *arg, **kw)

        # set of tasks
        new_pipeline.tasks = set(task._clone(new_pipeline) for task in self.tasks)
        new_pipeline.task_names = set(self.task_names)

        # so keep original name after a series of cloning operations
        new_pipeline.original_name = self.original_name

        # lookup tasks in new pipeline
        new_pipeline.head_tasks = [new_pipeline[t._name] for t in self.head_tasks]
        new_pipeline.tail_tasks = [new_pipeline[t._name] for t in self.tail_tasks]

        return new_pipeline

    # _________________________________________________________________________

    #   mkdir

    # _________________________________________________________________________
    def mkdir(self, *unnamed_args, **named_args):
        """
        Makes directories each incoming input to a corresponding output
        This is a One to One operation
        """
        name = get_name_from_args(named_args)
        # func is a placeholder...
        if name is None:
            self.cnt_mkdir += 1
            if self.cnt_mkdir == 1:
                name = "mkdir"
            else:
                name = "mkdir # %d" % self.cnt_mkdir
        task = self._create_task(task_func=job_wrapper_mkdir, task_name=name)
        task.created_via_decorator = False
        task.syntax = "pipeline.mkdir"
        task.description_with_args_placeholder = "%s(name = %r, %%s)" % (
            task.syntax, task._get_display_name())
        task._prepare_mkdir(unnamed_args, named_args, task.description_with_args_placeholder)
        return task

    # _________________________________________________________________________

    #   _do_create_task_by_OOP

    # _________________________________________________________________________
    def _do_create_task_by_OOP(self, task_func, named_args, syntax):
        """
        Helper function for
            Pipeline.transform
            Pipeline.originate
            pipeline.split
            pipeline.subdivide
            pipeline.parallel
            pipeline.files
            pipeline.combinations_with_replacement
            pipeline.combinations
            pipeline.permutations
            pipeline.product
            pipeline.collate
            pipeline.merge
        """
        name = get_name_from_args(named_args)

        #   if task_func is a string, will
        #       1) set self.task_func = exec_string_as_task_func
        #       2) set self.name if necessary to the first unambigous words of the the command_str
        #       2) set self.func_description to the command_str
        task = self._create_task(task_func, name)


        task.created_via_decorator = False
        task.syntax = syntax
        if isinstance(task_func, (path_str_type,)):
            task_func_name = task._name
        else:
            task_func_name = task_func.__name__

        task.description_with_args_placeholder = "{syntax}(name = {task_display_name!r}, task_func = {task_func_name}, %s)" \
            .format(syntax = syntax,
                    task_display_name = task._get_display_name(),
                    task_func_name = task_func_name,)

        if isinstance(task_func, (path_str_type,)):
            #
            #   Make sure extras is  dict
            #
            if "extras" in named_args:
                if not isinstance(named_args["extras"], dict):
                    raise error_executable_str((task.description_with_args_placeholder % "...") +
                                               "\n requires a dictionary for named parameters. " +
                                               "For example:\n" +
                                               task.description_with_args_placeholder %
                                               "extras = {my_param = 45, her_param = 'whatever'}")
            else:
                named_args["extras"] = dict()
            named_args["extras"]["command_str"] = task_func
            #named_args["extras"]["__RUFFUS_TASK_CALLBACK__"] = pipeline.command_str_callback


        return task

    # _________________________________________________________________________

    #   lookup_task_from_name

    # _________________________________________________________________________
    def lookup_task_from_name(self, task_name, default_module_name):
        """
        If lookup returns None, means ambiguous: do nothing
        Only ever returns a list of one
        """
        multiple_tasks = []

        #
        #   Does the unqualified name uniquely identify?
        #
        if task_name in self.lookup:
            if len(self.lookup[task_name]) == 1:
                return self.lookup[task_name]
            else:
                multiple_tasks = self.lookup[task_name]

        #
        #   Even if the unqualified name does not uniquely identify,
        #       maybe the qualified name does
        #
        full_qualified_name = default_module_name + "." + task_name
        if full_qualified_name in self.lookup:
            if len(self.lookup[full_qualified_name]) == 1:
                return self.lookup[full_qualified_name]
            else:
                multiple_tasks = self.lookup[task_name]

        #
        #   Nothing matched
        #
        if not multiple_tasks:
            return []

        #
        #   If either the qualified or unqualified name is ambiguous, throw...
        #
        task_names = ",".join(t._name for t in multiple_tasks)
        raise error_ambiguous_task("%s is ambiguous. Which do you mean? (%s)."
                                   % (task_name, task_names))

    # _________________________________________________________________________

    #   follows

    # _________________________________________________________________________
    def follows(self, task_func, *unnamed_args, **named_args):
        """
        Transforms each incoming input to a corresponding output
        This is a One to One operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.follows")
        task.deferred_follow_params.append([task.description_with_args_placeholder, False,
                                             unnamed_args])
        #task._connect_parents(task.description_with_args_placeholder, False,
        #                 unnamed_args)
        return task
    # _________________________________________________________________________

    #   check_if_uptodate

    # _________________________________________________________________________
    def check_if_uptodate(self, task_func, func, **named_args):
        """
        Specifies how a task is to be checked if it needs to be rerun (i.e. is
        up-to-date).
        func returns true if input / output files are up to date
        func takes as many arguments as the task function
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "check_if_uptodate")
        return task.check_if_uptodate(func)

    # _________________________________________________________________________

    #   graphviz

    # _________________________________________________________________________
    def graphviz(self, task_func, *unnamed_args, **named_args):
        """
        Transforms each incoming input to a corresponding output
        This is a One to One operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.graphviz")
        task.graphviz_attributes = named_args
        if len(unnamed_args):
            raise TypeError("Only named arguments expected in :" +
                            task.description_with_args_placeholder % unnamed_args)
        return task
    # _________________________________________________________________________

    #   transform

    # _________________________________________________________________________
    def transform(self, task_func, *unnamed_args, **named_args):
        """
        Transforms each incoming input to a corresponding output
        This is a One to One operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.transform")
        task._prepare_transform(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   originate

    # _________________________________________________________________________
    def originate(self, task_func, *unnamed_args, **named_args):
        """
        Originates a new set of output files,
            one output per call to the task function
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.originate")
        task._prepare_originate(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   split

    # _________________________________________________________________________
    def split(self, task_func, *unnamed_args, **named_args):
        """
        Splits a single set of input files into multiple output file names,
            where the number of output files may not be known beforehand.
        This is a One to Many operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.split")
        task._prepare_split(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   subdivide

    # _________________________________________________________________________
    def subdivide(self, task_func, *unnamed_args, **named_args):
        """
        Subdivides a each set of input files into multiple output file names,
            where the number of output files may not be known beforehand.
        This is a Many to Even More operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.subdivide")
        task._prepare_subdivide(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   merge

    # _________________________________________________________________________
    def merge(self, task_func, *unnamed_args, **named_args):
        """
        Merges multiple input files into a single output.
        This is a Many to One operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.merge")
        task._prepare_merge(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   collate

    # _________________________________________________________________________
    def collate(self, task_func, *unnamed_args, **named_args):
        """
        Collates each set of multiple matching input files into an output.
        This is a Many to Fewer operation
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.collate")
        task._prepare_collate(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   product

    # _________________________________________________________________________
    def product(self, task_func, *unnamed_args, **named_args):
        """
        All-vs-all Product between items from each set of inputs
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.product")
        task._prepare_product(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   permutations

    # _________________________________________________________________________
    def permutations(self, task_func, *unnamed_args, **named_args):
        """
        Permutations between items from a set of inputs
        * k-length tuples
        * all possible orderings
        * no self vs self
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.permutations")
        task._prepare_combinatorics(
            unnamed_args, named_args, error_task_permutations)
        return task

    # _________________________________________________________________________

    #   combinations

    # _________________________________________________________________________
    def combinations(self, task_func, *unnamed_args, **named_args):
        """
        Combinations of items from a set of inputs
        * k-length tuples
        * Single (sorted) ordering, i.e. AB is the same as BA,
        * No repeats. No AA, BB
        For Example:
            combinations("ABCD", 3) = ['ABC', 'ABD', 'ACD', 'BCD']
            combinations("ABCD", 2) = ['AB', 'AC', 'AD', 'BC', 'BD', 'CD']
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.combinations")
        task._prepare_combinatorics(unnamed_args, named_args, error_task_combinations)
        return task

    # _________________________________________________________________________

    #   combinations_with_replacement

    # _________________________________________________________________________
    def combinations_with_replacement(self, task_func, *unnamed_args,
                                      **named_args):
        """
        Combinations with replacement of items from a set of inputs
        * k-length tuples
        * Single (sorted) ordering, i.e. AB is the same as BA,
        * Repeats. AA, BB, AAC etc.
        For Example:
            combinations_with_replacement("ABCD", 2) = [
                'AA', 'AB', 'AC', 'AD',
                'BB', 'BC', 'BD',
                'CC', 'CD',
                'DD']
            combinations_with_replacement("ABCD", 3) = [
                'AAA', 'AAB', 'AAC', 'AAD',
                'ABB', 'ABC', 'ABD',
                'ACC', 'ACD',
                'ADD',
                'BBB', 'BBC', 'BBD',
                'BCC', 'BCD',
                'BDD',
                'CCC', 'CCD',
                'CDD',
                'DDD']
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "combinations_with_replacement")
        task._prepare_combinatorics(unnamed_args, named_args,
                                    error_task_combinations_with_replacement)
        return task

    # _________________________________________________________________________

    #   files

    # _________________________________________________________________________
    def files(self, task_func, *unnamed_args, **named_args):
        """
        calls user function in parallel
            with either each of a list of parameters
            or using parameters generated by a custom function

            In the parameter list,
                The first two items of each set of parameters must
                be input/output files or lists of files or Null
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.files")
        task._prepare_files(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   parallel

    # _________________________________________________________________________
    def parallel(self, task_func, *unnamed_args, **named_args):
        """
        calls user function in parallel
            with either each of a list of parameters
            or using parameters generated by a custom function
        """
        task = self._do_create_task_by_OOP(task_func, named_args, "pipeline.parallel")
        task._prepare_parallel(unnamed_args, named_args)
        return task

    # _________________________________________________________________________

    #   run
    #   printout
    #
    #       Forwarding functions
    # Should bring procedural function here and forward from the other
    # direction?

    # _________________________________________________________________________
    def run(self, *unnamed_args, **named_args):
        if "pipeline" not in named_args:
            named_args["pipeline"] = self
        pipeline_run(*unnamed_args, **named_args)

    def printout(self, *unnamed_args, **named_args):
        if "pipeline" not in named_args:
            named_args["pipeline"] = self
        pipeline_printout(*unnamed_args, **named_args)

    def get_task_names(self, *unnamed_args, **named_args):
        if "pipeline" not in named_args:
            named_args["pipeline"] = self
        pipeline_get_task_names(*unnamed_args, **named_args)

    def printout_graph(self, *unnamed_args, **named_args):
        if "pipeline" not in named_args:
            named_args["pipeline"] = self
        pipeline_printout_graph(*unnamed_args, **named_args)

#
#   Global default shared pipeline (used for decorators)
#
main_pipeline = Pipeline(name="main")


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   Functions


# 88888888888888888888888888888888888888888888888888888888888888888888888888888
# _____________________________________________________________________________

#   lookup_unique_task_from_func

# _____________________________________________________________________________
def lookup_unique_task_from_func(task_func, default_pipeline_name="main"):
    """
    Go through all pipelines and match task_func to find a unique task
    Throw exception if ambiguous
    """

    def unique_task_from_func_in_pipeline(task_func, pipeline):
        if task_func in pipeline.lookup:
            if len(pipeline.lookup[task_func]) == 1:
                # Found task!
                return pipeline.lookup[task_func][0]

            # Found too many tasks! Ambiguous...
            task_names = ", ".join(task._name for task in pipeline.lookup[task_func])
            raise error_ambiguous_task(
                "Function def %s(...): is used by multiple tasks (%s). Which one do you mean?."
                % (task_func.__name__, task_names))
        return None

    #
    #   Iterate through all pipelines starting with the specified pipeline
    #
    task = unique_task_from_func_in_pipeline(task_func, Pipeline.pipelines[default_pipeline_name])
    if task:
        return task

    #
    #   Sees if function uniquely identifies a single task across pipelines
    #
    found_tasks = []
    found_pipelines = []
    for pipeline in Pipeline.pipelines.values():
        task = unique_task_from_func_in_pipeline(task_func, pipeline)
        if task:
            found_tasks.append(task)
            found_pipelines.append(pipeline)

    if len(found_tasks) == 1:
        return found_tasks[0]

    if len(found_tasks) > 1:
        raise error_ambiguous_task("Task Name %s is ambiguous and specifies different tasks "
                                   "across multiple pipelines (%s)."
                                   % (task_func.__name__, ",".join(found_pipelines)))

    return None


# _____________________________________________________________________________

#   lookup_tasks_from_name

# _____________________________________________________________________________
def lookup_tasks_from_name(task_name, default_pipeline_name, default_module_name="__main__",
                           pipeline_names_as_alias_to_all_tasks = False):
    """

        Tries:
            (1) Named pipeline in the format pipeline::task_name
            (2) tasks matching task_name in default_pipeline_name
            (3) pipeline names matching task_name
            (4) if task_name uniquely identifies any task in all other pipelines...

        Only returns multiple tasks if (3) task_name is the name of a pipeline
    """

    # Lookup the task from the function or task name
    pipeline_name, task_name = re.match("(?:(.+)::)?(.*)", task_name).groups()

    #
    #   (1) Look in specified pipeline
    #      Will blow up if task_name is ambiguous
    #
    if pipeline_name:
        if pipeline_name not in Pipeline.pipelines:
            raise error_not_a_pipeline("%s is not a pipeline." % pipeline_name)
        pipeline = Pipeline.pipelines[pipeline_name]
        return pipeline.lookup_task_from_name(task_name, default_module_name)

    #
    #   (2) Try default pipeline
    #      Will blow up if task_name is ambiguous
    #
    if default_pipeline_name not in Pipeline.pipelines:
        raise error_not_a_pipeline("%s is not a pipeline." % default_pipeline_name)
    pipeline = Pipeline.pipelines[default_pipeline_name]
    tasks = pipeline.lookup_task_from_name(task_name, default_module_name)
    if tasks:
        return tasks

    #   (3) task_name is actually the name of a pipeline
    #      Alias for pipeline.get_tail_tasks()
    #      N.B. This is the *only* time multiple tasks might be returned
    #
    if task_name in Pipeline.pipelines:
        if pipeline_names_as_alias_to_all_tasks:
            return Pipeline.pipelines[task_name].tasks
        elif len(Pipeline.pipelines[task_name].get_tail_tasks()):
            return Pipeline.pipelines[task_name].get_tail_tasks()
        else:
            raise error_no_tail_tasks(
                "Pipeline %s has no tail tasks defined. Which task do you "
                "mean when you specify the whole pipeline as a dependency?" % task_name)

    #
    #   (4) Try all other pipelines
    #      Will blow up if task_name is ambiguous
    #
    found_tasks = []
    found_pipelines = []
    for pipeline_name, pipeline in Pipeline.pipelines.items():
        tasks = pipeline.lookup_task_from_name(task_name, default_module_name)
        if tasks:
            found_tasks.append(tasks)
            found_pipelines.append(pipeline_name)

    # unambiguous: good
    if len(found_tasks) == 1:
        return found_tasks[0]

    # ambiguous: bad
    if len(found_tasks) > 1:
        raise error_ambiguous_task(
            "Task Name %s is ambiguous and specifies different tasks across "
            "several pipelines (%s)." % (task_name, ",".join(found_pipelines)))

    # Nothing found
    return []


# _____________________________________________________________________________

#   lookup_tasks_from_user_specified_names
#
# _____________________________________________________________________________
def lookup_tasks_from_user_specified_names(task_description, task_names,
                                           default_pipeline_name="main",
                                           default_module_name="__main__",
                                           pipeline_names_as_alias_to_all_tasks = False):
    """
    Given a list of task names, look up the corresponding tasks
    Will just pass through if the task_name is already a task
    """

    #
    #   In case we are given a single item instead of a list
    #
    if not isinstance(task_names, (list, tuple)):
        task_names = [task_names]

    task_list = []

    for task_name in task_names:

        # "task_name" is a Task or pipeline, add those
        if isinstance(task_name, Task):
            task_list.append(task_name)
            continue

        elif isinstance(task_name, Pipeline):
            if pipeline_names_as_alias_to_all_tasks:
                task_list.extend(task_name.tasks)
                continue
            # use tail tasks
            elif len(task_name.get_tail_tasks()):
                task_list.extend(task_name.get_tail_tasks())
                continue
            # no tail task
            else:
                raise error_no_tail_tasks("Pipeline %s has no 'tail tasks'. Which task do you mean"
                                          " when you specify the whole pipeline?" % task_name.name)

        if isinstance(task_name, collections.Callable):
            # blows up if ambiguous
            task = lookup_unique_task_from_func(task_name, default_pipeline_name)
            # blow up for unwrapped function
            if not task:
                raise error_function_is_not_a_task(
                    ("Function def %s(...): is not a Ruffus task." % task_func.__name__) +
                    " The function needs to have a ruffus decoration like "
                    "'@transform', or be a member of a ruffus.Pipeline().")

            task_list.append(task)
            continue

        # some kind of string: task or func or pipeline name?
        if isinstance(task_name, path_str_type):

            # Will throw Exception if ambiguous
            tasks = lookup_tasks_from_name(
                task_name, default_pipeline_name, default_module_name,
                pipeline_names_as_alias_to_all_tasks)
            # not found
            if not tasks:
                raise error_node_not_task("%s task '%s' is not a pipelined task in Ruffus. Is it "
                                          "spelt correctly ?" % (task_description, task_name))
            task_list.extend(tasks)
            continue

        else:
            raise TypeError("Expecting a string or function, or a Ruffus Task or Pipeline object")
    return task_list


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   Task

# 88888888888888888888888888888888888888888888888888888888888888888888888888888
class Task (node):

    """

    * Represents each stage of a pipeline.
    * Associated with a single python function.
    * Identified uniquely within the pipeline by its name.

    """

    #DEBUGGG
    #def __str__ (self):
    #    return "Task = <%s>" % self._get_display_name()

    _action_names = ["unspecified",
                     "task",
                     "task_files_re",
                     "task_split",
                     "task_merge",
                     "task_transform",
                     "task_collate",
                     "task_files_func",
                     "task_files",
                     "task_mkdir",
                     "task_parallel",
                     "task_active_if",
                     "task_product",
                     "task_permutations",
                     "task_combinations",
                     "task_combinations_with_replacement",
                     "task_subdivide",
                     "task_originate",
                     "task_graphviz",
                     ]
    # ENUMS
    (_action_unspecified,
     _action_task,
     _action_task_files_re,
     _action_task_split,
     _action_task_merge,
     _action_task_transform,
     _action_task_collate,
     _action_task_files_func,
     _action_task_files,
     _action_mkdir,
     _action_task_parallel,
     _action_active_if,
     _action_task_product,
     _action_task_permutations,
     _action_task_combinations,
     _action_task_combinations_with_replacement,
     _action_task_subdivide,
     _action_task_originate,
     _action_task_graphviz) = range(19)

    (_multiple_jobs_outputs,
     _single_job_single_output,
     _job_single_matches_parent) = range(3)

    _job_limit_semaphores = {}

    # _________________________________________________________________________

    #   _get_action_name

    # _________________________________________________________________________
    def _get_action_name(self):
        return Task._action_names[self._action_type]

    # _________________________________________________________________________

    #   __init__

    # _________________________________________________________________________
    def __init__(self, func, task_name, pipeline = None, command_str = None):
        """
        * Creates a Task object with a specified python function and task name
        * The type of the Task (whether it is a transform or merge or collate
            etc. operation) is specified subsequently. This is because Ruffus
            decorators do not have to be specified in order, and we don't
            know ahead of time.
        """
        if pipeline is None:
            pipeline = main_pipeline
        self.pipeline = pipeline
        # no function: just string
        if command_str is not None:
            self.func_module_name = ""
            self.func_name = ""
            self.func_description = command_str
        else:
            self.func_module_name = str(func.__module__)
            self.func_name = func.__name__
            # convert description into one line
            self.func_description = re.sub("\n\s+", " ", func.__doc__).strip() if func.__doc__ else ""

        if not task_name:
            task_name = self.func_module_name + "." + self.func_name


        node.__init__(self, task_name)
        self._action_type = Task._action_task
        self._action_type_desc = Task._action_names[self._action_type]

        #   Each task has its own checksum level
        #   At the moment this is really so multiple pipelines in the same
        #       script can have different checksum levels
        # Though set by pipeline_xxxx functions, have initial valid value so
        # unit tests work :-|
        self.checksum_level = CHECKSUM_FILE_TIMESTAMPS
        self.param_generator_func = None
        self.needs_update_func = None
        self.job_wrapper = job_wrapper_generic

        #
        self.job_descriptor = generic_job_descriptor

        # jobs which produce a single output.
        # special handling for task.get_output_files for dependency chaining
        self._is_single_job_single_output = self._multiple_jobs_outputs
        self.single_multi_io = self._many_to_many

        # function which is decorated and does the actual work
        self.user_defined_work_func = func

        # functions which will be called when task completes
        self.posttask_functions = []

        # give makedir automatically made parent tasks unique names
        self.cnt_task_mkdir = 0

        # whether only task function itself knows what output it will produce
        # i.e. output is a glob or something similar
        self.indeterminate_output = 0

        # cache output file names here
        self.output_filenames = None

        # semaphore name must be unique
        self.semaphore_name = pipeline.name + ":" + task_name

        # do not test for whether task is active
        self.active_if_checks = None

        # extra flag for outputfiles
        self.is_active = True

        # Created via decorator or OO interface
        #   so that display_name looks more natural
        self.created_via_decorator = False

        # Finish setting up task
        self._setup_task_func = Task._do_nothing_setup

        # Finish setting up task
        self.deferred_follow_params = []

        # Finish setting up task
        self.parsed_args = {}
        self.error_type = None

        # @split or pipeline.split etc.
        self.syntax = ""

        self.description_with_args_placeholder = "%s"

        # whether task has a (re-specifiable) input parameter
        self.has_input_param = True
        self.has_pipeline_in_input_param = False

        # add to pipeline's lookup
        # this code is here rather than the pipeline so that current unittests
        #   do not need to bother about pipeline
        if task_name in self.pipeline.task_names:
            raise error_duplicate_task_name("Same task name %s specified multiple times in the "
                                            "same pipeline (%s)" % (task_name, self.pipeline.name))

        self.pipeline.tasks.add(self)

        # task_name is always a unique lookup and overrides everything else
        self.pipeline[task_name] = self
        self.pipeline.lookup[task_name] = [self]
        self.pipeline.task_names.add(task_name)

        self.command_str_callback = "PIPELINE"

        #
        #   Allow pipeline to lookup task by
        #       1) Func
        #       2) task name
        #       3) func name
        #
        #   Ambiguous func names returns an empty list []
        #

        for lookup in (func, self.func_name, self.func_module_name + "." + self.func_name):
            # don't add to lookup if this conflicts with a task_name which is
            # always unique and overriding
            if lookup == ".":
                continue
            if lookup not in self.pipeline.task_names:
                # non-unique map
                if lookup in self.pipeline.lookup:
                    self.pipeline.lookup[lookup].append(self)
                    # remove non-uniques from Pipeline
                    if lookup in self.pipeline:
                        del self.pipeline[lookup]
                else:
                    self.pipeline.lookup[lookup] = [self]
                    self.pipeline[lookup] = self

    # _________________________________________________________________________

    #   _clone

    # _________________________________________________________________________
    def _clone(self, new_pipeline):
        """
        * Clones a Task object from self
        """
        new_task = Task(self.user_defined_work_func, self._name, new_pipeline)
        new_task.command_str_callback = self.command_str_callback
        new_task._action_type = self._action_type
        new_task._action_type_desc = self._action_type_desc
        new_task.checksum_level = self.checksum_level
        new_task.param_generator_func = self.param_generator_func
        new_task.needs_update_func = self.needs_update_func
        new_task.job_wrapper = self.job_wrapper
        new_task.job_descriptor = self.job_descriptor
        new_task._is_single_job_single_output = self._is_single_job_single_output
        new_task.single_multi_io = self.single_multi_io
        new_task.posttask_functions = copy.deepcopy(self.posttask_functions)
        new_task.cnt_task_mkdir = self.cnt_task_mkdir
        new_task.indeterminate_output = self.indeterminate_output
        new_task.semaphore_name = self.semaphore_name
        new_task.is_active = self.is_active
        new_task.created_via_decorator = self.created_via_decorator
        new_task._setup_task_func = self._setup_task_func
        new_task.error_type = self.error_type
        new_task.syntax = self.syntax
        new_task.description_with_args_placeholder = \
            self.description_with_args_placeholder.replace(self.pipeline.name, new_pipeline.name)
        new_task.has_input_param = self.has_input_param
        new_task.has_pipeline_in_input_param = self.has_pipeline_in_input_param
        new_task.output_filenames = copy.deepcopy(self.output_filenames)
        new_task.active_if_checks = copy.deepcopy(self.active_if_checks)
        new_task.parsed_args = copy.deepcopy(self.parsed_args)
        new_task.deferred_follow_params = copy.deepcopy(self.deferred_follow_params)

        return new_task

    # _________________________________________________________________________

    #   command_str_callback

    # _________________________________________________________________________
    def set_command_str_callback(self, command_str_callback):
        if not callable(command_str_callback):
            raise Exception("set_command_str_callback() takes a python function or a callable object.")
        self.command_str_callback = command_str_callback



    # _________________________________________________________________________

    #   set_output

    # _________________________________________________________________________
    def set_output(self, **args):
        """
        Changes output parameter(s) for originate
            set_input(output  = "test.txt")
        """

        if self.syntax not in ("pipeline.originate", "@originate"):
            raise error_set_output("Can only set output for originate tasks")
        #
        #   For product: filter parameter is a list of formatter()
        #
        if "output" in args:
            self.parsed_args["output"] = args["output"]
            del args["output"]
        else:
            raise error_set_output("Missing the output argument in set_input(output=xxx)")

        # Non "input" arguments
        if len(args):
            raise error_set_output("Unexpected argument name in set_output(%s). "
                                  "Only expecting output=xxx." % (args,))
    # _________________________________________________________________________

    #   set_input

    # _________________________________________________________________________
    def set_input(self, **args):
        """
        Changes any of the input parameter(s) of the task
        For example:
            set_input(input  = "test.txt")
            set_input(input2 = "b.txt")
            set_input(input = "a.txt", input2 = "b.txt")
        """
        #
        #   For product: filter parameter is a list of formatter()
        #
        if ("filter" in self.parsed_args and
                isinstance(self.parsed_args["filter"], list)):
            # the number of input is the count of filter
            cnt_expected_input = len(self.parsed_args["filter"])

            # make sure the parsed parameter argument is setup, with empty
            # lists if necessary
            # Should have been done already...
            # if self.parsed_args["input"] is None:
            #    self.parsed_args["input"] = [[]
            #       for i in range(cnt_expected_input)]

            #   update each element of the list accordingly
            #   removing args so we can check if there is anything left over
            for inputN in range(cnt_expected_input):
                input_name = "input%d" % (inputN + 1) if inputN else "input"
                if input_name in args:
                    self.parsed_args["input"][inputN] = args[input_name]
                    del args[input_name]

            if len(args):
                raise error_set_input("Unexpected arguments in set_input(%s). "
                                      "Only expecting inputN=xxx" % (args,))
            return

        if "input" in args:
            self.parsed_args["input"] = args["input"]
            del args["input"]
        else:
            raise error_set_input("Missing the input argument in set_input(input=xxx)")

        # Non "input" arguments
        if len(args):
            raise error_set_input("Unexpected argument name in set_input(%s). "
                                  "Only expecting input=xxx." % (args,))

    # _________________________________________________________________________

    #   _init_for_pipeline

    # _________________________________________________________________________
    def _init_for_pipeline(self):
        """
        Initialize variables for pipeline run / printout

        **********
          BEWARE
        **********

        Because state is stored, ruffus is *not* reentrant.

        TODO: Need to create runtime DAG to mirror task DAG which holds
                output_filenames to be reentrant

        **********
          BEWARE
        **********
        """

        # cache output file names here
        self.output_filenames = None

    # _________________________________________________________________________

    #   _set_action_type

    # _________________________________________________________________________
    def _set_action_type(self, new_action_type):
        """
        Save how this task
            1) tests whether it is up-to-date and
            2) handles input/output files

        Checks that the task has not been defined with conflicting actions

        """
        if self._action_type not in (Task._action_unspecified, Task._action_task):
            old_action = Task._action_names[self._action_type]
            new_action = Task._action_names[new_action_type]
            actions = " and ".join(list(set((old_action, new_action))))
            raise error_decorator_args("Duplicate task for:\n\n%s\n\n"
                                       "This has already been specified with a the same name "
                                       "or function\n"
                                       "(%r, %s)\n" %
                                       (self.description_with_args_placeholder % "...", self._get_display_name(), actions))
        self._action_type = new_action_type
        self._action_type_desc = Task._action_names[new_action_type]

    # _________________________________________________________________________

    #   _get_job_name

    # _________________________________________________________________________
    def _get_job_name(self, descriptive_param, verbose_abbreviated_path, runtime_data):
        """
        Use job descriptor to return short name for job including any parameters

        runtime_data is not (yet) used but may be used to add context in future
        """
        return self.job_descriptor(descriptive_param, verbose_abbreviated_path, runtime_data)[0]

    # _________________________________________________________________________

    #   _get_display_name

    # _________________________________________________________________________
    def _get_display_name(self):
        """
        Returns task name, removing __main__. namespace or main. if present
        """
        if self.pipeline.name != "main":
            return "{pipeline_name}::{task_name}".format(pipeline_name = self.pipeline.name,
                                                    task_name = self._name.replace("__main__.", "").replace("main::", ""))
        else:
            return self._name.replace("__main__.", "").replace("main::", "")

    # _________________________________________________________________________

    #   _get_decorated_function

    # _________________________________________________________________________
    def _get_decorated_function(self):
        """
        Returns name of task function, removing __main__ namespace if necessary
        If not specified using decorator notation, returns empty string
        N.B. Returns trailing new line

        """
        if not self.created_via_decorator:
            return ""

        func_name = (self.func_module_name + "." +
                     self.func_name) \
            if self.func_module_name != "__main__" else self.func_name
        return "def %s(...):\n    ...\n" % func_name

    # _________________________________________________________________________

    #   _update_active_state

    # _________________________________________________________________________
    def _update_active_state(self):
        #
        #   If has an @active_if decorator, check if the task needs to be run
        #       @active_if parameters may be call back functions or booleans
        #
        if (self.active_if_checks is not None and
            any(not arg() if isinstance(arg, collections.Callable) else not arg
                for arg in self.active_if_checks)):
                # flip is active to false.
                #   ( get_output_files() will return empty if inactive )
                #   Remember each iteration of pipeline_printout pipeline_run
                #   will have another bite at changing this value
            self.is_active = False
        else:
            # flip is active to True so that downstream dependencies will be
            #   correct ( get_output_files() will return empty if inactive )
            #   Remember each iteration of pipeline_printout pipeline_run will
            #   have another bite at changing this value
            self.is_active = True

    # _________________________________________________________________________

    #   _printout

    #       This code will look much better once we have job level dependencies
    #           pipeline_run has dependencies percolating up/down. Don't want
    #           to recreate all the logic here

    # _________________________________________________________________________
    def _printout(self, runtime_data, force_rerun, job_history, task_is_out_of_date, verbose=1,
                  verbose_abbreviated_path=2, indent=4):
        """
        Print out all jobs for this task

            verbose =
                    level 1 : logs Out-of-date Task names
                    level 2 : logs All Tasks (including any task function
                              docstrings)
                    level 3 : logs Out-of-date Jobs in Out-of-date Tasks, no
                              explanation
                    level 4 : logs Out-of-date Jobs in Out-of-date Tasks,
                              saying why they are out of date (include only
                              list of up-to-date tasks)
                    level 5 : All Jobs in Out-of-date Tasks (include only list
                              of up-to-date tasks)
                    level 6 : All jobs in All Tasks whether out of date or not

        """

        def _get_job_names(unglobbed_params, indent_str):
            job_names = self.job_descriptor(unglobbed_params, verbose_abbreviated_path, runtime_data)[1]
            if len(job_names) > 1:
                job_names = ([indent_str + job_names[0]] +
                             [indent_str + "      " + jn for jn in job_names[1:]])
            else:
                job_names = ([indent_str + job_names[0]])
            return job_names

        if not verbose:
            return []

        indent_str = ' ' * indent

        messages = []

        # LOGGER: level 1 : logs Out-of-date Tasks (names and warnings)
        messages.append("Task = %r %s " % (self._get_display_name(),
                        ("    >>Forced to rerun<<" if force_rerun else "")))
        if verbose == 1:
            return messages

        # LOGGER: level 2 : logs All Tasks (including any task function
        # docstrings)
        if verbose >= 2 and len(self.func_description):
            messages.append(indent_str + '"' + self.func_description + '"')

        #
        #   single job state
        #
        if verbose >= 10:
            if self._is_single_job_single_output == self._single_job_single_output:
                messages.append("    Single job single output")
            elif self._is_single_job_single_output == self._multiple_jobs_outputs:
                messages.append("    Multiple jobs Multiple outputs")
            else:
                messages.append("    Single jobs status depends on %r" %
                                self._is_single_job_single_output._get_display_name())

        # LOGGER: No job if less than 2
        if verbose <= 2:
            return messages

        # increase indent for jobs up to date status
        indent_str += " " * 3

        #
        #   If has an @active_if decorator, check if the task needs to be run
        #       @active_if parameters may be call back functions or booleans
        #
        if not self.is_active:
            # LOGGER
            if verbose <= 3:
                return messages
            messages.append(indent_str + "Task is inactive")
            # add spacer line
            messages.append("")
            return messages

        #
        #   No parameters: just call task function
        #
        if self.param_generator_func is None:
            # LOGGER
            if verbose <= 3:
                return messages

            #
            #   needs update func = None: always needs update
            #
            if not self.needs_update_func:
                messages.append(indent_str + "Task needs update: No func to check if up-to-date.")
                return messages

            if self.needs_update_func == needs_update_check_modify_time:
                needs_update, msg = self.needs_update_func(
                    task=self, job_history=job_history,
                    verbose_abbreviated_path=verbose_abbreviated_path)
            else:
                needs_update, msg = self.needs_update_func()

            if needs_update:
                messages.append(indent_str + "Task needs update: %s" % msg)
            #
            #   Get rid of up-to-date messages:
            #       Superfluous for parts of the pipeline which are up-to-date
            #       Misleading for parts of the pipeline which require
            #           updating: tasks might have to run based on dependencies
            #           anyway
            #
            # else:
            #    if task_is_out_of_date:
            #        messages.append(indent_str + "Task appears up-to-date but
            #                        will rerun after its dependencies")
            #    else:
            #        messages.append(indent_str + "Task up-to-date")

        else:
            runtime_data["MATCH_FAILURE"] = defaultdict(set)
            #
            #   return messages description per job if verbose > 5 else
            #       whether up to date or not
            #
            cnt_jobs = 0
            for params, unglobbed_params in self.param_generator_func(runtime_data):
                cnt_jobs += 1

                #
                #   needs update func = None: always needs update
                #
                if not self.needs_update_func:
                    if verbose >= 5:
                        messages.extend(_get_job_names(unglobbed_params, indent_str))
                        messages.append(indent_str + "  Jobs needs update: No "
                                        "function to check if up-to-date or not")
                    continue

                if self.needs_update_func == needs_update_check_modify_time:
                    needs_update, msg = self.needs_update_func(
                        *params, task=self, job_history=job_history,
                        verbose_abbreviated_path=verbose_abbreviated_path)
                else:
                    needs_update, msg = self.needs_update_func(*params)

                if needs_update:
                    messages.extend(_get_job_names(unglobbed_params, indent_str))
                    if verbose >= 4:
                        per_job_messages = [(indent_str + s)
                                            for s in ("  Job needs update: %s" % msg).split("\n")]
                        messages.extend(per_job_messages)
                    else:
                        messages.append(indent_str + "  Job needs update")

                # up to date: log anyway if verbose
                else:
                    # LOGGER
                    if (task_is_out_of_date and verbose >= 5) or verbose >= 6:
                        messages.extend(_get_job_names(unglobbed_params, indent_str))
                        #
                        #   Get rid of up-to-date messages:
                        #       Superfluous for parts of the pipeline which are up-to-date
                        #       Misleading for parts of the pipeline which require updating:
                        #           tasks might have to run based on dependencies anyway
                        #
                        # if not task_is_out_of_date:
                        #    messages.append(indent_str + "  Job up-to-date")

            if cnt_jobs == 0:
                messages.append(indent_str + "!!! No jobs for this task.")
                messages.append(indent_str + "Are you sure there is "
                                "not a error in your code / regular expression?")
            # LOGGER

            # DEBUGGGG!!
            if verbose >= 4 or (verbose and cnt_jobs == 0):
                if runtime_data and "MATCH_FAILURE" in runtime_data and\
                    self.param_generator_func in runtime_data["MATCH_FAILURE"]:
                    for job_msg in runtime_data["MATCH_FAILURE"][self.param_generator_func]:
                        messages.append(indent_str + "Job Warning: Input substitution failed:")
                        messages.extend("  "+ indent_str + line for line in job_msg.split("\n"))

            runtime_data["MATCH_FAILURE"][self.param_generator_func] = set()
        messages.append("")
        return messages

    # _________________________________________________________________________

    #   _is_up_to_date
    #
    #       use to be named signal
    #       returns whether up to date
    #       stops recursing if true
    #
    # _________________________________________________________________________
    def _is_up_to_date(self, verbose_logger_job_history):
        """
        If true, depth first search will not pass through this node
        """
        if not verbose_logger_job_history:
            raise Exception("verbose_logger_job_history is None")

        verbose_logger = verbose_logger_job_history[0]
        job_history = verbose_logger_job_history[1]

        try:
            logger = verbose_logger.logger
            verbose = verbose_logger.verbose
            runtime_data = verbose_logger.runtime_data
            verbose_abbreviated_path = verbose_logger.verbose_abbreviated_path

            log_at_level(logger, 10, verbose, "  Task = %r " % self._get_display_name())

            #
            #   If job is inactive, always consider it up-to-date
            #
            if (self.active_if_checks is not None and
                any(not arg() if isinstance(arg, collections.Callable) else not arg
                    for arg in self.active_if_checks)):
                log_at_level(logger, 10, verbose, "    Inactive task: treat as Up to date")
                # print 'signaling that the inactive task is up to date'
                return True

            #
            #   Always needs update if no way to check if up to date
            #
            if self.needs_update_func is None:
                log_at_level(logger, 10, verbose, "    No update function: treat as out of date")
                return False

            #
            #   if no parameters, just return the results of needs update
            #
            if self.param_generator_func is None:
                if self.needs_update_func:
                    if self.needs_update_func == needs_update_check_modify_time:
                        needs_update, msg = self.needs_update_func(
                            task=self, job_history=job_history,
                            verbose_abbreviated_path=verbose_abbreviated_path)
                    else:
                        needs_update, msg = self.needs_update_func()
                    log_at_level(logger, 10, verbose, "    Needs update = %s" % needs_update)
                    return not needs_update
                else:
                    return True
            else:
                #
                #   return not up to date if ANY jobs needs update
                #
                for params, unglobbed_params in self.param_generator_func(runtime_data):
                    if self.needs_update_func == needs_update_check_modify_time:
                        needs_update, msg = self.needs_update_func(
                            *params, task=self, job_history=job_history,
                            verbose_abbreviated_path=verbose_abbreviated_path)
                    else:
                        needs_update, msg = self.needs_update_func(*params)
                    if needs_update:
                        log_at_level(logger, 10, verbose, "    Needing update:\n      %s"
                                     % self._get_job_name(unglobbed_params,
                                                          verbose_abbreviated_path, runtime_data))
                        return False

                #
                #   Percolate warnings from parameter factories
                #
                #  !!
                if (verbose >= 1 and "ruffus_WARNING" in runtime_data and
                        self.param_generator_func in runtime_data["ruffus_WARNING"]):
                    for msg in runtime_data["ruffus_WARNING"][self.param_generator_func]:
                        logger.warning("    'In Task\n%s\n%s" % (
                                       self.description_with_args_placeholder % "...", msg))

                log_at_level(logger, 10, verbose, "    All jobs up to date")

                return True

        #
        # removed for compatibility with python 3.x
        #
        # rethrow exception after adding task name
        # except error_task, inst:
        #    inst.specify_task(self, "Exceptions in dependency checking")
        #    raise

        except:
            exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
            #
            # rethrow exception after adding task name
            #
            if exceptionType == error_task:
                exceptionValue.specify
                inst.specify_task(self, "Exceptions in dependency checking")
                raise

            exception_stack = traceback.format_exc()
            exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
            exception_value = str(exceptionValue)
            if len(exception_value):
                exception_value = "(%s)" % exception_value
            errt = RethrownJobError([(self._name,
                                      "",
                                      exception_name,
                                      exception_value,
                                      exception_stack)])
            errt.specify_task(self, "Exceptions generating parameters")
            raise errt

    # _________________________________________________________________________

    #   _get_output_files
    #
    #
    # _________________________________________________________________________
    def _get_output_files(self, do_not_expand_single_job_tasks, runtime_data):
        """
        Cache output files

            Normally returns a list with one item for each job or a just a list
            of file names.
            For "_single_job_single_output"
                i.e. @merge and @files with single jobs,
                returns the output of a single job (i.e. can be a string)
        """

        #
        #   N.B. active_if_checks is called once per task
        #        in make_job_parameter_generator() for consistency
        #
        #   self.is_active can be set using self.active_if_checks in that
        #       function, and therefore can be changed BETWEEN invocations
        #       of pipeline_run
        #
        #   self.is_active is not used anywhere else
        #
        if (not self.is_active):
            return []

        if self.output_filenames is None:

            self.output_filenames = []

            # skip tasks which don't have parameters
            if self.param_generator_func is not None:

                cnt_jobs = 0
                for params, unglobbed_params in self.param_generator_func(runtime_data):
                    cnt_jobs += 1
                    # skip tasks which don't have output parameters
                    if len(params) >= 2:
                        # make sure each @split or @subdivide or @originate
                        #   returns a list of jobs
                        #   i.e. each @split or @subdivide or @originate is
                        #       always a ->many operation
                        #       even if len(many) can be 1 (or zero)
                        if self.indeterminate_output and not non_str_sequence(params[1]):
                            self.output_filenames.append([params[1]])
                        else:
                            self.output_filenames.append(params[1])

                if self._is_single_job_single_output == self._single_job_single_output:
                    if cnt_jobs > 1:
                        raise error_task_get_output(self, "Task which is supposed to produce a "
                                                    "single output somehow has more than one job.")

                #
                #   The output of @split should be treated as multiple jobs
                #
                #       The output of @split is always a list of lists:
                #         1) There is a list of @split jobs
                #            A) For advanced (regex) @split
                #               this is a many -> many more operation
                #               So len(list) == many (i.e. the number of jobs
                #            B) For normal @split
                #               this is a  1   -> many operation
                #               So len(list)  = 1
                #
                #         2) The output of each @split job is a list
                #            The items in this list of lists are each a job in
                #               subsequent tasks
                #
                #
                #         So we need to concatenate these separate lists into a
                #         single list of output
                #
                #         For example:
                #         @split(["a.1", "b.1"], regex(r"(.)\.1"), r"\1.*.2")
                #         def example(input, output):
                # JOB 1
                # a.1 -> a.i.2
                # -> a.j.2
                #
                # JOB 2
                # b.1 -> b.i.2
                # -> b.j.2
                #
                #         output_filenames = [ [a.i.2, a.j.2], [b.i.2, b.j.2] ]
                #
                #         we want [ a.i.2, a.j.2, b.i.2, b.j.2 ]
                #
                #         This also works for simple @split
                #
                #         @split("a.1", r"a.*.2")
                #         def example(input, output):
                # only job
                # a.1 -> a.i.2
                # -> a.j.2
                #
                #         output_filenames = [ [a.i.2, a.j.2] ]
                #
                #         we want [ a.i.2, a.j.2 ]
                #
                if len(self.output_filenames) and self.indeterminate_output:
                    self.output_filenames = reduce(lambda x, y: x + y, self.output_filenames)

        # special handling for jobs which have a single task
        if (do_not_expand_single_job_tasks and
                self._is_single_job_single_output and
                len(self.output_filenames)):
            return self.output_filenames[0]

        #
        # sort by jobs so it is just a weeny little bit less deterministic
        #
        return sorted(self.output_filenames, key=lambda x: str(x))

    # _________________________________________________________________________

    #   _completed
    #
    #       All logging logic moved to caller site
    # _________________________________________________________________________
    def _completed(self):
        """
        called even when all jobs are up to date
        """
        if not self.is_active:
            self.output_filenames = None
            return

        for f in self.posttask_functions:
            f()

        #
        #   indeterminate output. Check actual output again if someother tasks
        #       job function depend on it
        #       used for @split
        #
        if self.indeterminate_output:
            self.output_filenames = None

    # _________________________________________________________________________

    #   _handle_tasks_globs_in_inputs

    # _________________________________________________________________________
    def _handle_tasks_globs_in_inputs(self, input_params, modify_inputs_mode):
        """
        Helper function for tasks which
            1) Notes globs and tasks
            2) Replaces tasks names and functions with actual tasks
            3) Adds task dependencies automatically via task_follows

            modify_inputs_mode = results["modify_inputs_mode"] =
                t_extra_inputs.ADD_TO_INPUTS | REPLACE_INPUTS |
                               KEEP_INPUTS | KEEP_OUTPUTS
        """
        # DEBUGGG
        #print("    task._handle_tasks_globs_in_inputs start %s" % (self._get_display_name(), ), file = sys.stderr)
        #
        # get list of function/function names and globs
        #
        function_or_func_names, globs, runtime_data_names = get_nested_tasks_or_globs(input_params)

        #
        # replace function / function names with tasks
        #
        if modify_inputs_mode == t_extra_inputs.ADD_TO_INPUTS:
            description_with_args_placeholder = \
                self.description_with_args_placeholder % "add_inputs = add_inputs(%r)"
        elif modify_inputs_mode == t_extra_inputs.REPLACE_INPUTS:
            description_with_args_placeholder = \
                self.description_with_args_placeholder % "replace_inputs = add_inputs(%r)"
        elif modify_inputs_mode == t_extra_inputs.KEEP_OUTPUTS:
            description_with_args_placeholder = \
                self.description_with_args_placeholder % "output =%r"
        else:  # t_extra_inputs.KEEP_INPUTS
            description_with_args_placeholder = \
                self.description_with_args_placeholder % "input =%r"

        tasks = self._connect_parents(description_with_args_placeholder, True, function_or_func_names)
        functions_to_tasks = dict()
        for funct_name_task_or_pipeline, task in zip(function_or_func_names, tasks):
            if isinstance(funct_name_task_or_pipeline, Pipeline):
                functions_to_tasks["PIPELINE=%s=PIPELINE" % funct_name_task_or_pipeline.name] = task
            else:
                functions_to_tasks[funct_name_task_or_pipeline] = task

        # replace strings, tasks, pipelines with tasks
        input_params = replace_placeholders_with_tasks_in_input_params(input_params, functions_to_tasks)
        #DEBUGGG
        #print("    task._handle_tasks_globs_in_inputs finish %s" % (self._get_display_name(), ), file = sys.stderr)
        return t_params_tasks_globs_run_time_data(input_params, tasks, globs, runtime_data_names)

    # _________________________________________________________________________

    #   _choose_file_names_transform

    # _________________________________________________________________________
    def _choose_file_names_transform(self, parsed_args,
                                     valid_tags=(regex, suffix, formatter)):
        """
        shared code for subdivide, transform, product etc for choosing method
        for transform input file to output files
        """
        file_name_transform_tag = parsed_args["filter"]
        valid_tag_names = []
        # regular expression match
        if (regex in valid_tags):
            valid_tag_names.append("regex()")
            if isinstance(file_name_transform_tag, regex):
                return t_regex_file_names_transform(self,
                                                    file_name_transform_tag,
                                                    self.error_type,
                                                    self.syntax)

        # simulate end of string (suffix) match
        if (suffix in valid_tags):
            valid_tag_names.append("suffix()")
            if isinstance(file_name_transform_tag, suffix):
                output_dir = parsed_args["output_dir"] if "output_dir" in parsed_args else []
                return t_suffix_file_names_transform(self,
                                                     file_name_transform_tag,
                                                     self.error_type,
                                                     self.syntax,
                                                     output_dir)
        # new style string.format()
        if (formatter in valid_tags):
            valid_tag_names.append("formatter()")
            if isinstance(file_name_transform_tag, formatter):
                return t_formatter_file_names_transform(self,
                                                        file_name_transform_tag,
                                                        self.error_type,
                                                        self.syntax)

        raise self.error_type(self,
                              "%s expects one of %s as the second argument"
                              % (self.syntax, ", ".join(valid_tag_names)))

    # 8888888888888888888888888888888888888888888888888888888888888888888888888

    #       task handlers

    #         sets
    #               1) action_type
    #               2) param_generator_func
    #               3) needs_update_func
    #               4) job wrapper

    # 8888888888888888888888888888888888888888888888888888888888888888888888888

    def _do_nothing_setup(self):
        """
        Task is already set up: do nothing
        """
        return set()

    # ========================================================================

    #   _decorator_originate

    #       originate does have an Input param.
    #       It is just None (and not set-able)

    # ========================================================================
    def _decorator_originate(self, *unnamed_args, **named_args):
        """
        @originate
        """
        self.syntax = "@originate"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_originate(unnamed_args, named_args)

        # originate
        # self.has_input_param        = True

    # _________________________________________________________________________

    #   _prepare_originate

    # _________________________________________________________________________
    def _prepare_originate(self, unnamed_args, named_args):
        """
        Common function for pipeline.originate and @originate
        """
        self.error_type = error_task_originate
        self._set_action_type(Task._action_task_originate)
        self._setup_task_func = Task._originate_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_output_files
        self.job_descriptor = io_files_one_to_many_job_descriptor
        self.single_multi_io = self._many_to_many
        # output is not a glob
        self.indeterminate_output = 0

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args, ["output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _originate_setup

    # _________________________________________________________________________
    def _originate_setup(self):
        """
        Finish setting up originate
        """
        #
        # If self.parsed_args["output"] is a single item (e.g. file name),
        # that will be treated as a list
        # Each item in the list of these will be called as an output in a
        #   separate function call
        #
        output_params = self.parsed_args["output"]
        if not non_str_sequence(output_params):
            output_params = [output_params]

        #
        #   output globs will be replaced with files. But there should not be
        #       tasks here!
        #
        list_output_files_task_globs = [self._handle_tasks_globs_in_inputs(
                                        oo, t_extra_inputs.KEEP_INPUTS) for oo in output_params]
        for oftg in list_output_files_task_globs:
            if len(oftg.tasks):
                raise self.error_type(self, "%s cannot output to another "
                                      "task. Do not include tasks in "
                                      "output parameters." % self.syntax)

        self.param_generator_func = originate_param_factory(list_output_files_task_globs,
                                                            *self.parsed_args["extras"])
        return set()

    # ========================================================================

    #   _decorator_transform

    # ========================================================================
    def _decorator_transform(self, *unnamed_args, **named_args):
        """
        @originate
        """
        self.syntax = "@transform"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (
            self.syntax, self._get_decorated_function())
        self._prepare_transform(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_transform

    # _________________________________________________________________________
    def _prepare_transform(self, unnamed_args, named_args):
        """
        Common function for pipeline.transform and @transform
        """
        self.error_type = error_task_transform
        self._set_action_type(Task._action_task_transform)
        self._setup_task_func = Task._transform_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_many

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "modify_inputs",
                                                 "output", "extras", "output_dir"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _transform_setup

    # _________________________________________________________________________
    def _transform_setup(self):
        """
        Finish setting up transform
        """
        #DEBUGGG
        #print("   task._transform_setup start %s" % (self._get_display_name(), ), file = sys.stderr)

        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)
        ancestral_tasks = set(input_files_task_globs.tasks)

        # _____________________________________________________________________
        #
        #       _single_job_single_output is bad policy. Can we remove it?
        #       What does this actually mean in Ruffus semantics?
        #
        #
        #   allows transform to take a single file or task
        if input_files_task_globs.single_file_to_list():
            self._is_single_job_single_output = self._single_job_single_output

        #
        #   whether transform generates a list of jobs or not will depend on
        #       the parent task
        #
        elif isinstance(input_files_task_globs.params, Task):
            self._is_single_job_single_output = input_files_task_globs.params

        # _____________________________________________________________________

        # how to transform input to output file name
        file_names_transform = self._choose_file_names_transform(self.parsed_args)

        modify_inputs = self.parsed_args["modify_inputs"]
        if modify_inputs is not None:
            modify_inputs = self._handle_tasks_globs_in_inputs(
                modify_inputs, self.parsed_args["modify_inputs_mode"])
            ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

        self.param_generator_func = transform_param_factory(input_files_task_globs,
                                                            file_names_transform,
                                                            modify_inputs,
                                                            self.parsed_args["modify_inputs_mode"],
                                                            self.parsed_args["output"],
                                                            *self.parsed_args["extras"])

        #DEBUGGG
        #print("   task._transform_setup finish %s" % (self._get_display_name(), ), file = sys.stderr)
        return ancestral_tasks

    # ========================================================================

    #   _decorator_subdivide

    # ========================================================================
    def _decorator_subdivide(self, *unnamed_args, **named_args):
        """
        @subdivide
        """
        self.syntax = "@subdivide"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_subdivide(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_subdivide

    # _________________________________________________________________________
    def _prepare_subdivide(self, unnamed_args, named_args):
        """
            Common code for @subdivide and pipeline.subdivide
            @split can also end up here
        """
        self.error_type = error_task_subdivide
        self._set_action_type(Task._action_task_subdivide)
        self._setup_task_func = Task._subdivide_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_one_to_many_job_descriptor
        self.single_multi_io = self._many_to_many
        # output is a glob
        self.indeterminate_output = 2

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "modify_inputs",
                                                 "output", "extras", "output_dir"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _subdivide_setup

    # _________________________________________________________________________
    def _subdivide_setup(self):
        """
        Finish setting up subdivide
        """

        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)

        #   allows split to take a single file or task
        input_files_task_globs.single_file_to_list()

        ancestral_tasks = set(input_files_task_globs.tasks)

        # how to transform input to output file name
        file_names_transform = self._choose_file_names_transform(self.parsed_args)

        modify_inputs = self.parsed_args["modify_inputs"]
        if modify_inputs is not None:
            modify_inputs = self._handle_tasks_globs_in_inputs(
                modify_inputs, self.parsed_args["modify_inputs_mode"])
            ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

        #
        #   output globs will be replaced with files.
        #       But there should not be tasks here!
        #
        output_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["output"],
                                                                     t_extra_inputs.KEEP_OUTPUTS)
        if len(output_files_task_globs.tasks):
            raise self.error_type(self, ("%s cannot output to another task. Do not include tasks "
                                         "in output parameters.") % self.syntax)

        self.param_generator_func = subdivide_param_factory(input_files_task_globs,
                                                            # False, #
                                                            # flatten input
                                                            # removed
                                                            file_names_transform,
                                                            modify_inputs,
                                                            self.parsed_args["modify_inputs_mode"],
                                                            output_files_task_globs,
                                                            *self.parsed_args["extras"])
        return ancestral_tasks

    # ========================================================================

    #   _decorator_split

    # ========================================================================
    def _decorator_split(self, *unnamed_args, **named_args):
        """
        @split
        """
        self.syntax = "@split"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())

        #
        #   This is actually @subdivide
        #
        if isinstance(unnamed_args[1], regex):
            self._prepare_subdivide(unnamed_args, named_args,
                                    self.description_with_args_placeholder)

        #
        #   This is actually @split
        #
        else:
            self._prepare_split(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_split

    # _________________________________________________________________________
    def _prepare_split(self, unnamed_args, named_args):
        """
        Common code for @split and pipeline.split
        """
        self.error_type = error_task_split
        self._set_action_type(Task._action_task_split)
        self._setup_task_func = Task._split_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_one_to_many_job_descriptor
        self.single_multi_io = self._one_to_many
        # output is a glob
        self.indeterminate_output = 1

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _split_setup

    # _________________________________________________________________________
    def _split_setup(self):
        """
        Finish setting up split
        """

        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)

        #
        #   output globs will be replaced with files.
        #       But there should not be tasks here!
        #
        output_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["output"],
                                                                     t_extra_inputs.KEEP_OUTPUTS)
        if len(output_files_task_globs.tasks):
            raise self.error_type(self, "%s cannot output to another task. "
                                        "Do not include tasks in output "
                                        "parameters." % self.syntax)

        self.param_generator_func = split_param_factory(input_files_task_globs,
                                                        output_files_task_globs,
                                                        *self.parsed_args["extras"])
        return set(input_files_task_globs.tasks)

    # ========================================================================

    #   _decorator_merge

    # ========================================================================
    def _decorator_merge(self, *unnamed_args, **named_args):
        """
        @merge
        """
        self.syntax = "@merge"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_merge(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_merge

    # _________________________________________________________________________
    def _prepare_merge(self, unnamed_args, named_args):
        """
        Common code for @merge and pipeline.merge
        """
        self.error_type = error_task_merge
        self._set_action_type(Task._action_task_merge)
        self._setup_task_func = Task._merge_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_one
        self._is_single_job_single_output = self._single_job_single_output

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _merge_setup

    # _________________________________________________________________________
    def _merge_setup(self):
        """
        Finish setting up merge
        """
        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)

        self.param_generator_func = merge_param_factory(input_files_task_globs,
                                                        self.parsed_args["output"],
                                                        *self.parsed_args["extras"])
        return set(input_files_task_globs.tasks)

    # ========================================================================

    #   _decorator_collate

    # ========================================================================
    def _decorator_collate(self, *unnamed_args, **named_args):
        """
        @collate
        """
        self.syntax = "@collate"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_collate(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_collate

    # _________________________________________________________________________
    def _prepare_collate(self, unnamed_args, named_args):
        """
        Common code for @collate and pipeline.collate
        """
        self.error_type = error_task_collate
        self._set_action_type(Task._action_task_collate)
        self._setup_task_func = Task._collate_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_many

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "modify_inputs",
                                                 "output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _collate_setup

    # _________________________________________________________________________
    def _collate_setup(self):
        """
        Finish setting up collate
        """

        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)
        ancestral_tasks = set(input_files_task_globs.tasks)

        # how to transform input to output file name
        file_names_transform = self._choose_file_names_transform(self.parsed_args,
                                                                 (regex, formatter))

        modify_inputs = self.parsed_args["modify_inputs"]
        if modify_inputs is not None:
            modify_inputs = self._handle_tasks_globs_in_inputs(
                modify_inputs, self.parsed_args["modify_inputs_mode"])
            ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

        self.param_generator_func = collate_param_factory(input_files_task_globs,
                                                          # False, #
                                                          # flatten input
                                                          # removed
                                                          file_names_transform,
                                                          modify_inputs,
                                                          self.parsed_args["modify_inputs_mode"],
                                                          self.parsed_args["output"],
                                                          *self.parsed_args["extras"])

        return ancestral_tasks

    # ========================================================================

    #   _decorator_mkdir

    # ========================================================================
    def _decorator_mkdir(self, *unnamed_args, **named_args):
        """
        @mkdir
        """
        syntax = "@mkdir"
        description_with_args_placeholder = "%s(%%s)\n%s" % (
            self.syntax, (self.description_with_args_placeholder % "..."))
        self._prepare_preceding_mkdir(unnamed_args, named_args, syntax,
                                      description_with_args_placeholder)

    # _________________________________________________________________________

    #   mkdir

    # _________________________________________________________________________
    def mkdir(self, *unnamed_args, **named_args):
        """
        Make missing directories, including intermediates, before this task
        """
        syntax = "Task(name = %s).mkdir" % self._name
        description_with_args_placeholder = "%s(%%s)" % (self.syntax)
        self._prepare_preceding_mkdir(unnamed_args, named_args, syntax,
                                      description_with_args_placeholder)
        return self

    # _________________________________________________________________________

    #   _prepare_dependent_mkdir

    # _________________________________________________________________________
    def _prepare_preceding_mkdir(self, unnamed_args, named_args, syntax,
                                 task_description, defer = True):
        """
        Add mkdir Task to run before self
            Common to
                Task.mkdir
                @mkdir
                @follows(..., mkdir())
        """
        #
        #   Create a new Task with a unique name to this instance of mkdir
        #
        self.cnt_task_mkdir += 1
        cnt_task_mkdir_str = (" #%d" % self.cnt_task_mkdir) if self.cnt_task_mkdir > 1 else ""
        task_name = r"mkdir%r%s   before %s " % (unnamed_args, cnt_task_mkdir_str, self._name)
        task_name = task_name.replace(",)", ")").replace(",", ",  ")
        new_task = self.pipeline._create_task(task_func=job_wrapper_mkdir, task_name=task_name)

        #   defer _add_parent so we can clone unless we are already
        #       calling add_parent (from _connect_parents())
        if defer:
            self.deferred_follow_params.append([task_description, False, [new_task]])

        #
        #   Prepare new node
        #
        new_task.syntax = syntax
        new_task._prepare_mkdir(unnamed_args, named_args, task_description)

        #
        #   Hack:
        #       If the task name is too ugly,
        #       we can override it for flowchart printing using the
        #       display_name
        #
        # new_node.display_name = ??? new_node.func_description
        return new_task

    # _________________________________________________________________________

    #   _prepare_mkdir

    # _________________________________________________________________________
    def _prepare_mkdir(self, unnamed_args, named_args, task_description):

        self.error_type = error_task_mkdir
        self._set_action_type(Task._action_mkdir)
        self.needs_update_func = self.needs_update_func or needs_update_check_directory_missing
        self.job_wrapper = job_wrapper_mkdir
        self.job_descriptor = mkdir_job_descriptor

        # doesn't have a real function
        #  use job_wrapper just so it is not None
        self.user_defined_work_func = self.job_wrapper

        #
        # @transform like behaviour with regex / suffix or formatter
        #
        if (len(unnamed_args) > 1 and
                isinstance(unnamed_args[1], (formatter, suffix, regex))) or "filter" in named_args:
            self.single_multi_io = self._many_to_many
            self._setup_task_func = Task._transform_setup

            #
            #   Parse named and unnamed arguments
            #
            self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                    ["input", "filter", "modify_inputs",
                                                     "output", "output_dir", "extras"], task_description)

        #
        # simple behaviour: just make directories in list of strings
        #
        # the mkdir decorator accepts one string, multiple strings or a list of strings
        else:

            #
            # override funct description normally parsed from func.__doc__
            #   "Make missing directories including any intermediate
            #   directories on the specified path(s)"
            #
            self.func_description = "Make missing directories %s" % (
                shorten_filenames_encoder(unnamed_args, 0))

            self.single_multi_io = self._one_to_one
            self._setup_task_func = Task._do_nothing_setup
            self.has_input_param = False

            #
            #
            #
            # if a single argument collection of parameters, keep that as is
            if len(unnamed_args) == 0:
                self.parsed_args["output"] = []
            elif len(unnamed_args) > 1:
                self.parsed_args["output"] = unnamed_args
            # len(unnamed_args) == 1: unpack unnamed_args[0]
            elif non_str_sequence(unnamed_args[0]):
                self.parsed_args["output"] = unnamed_args[0]
            # single string or other non collection types
            else:
                self.parsed_args["output"] = unnamed_args

            #   all directories created in one job to reduce race conditions
            #    so we are converting [a,b,c] into [   [(a, b,c)]   ]
            #    where unnamed_args = (a,b,c)
            # i.e. one job whose solitory argument is a tuple/list of directory
            # names
            self.param_generator_func = args_param_factory([[sorted(self.parsed_args["output"], key = lambda x: str(x))]])

            # print ("mkdir %s" % (self.func_description), file = sys.stderr)

    # ========================================================================

    #   _decorator_product

    # ========================================================================
    def _decorator_product(self, *unnamed_args, **named_args):
        """
        @product
        """
        self.syntax = "@product"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_product(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_product

    # _________________________________________________________________________
    def _prepare_product(self, unnamed_args, named_args):
        """
        Common code for @product and pipeline.product
        """
        self.error_type = error_task_product
        self._set_action_type(Task._action_task_product)
        self._setup_task_func = Task._product_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_many

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "inputN", "modify_inputs",
                                                 "output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _product_setup

    # _________________________________________________________________________
    def _product_setup(self):
        """
        Finish setting up product
        """
        #
        # replace function / function names with tasks
        #
        list_input_files_task_globs = [self._handle_tasks_globs_in_inputs(ii,
                                       t_extra_inputs.KEEP_INPUTS)
                                       for ii in self.parsed_args["input"]]
        ancestral_tasks = set()
        for input_files_task_globs in list_input_files_task_globs:
            ancestral_tasks = ancestral_tasks.union(input_files_task_globs.tasks)

        # how to transform input to output file name
        file_names_transform = t_nested_formatter_file_names_transform(self,
                                                                       self.parsed_args["filter"],
                                                                       self.error_type,
                                                                       self.syntax)

        modify_inputs = self.parsed_args["modify_inputs"]
        if modify_inputs is not None:
            modify_inputs = self._handle_tasks_globs_in_inputs(
                modify_inputs, self.parsed_args["modify_inputs_mode"])
            ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

        self.param_generator_func = product_param_factory(list_input_files_task_globs,
                                                          # False, #
                                                          # flatten input
                                                          # removed
                                                          file_names_transform,
                                                          modify_inputs,
                                                          self.parsed_args["modify_inputs_mode"],
                                                          self.parsed_args["output"],
                                                          *self.parsed_args["extras"])

        return ancestral_tasks

    # ========================================================================

    #   _decorator_permutations
    #   _decorator_combinations
    #   _decorator_combinations_with_replacement

    # ========================================================================
    def _decorator_permutations(self, *unnamed_args, **named_args):
        """
        @permutations
        """
        self.syntax = "@permutations"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_combinatorics(unnamed_args, named_args, error_task_permutations)

    def _decorator_combinations(self, *unnamed_args, **named_args):
        """
        @combinations
        """
        self.syntax = "@combinations"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_combinatorics(unnamed_args, named_args, error_task_combinations)

    def _decorator_combinations_with_replacement(self, *unnamed_args,
                                                 **named_args):
        """
        @combinations_with_replacement
        """
        self.syntax = "@combinations_with_replacement"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_combinatorics(unnamed_args, named_args,
                                    error_task_combinations_with_replacement)

    # _________________________________________________________________________

    #   _prepare_combinatorics

    # _________________________________________________________________________
    def _prepare_combinatorics(self, unnamed_args, named_args, error_type):
        """
        Common code for
            @permutations and pipeline.permutations
            @combinations and pipeline.combinations
            @combinations_with_replacement and
                pipeline.combinations_with_replacement
        """
        self.error_type = error_type
        self._setup_task_func = Task._combinatorics_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_many

        #
        #   Parse named and unnamed arguments
        #
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "tuple_size",
                                                 "modify_inputs", "output", "extras"],
                                                self.description_with_args_placeholder)

    # _________________________________________________________________________

    #   _combinatorics_setup

    # _________________________________________________________________________
    def _combinatorics_setup(self):
        """
            Finish setting up combinatorics
        """
        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)
        ancestral_tasks = set(input_files_task_globs.tasks)

        # how to transform input to output file name: len(k-tuples) of
        # (identical) formatters
        file_names_transform = t_nested_formatter_file_names_transform(
            self, [self.parsed_args["filter"]] * self.parsed_args["tuple_size"],
            self.error_type, self.syntax)

        modify_inputs = self.parsed_args["modify_inputs"]
        if modify_inputs is not None:
            modify_inputs = self._handle_tasks_globs_in_inputs(
                modify_inputs, self.parsed_args["modify_inputs_mode"])
            ancestral_tasks = ancestral_tasks.union(modify_inputs.tasks)

        # we are not going to specify what type of combinatorics this is twice:
        #       just look up from our error type
        error_type_to_combinatorics_type = {
            error_task_combinations_with_replacement:
            t_combinatorics_type.COMBINATORICS_COMBINATIONS_WITH_REPLACEMENT,
            error_task_combinations:
            t_combinatorics_type.COMBINATORICS_COMBINATIONS,
            error_task_permutations:
            t_combinatorics_type.COMBINATORICS_PERMUTATIONS
        }

        self.param_generator_func = \
            combinatorics_param_factory(input_files_task_globs,
                                        # False, #
                                        # flatten
                                        # input
                                        # removed
                                        error_type_to_combinatorics_type[
                                            self.error_type],
                                        self.parsed_args["tuple_size"],
                                        file_names_transform,
                                        modify_inputs,
                                        self.parsed_args["modify_inputs_mode"],
                                        self.parsed_args["output"],
                                        *self.parsed_args["extras"])

        return ancestral_tasks

    # ========================================================================

    #   _decorator_files

    # ========================================================================
    def _decorator_files(self, *unnamed_args, **named_args):
        """
        @files
        """
        self.syntax = "@files"
        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self._prepare_files(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_files

    # _________________________________________________________________________
    def _prepare_files(self, unnamed_args, named_args):
        """
        Common code for @files and pipeline.files
        """
        self.error_type = error_task_files
        self._setup_task_func = Task._do_nothing_setup
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor

        if len(unnamed_args) == 0:
            raise error_task_files(self, "Too few arguments for @files")

        #   Use parameters generated by a custom function
        if len(unnamed_args) == 1 and isinstance(unnamed_args[0],
                                                 collections.Callable):

            self._set_action_type(Task._action_task_files_func)
            self.param_generator_func = files_custom_generator_param_factory(unnamed_args[0])

            # assume
            self.single_multi_io = self._many_to_many

        #   Use parameters in supplied list
        else:
            self._set_action_type(Task._action_task_files)

            if len(unnamed_args) > 1:

                # single jobs
                # This is true even if the previous task has multiple output
                # These will all be joined together at the hip (like @merge)
                # If you want different behavior, use @transform
                params = copy.copy([unnamed_args])
                self._is_single_job_single_output = self._single_job_single_output
                self.single_multi_io = self._one_to_one

            else:

                # multiple jobs with input/output parameters etc.
                params = copy.copy(unnamed_args[0])
                self._is_single_job_single_output = self._multiple_jobs_outputs
                self.single_multi_io = self._many_to_many

            check_files_io_parameters(self, params, error_task_files)

            self.parsed_args["input"] = [pp[0] for pp in params]
            self.parsed_args["output"] = [tuple(pp[1:]) for pp in params]
            self._setup_task_func = Task._files_setup

    # _________________________________________________________________________

    #   _files_setup

    # _________________________________________________________________________
    def _files_setup(self):
        """
            Finish setting up @files
        """
        #
        # replace function / function names with tasks
        #
        input_files_task_globs = self._handle_tasks_globs_in_inputs(self.parsed_args["input"],
                                                                    t_extra_inputs.KEEP_INPUTS)

        self.param_generator_func = files_param_factory(input_files_task_globs,
                                                        True,
                                                        self.parsed_args["output"])
        return set(input_files_task_globs.tasks)

    # ========================================================================

    #   _decorator_parallel

    # ========================================================================
    def _decorator_parallel(self, *unnamed_args, **named_args):
        """
        @parallel
        """
        self.syntax = "@parallel"
        self._prepare_parallel(unnamed_args, named_args)

    # _________________________________________________________________________

    #   _prepare_parallel

    # _________________________________________________________________________
    def _prepare_parallel(self, unnamed_args, named_args):
        """
        Common code for @parallel and pipeline.parallel
        """
        self.error_type = error_task_parallel
        self._set_action_type(Task._action_task_parallel)
        self._setup_task_func = Task._do_nothing_setup
        self.needs_update_func = None
        self.job_wrapper = job_wrapper_generic
        self.job_descriptor = io_files_job_descriptor

        if len(unnamed_args) == 0:
            raise error_task_parallel(self, "Too few arguments for @parallel")

        #   Use parameters generated by a custom function
        if len(unnamed_args) == 1 and isinstance(unnamed_args[0],
                                                 collections.Callable):
            self.param_generator_func = args_param_factory(unnamed_args[0]())

        # list of  params
        else:
            if len(unnamed_args) > 1:
                # single jobs
                params = copy.copy([unnamed_args])
                self._is_single_job_single_output = self._single_job_single_output
            else:
                # multiple jobs with input/output parameters etc.
                params = copy.copy(unnamed_args[0])
                check_parallel_parameters(self, params, error_task_parallel)

            self.param_generator_func = args_param_factory(params)

    # ========================================================================

    #   _decorator_files_re

    # ========================================================================
    def _decorator_files_re(self, *unnamed_args, **named_args):
        """
        @files_re

        calls user function in parallel
            with input_files, output_files, parameters
            These needed to be generated on the fly by
                getting all file names in the supplied list/glob pattern
            There are two variations:

            1)    inputfiles = all files in glob which match the regular
                                expression
                  outputfile = generated from the replacement string

            2)    inputfiles = all files in glob which match the regular
                                    expression and generated from the "from"
                                    replacement string
                  outputfiles = all files in glob which match the regular
                                    expression and generated from the "to"
                                    replacement string
        """
        self.syntax = "@files_re"
        self.error_type = error_task_files_re
        self._set_action_type(Task._action_task_files_re)
        self.needs_update_func = self.needs_update_func or needs_update_check_modify_time
        self.job_wrapper = job_wrapper_io_files
        self.job_descriptor = io_files_job_descriptor
        self.single_multi_io = self._many_to_many

        if len(unnamed_args) < 3:
            raise self.error_type(self, "Too few arguments for @files_re")

        # 888888888888888888888888888888888888888888888888888888888888888888888

        #   !! HERE BE DRAGONS !!

        #       Legacy, deprecated parameter handling depending on positions
        #           and not even on type

        # check if parameters wrapped in combine
        combining_all_jobs, unnamed_args = is_file_re_combining(unnamed_args)

        # second parameter is always regex()
        unnamed_args[1] = regex(unnamed_args[1])

        # third parameter is inputs() if there is a four and fifth parameter...
        # That means if you want "extra" parameters, you always need inputs()
        if len(unnamed_args) > 3:
            unnamed_args[2] = inputs(unnamed_args[2])

        # 888888888888888888888888888888888888888888888888888888888888888888888

        self.description_with_args_placeholder = "%s(%%s)\n%s" % (self.syntax,
                                                                  self._get_decorated_function())
        self.parsed_args = parse_task_arguments(unnamed_args, named_args,
                                                ["input", "filter", "modify_inputs",
                                                 "output", "extras"],
                                                self.description_with_args_placeholder)

        if combining_all_jobs:
            self._setup_task_func = Task._collate_setup
        else:
            self._setup_task_func = Task._transform_setup

    # 8888888888888888888888888888888888888888888888888888888888888888888888888

    #   Task functions

    #       follows
    #       check_if_uptodate
    #       posttask
    #       jobs_limit
    #       active_if
    #       graphviz

    # 8888888888888888888888888888888888888888888888888888888888888888888888888

    # ========================================================================

    #   follows

    # ========================================================================
    def follows(self, *unnamed_args, **named_args):
        """
        Specifies a preceding task / action which this task will follow.
        The preceding task can be specified as a string or function or Task
        object.
        A task can also follow the making of one or more directories:

        task.follows(mkdir("my_dir"))

        """
        description_with_args_placeholder = (
            self.description_with_args_placeholder % "...") + ".follows(%r)"

        self.deferred_follow_params.append([description_with_args_placeholder, False,
                                            unnamed_args])
        #self._connect_parents(description_with_args_placeholder, False,
        #                 unnamed_args)
        return self

    # _________________________________________________________________________

    #   _decorator_follows

    # _________________________________________________________________________
    def _decorator_follows(self, *unnamed_args, **named_args):
        """
        unnamed_args can be string or function or Task
        For strings, if lookup fails, will defer.
        """
        description_with_args_placeholder = "@follows(%r)\n" + (
            self.description_with_args_placeholder % "...")
        self.deferred_follow_params.append([description_with_args_placeholder, False,
                                            unnamed_args])
        #self._connect_parents(description_with_args_placeholder, False, unnamed_args)



    # _________________________________________________________________________

    #   _complete_setup

    # _________________________________________________________________________
    def _complete_setup(self):
        """
        Connect up parents if follows was specified and setups up task functions
        Returns a set of parent tasks

        Note will tear down previous parental links before doing anything
        """
        #DEBUGGG
        #print("  task._complete_setup start %s" % (self._get_display_name(), ), file = sys.stderr)
        self._remove_all_parents()
        ancestral_tasks =  self._deferred_connect_parents()
        ancestral_tasks |= self._setup_task_func(self)
        if "named_extras" in self.parsed_args:
            if self.command_str_callback == "PIPELINE":
                self.parsed_args["named_extras"]["__RUFFUS_TASK_CALLBACK__"] = self.pipeline.command_str_callback
            else:
                self.parsed_args["named_extras"]["__RUFFUS_TASK_CALLBACK__"] = self.command_str_callback
        #DEBUGGG
        #print("  task._complete_setup finish %s\n" % (self._get_display_name(), ), file = sys.stderr)
        return ancestral_tasks

    # _________________________________________________________________________

    #   _deferred_connect_parents

    # _________________________________________________________________________
    def _deferred_connect_parents(self):
        """
        Called by _complete_task_setup() from pipeline_run, pipeline_printout etc.
        returns a non-redundant list of all the ancestral tasks
        """
        # DEBUGGG
        #print("   task._deferred_connect_parents start %s (%d to do)" % (self._get_display_name(), len(self.deferred_follow_params)), file = sys.stderr)
        parent_tasks = set()

        for ii, deferred_follow_params in enumerate(self.deferred_follow_params):
            #DEBUGGG
            #print("   task._deferred_connect_parents %s %d out of %d " % (self._get_display_name(), ii, len(self.deferred_follow_params)), file = sys.stderr)
            new_tasks = self._connect_parents(*deferred_follow_params)
            # convert to mkdir and dynamically created tasks from follows into the actual created tasks
            # otherwise each time we redo this, we will have a sorceror's apprentice situation!
            deferred_follow_params[2] = new_tasks
            parent_tasks.update(new_tasks)


        # DEBUGGG
        #print("   task._deferred_connect_parents finish %s" % self._get_display_name(), file = sys.stderr)
        return parent_tasks




    # _________________________________________________________________________

    #   _connect_parents
    #       Deferred tasks will need to be resolved later
    #       Because deferred tasks can belong to other pipelines

    # _________________________________________________________________________
    def _connect_parents(self, description_with_args_placeholder, no_mkdir,
                                unnamed_args):
        """
        unnamed_args can be string or function or Task
        For strings, if lookup fails, will defer.

        Called from
            * task.follows
            * @follows
            * decorators, e.g. @transform _handle_tasks_globs_in_inputs
              (input dependencies)
            * pipeline.transform etc. _handle_tasks_globs_in_inputs
              (input dependencies)
            * @split / pipeline.split _handle_tasks_globs_in_inputs
              (output dependencies)
        """
        # DEBUGGG
        #print("      _connect_parents start %s" % self._get_display_name(), file = sys.stderr)
        new_tasks = []
        for arg in unnamed_args:
            #
            #   Task
            #
            if isinstance(arg, Task):
                if arg == self:
                    raise error_decorator_args(
                        "Cannot have a task as its own (circular) dependency:\n"
                        % description_with_args_placeholder % (arg,))

                #
                #   re-lookup from task name to handle cloning
                #
                if arg.pipeline.name == self.pipeline.original_name and \
                        self.pipeline.original_name != self.pipeline.name:
                    tasks = lookup_tasks_from_name(arg._name,
                                                   default_pipeline_name=self.pipeline.name,
                                                   default_module_name=self.func_module_name)
                    new_tasks.extend(tasks)

                    if not tasks:
                        raise error_node_not_task(
                            "task '%s' '%s::%s' is somehow absent in the cloned pipeline (%s)!%s"
                            % (self.pipeline.original_name, arg._name, self.pipeline.name,
                               description_with_args_placeholder % (arg._name,)))
                else:
                    new_tasks.append(arg)

            #
            #   Pipeline: defer
            #
            elif isinstance(arg, Pipeline):
                if arg == self.pipeline:
                    raise error_decorator_args("Cannot have your own pipeline as a (circular) "
                                               "dependency of a Task:\n" +
                                               description_with_args_placeholder % (arg,))

                if not len(arg.get_tail_tasks()):
                    raise error_no_tail_tasks("Pipeline '{pipeline_name}' has no 'tail' tasks defined.\nWhich task "
                                              "in '{pipeline_name}' are you referring to?"
                                              .format(pipeline_name = arg.name))
                new_tasks.extend(arg.get_tail_tasks())

            #
            #   specified by string: unicode or otherwise
            #
            elif isinstance(arg, path_str_type):
                # handle pipeline cloning
                task_name = arg.replace(self.pipeline.original_name + "::",
                                        self.pipeline.name + "::")

                tasks = lookup_tasks_from_name(arg,
                                               default_pipeline_name=self.pipeline.name,
                                               default_module_name=self.func_module_name)
                new_tasks.extend(tasks)

                if not tasks:
                    raise error_node_not_task("task '%s' is not a pipelined task in Ruffus. "
                                              "Have you mis-spelt the function or task name?\n%s"
                                              % (arg, description_with_args_placeholder % (arg,)))

            #
            #   for mkdir, automatically generate task with unique name
            #
            elif isinstance(arg, mkdir):
                if no_mkdir:
                    raise error_decorator_args("Unexpected mkdir() found.\n" +
                                               description_with_args_placeholder % (arg,))

                # syntax for new task doing the mkdir
                if self.created_via_decorator:
                    mkdir_task_syntax = "@follows(mkdir())"
                else:
                    mkdir_task_syntax = "Task(name=%r).follows(mkdir())" % self._get_display_name()
                mkdir_description_with_args_placeholder = \
                    description_with_args_placeholder % "mkdir(%s)"
                new_tasks.append(self._prepare_preceding_mkdir(arg.args, {}, mkdir_task_syntax,
                                              mkdir_description_with_args_placeholder, False))

            #
            #   Is this a function?
            #       Turn this function into a task
            #           (add task as attribute of this function)
            #       Add self as dependent
            elif isinstance(arg, collections.Callable):
                task = lookup_unique_task_from_func(arg, default_pipeline_name=self.pipeline.name)

                # add new task to pipeline if necessary
                if not task:
                    task = main_pipeline._create_task(task_func=arg)
                new_tasks.append(task)

            else:
                raise error_decorator_args("Expecting a function or function name or task name or "
                                           "Task or Pipeline.\n" +
                                           description_with_args_placeholder % (arg,))

        #
        #   add dependency
        #       duplicate dependencies are ignore automatically
        #
        for task in new_tasks:
            self._add_parent(task)

        # DEBUGGG
        #print("      _connect_parents finish %s" % self._get_display_name(), file = sys.stderr)
        return new_tasks

    # ========================================================================

    #   check_if_uptodate

    # ========================================================================
    def check_if_uptodate(self, func):
        """
        Specifies how a task is to be checked if it needs to be rerun (i.e. is
        up-to-date).
        func returns true if input / output files are up to date
        func takes as many arguments as the task function
        """
        if not isinstance(func, collections.Callable):
            description_with_args_placeholder = \
                (self.description_with_args_placeholder % "...") + ".check_if_uptodate(%r)"
            raise error_decorator_args("Expected a single function or Callable object in \n" +
                                       description_with_args_placeholder % (func,))
        self.needs_update_func = func
        return self

    # _________________________________________________________________________

    #   _decorator_check_if_uptodate

    # _________________________________________________________________________
    def _decorator_check_if_uptodate(self, *args):
        """
        @check_if_uptodate
        """
        if len(args) != 1 or not isinstance(args[0], collections.Callable):
            description_with_args_placeholder = "@check_if_uptodate(%r)\n" + (
                                                self.description_with_args_placeholder % "...")
            raise error_decorator_args("Expected a single function or Callable object in \n" +
                                       description_with_args_placeholder % (args,))
        self.needs_update_func = args[0]

    # ========================================================================

    #   posttask

    # ========================================================================
    def posttask(self, *funcs):
        """
        Takes one or more functions which will be called if the task completes
        """
        description_with_args_placeholder = ("Expecting simple functions or touch_file() in \n" +
                                             (self.description_with_args_placeholder % "...") +
                                             ".posttask(%r)")
        self._set_posttask(description_with_args_placeholder, *funcs)
        return self

    # _________________________________________________________________________

    #   _decorator_posttask

    # _________________________________________________________________________
    def _decorator_posttask(self, *funcs):
        """
        @posttask
        """
        description_with_args_placeholder = ("Expecting simple functions or touch_file() in \n" +
                                             "@posttask(%r)\n" +
                                             (self.description_with_args_placeholder % "..."))
        self._set_posttask(description_with_args_placeholder, *funcs)

    # _________________________________________________________________________

    #   _set_posttask

    # _________________________________________________________________________
    def _set_posttask(self, description_with_args_placeholder, *funcs):
        """
        Takes one or more functions which will be called if the task completes
        """
        for arg in funcs:
            if isinstance(arg, touch_file):
                self.posttask_functions.append(touch_file_factory(arg.args, register_cleanup))
            elif isinstance(arg, collections.Callable):
                self.posttask_functions.append(arg)
            else:
                raise PostTaskArgumentError(description_with_args_placeholder % (arg,))

    # ========================================================================

    #   jobs_limit

    # ========================================================================
    def jobs_limit(self, maximum_jobs_in_parallel, limit_name=None):
        """
        Limit the number of concurrent jobs
        """
        description_with_args_placeholder = ((self.description_with_args_placeholder % "...") +
                                             ".jobs_limit(%r%s)")
        self._set_jobs_limit(description_with_args_placeholder,
                             maximum_jobs_in_parallel, limit_name)
        return self

    # _________________________________________________________________________

    #   _decorator_jobs_limit

    # _________________________________________________________________________
    def _decorator_jobs_limit(self, maximum_jobs_in_parallel, limit_name=None):
        """
        @jobs_limit
        """
        description_with_args_placeholder = ("@jobs_limit(%r%s)\n" +
                                             (self.description_with_args_placeholder % "..."))
        self._set_jobs_limit(description_with_args_placeholder,
                             maximum_jobs_in_parallel, limit_name)

    # _________________________________________________________________________

    #   _set_jobs_limit

    # _________________________________________________________________________
    def _set_jobs_limit(self, description_with_args_placeholder,
                        maximum_jobs_in_parallel, limit_name=None):
        try:
            maximum_jobs_in_parallel = int(maximum_jobs_in_parallel)
            assert(maximum_jobs_in_parallel >= 1)
        except:
            limit_name = ", " + limit_name if limit_name else ""
            raise JobsLimitArgumentError("Expecting a positive integer > 1 in \n" +
                                         description_with_args_placeholder
                                         % (maximum_jobs_in_parallel, limit_name))

        # set semaphore name to other than the "pipeline.name:task name"
        if limit_name is not None:
            self.semaphore_name = limit_name
        if self.semaphore_name in self._job_limit_semaphores:
            prev_maximum_jobs = self._job_limit_semaphores[self.semaphore_name]
            if prev_maximum_jobs != maximum_jobs_in_parallel:
                limit_name = ", " + limit_name if limit_name else ""
                raise JobsLimitArgumentError('The job limit %r cannot re-defined from the former '
                                             'limit of %d in \n'
                                             % (self.semaphore_name, prev_maximum_jobs) +
                                             description_with_args_placeholder
                                             % (maximum_jobs_in_parallel, limit_name))
        else:
            #
            #   save semaphore and limit
            #
            self._job_limit_semaphores[
                self.semaphore_name] = maximum_jobs_in_parallel

    # ========================================================================

    #   active_if

    # ========================================================================
    def active_if(self, *active_if_checks):
        """
        If any of active_checks is False or returns False, then the task is
        marked as "inactive" and its outputs removed.
        """
        # print 'job is active:', active_checks, [
        #             arg() if isinstance(arg, collections.Callable) else arg
        #             for arg in active_checks]
        if self.active_if_checks is None:
            self.active_if_checks = []
        self.active_if_checks.extend(active_if_checks)
        # print(self.active_if_checks)
        return self

    # _________________________________________________________________________

    #   _decorator_active_if

    # _________________________________________________________________________
    def _decorator_active_if(self, *active_if_checks):
        """
        @active_if
        """
        self.active_if(*active_if_checks)

    # ========================================================================

    #   _decorator_graphviz

    # ========================================================================
    def graphviz(self, *unnamed_args, **named_args):
        """
        Sets graphviz (e.g. `dot`) attributes used to draw this Task
        """
        self.graphviz_attributes = named_args
        if len(unnamed_args):
            raise TypeError("Only named arguments expected in :" +
                            self.description_with_args_placeholder % "..." +
                            ".graphviz(%r)\n" % unnamed_args)
        return self

    # _________________________________________________________________________

    #   _decorator_graphviz

    # _________________________________________________________________________
    def _decorator_graphviz(self, *unnamed_args, **named_args):
        self.graphviz_attributes = named_args
        if len(unnamed_args):
            raise TypeError("Only named arguments expected in :" +
                            "@graphviz(%r)\n" % unnamed_args +
                            self.description_with_args_placeholder % "...")


# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#   End of Task

# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


class task_encoder(json.JSONEncoder):

    def default(self, obj):
        if isinstance(obj, set):
            return list(obj)
        if isinstance(obj, defaultdict):
            return dict(obj)
        if isinstance(obj, Task):
            # , Task._action_names[obj._action_task], obj.func_description]
            return obj._name
        return json.JSONEncoder.default(self, obj)


# _____________________________________________________________________________

#   is_node_up_to_date

# _____________________________________________________________________________
def is_node_up_to_date(node, extra_data):
    """
    Forwards tree depth first search "signalling" mechanism to
        node _is_up_to_date method
    Depth first search stops when node._is_up_to_date return True
    """
    return node._is_up_to_date(extra_data)


# 88888888888888888888888888888888888888888888888888888888888888888888888888888

#   Functions


# 88888888888888888888888888888888888888888888888888888888888888888888888888888


# _____________________________________________________________________________

#   update_checksum_level_on_tasks

# _____________________________________________________________________________
def update_checksum_level_on_tasks(checksum_level):
    """Reset the checksum level for all tasks"""
    for n in node._all_nodes:
        n.checksum_level = checksum_level


# _____________________________________________________________________________

#   update_active_states_for_all_tasks

# _____________________________________________________________________________
def update_active_states_for_all_tasks():
    """

    @active_if decorated tasks can change their active state every time
      pipeline_run / pipeline_printout / pipeline_printout_graph is called

    update_active_states_for_all_tasks ()

    """
    for n in node._all_nodes:
        n._update_active_state()


# _____________________________________________________________________________

#   lookup_pipeline

# _____________________________________________________________________________
def lookup_pipeline(pipeline):
    """
    If pipeline is
        None                : main_pipeline
        string              : lookup name in pipelines
    """
    if pipeline is None:
        return main_pipeline

    # Pipeline object pass through unchanged
    if isinstance(pipeline, Pipeline):
        return pipeline


    # strings: lookup from name
    if isinstance(pipeline, str) and pipeline in Pipeline.pipelines:
        return Pipeline.pipelines[pipeline]

    raise error_not_a_pipeline("%s does not name a pipeline." % pipeline)




# _____________________________________________________________________________

#   _pipeline_prepare_to_run

# _____________________________________________________________________________
def _pipeline_prepare_to_run(checksum_level, history_file, pipeline, runtime_data, target_tasks, forcedtorun_tasks):
    """
    Common function to setup pipeline, check parameters
        before pipeline_run, pipeline_printout, pipeline_printout_graph
    """

    if checksum_level is None:
        checksum_level = get_default_checksum_level()

    update_checksum_level_on_tasks(checksum_level)

    #
    #   If we aren't using checksums, and history file hasn't been specified,
    #       we might be a bit surprised to find Ruffus writing to a
    #       sqlite db anyway.
    #   Let us just dump to a placeholder memory db that can then be discarded
    #   Of course, if history_file is specified, we presume you know what
    #       you are doing
    #
    if checksum_level == CHECKSUM_FILE_TIMESTAMPS and history_file is None:
        history_file = ':memory:'
    #
    # load previous job history if it exists, otherwise create an empty history
    #
    job_history = open_job_history(history_file)


    #
    # @active_if decorated tasks can change their active state every time
    #   pipeline_run / pipeline_printout / pipeline_printout_graph is called
    #
    update_active_states_for_all_tasks()

    #
    #   run time data
    #
    if runtime_data is None:
        runtime_data = {}
    if not isinstance(runtime_data, dict):
        raise Exception("Parameter runtime_data should be a "
                        "dictionary of values passes to jobs at run time.")


    #
    #   This is the default namespace for looking for tasks
    #
    #   pipeline must be a Pipeline or a string naming a pipeline
    #
    #   Keep pipeline
    #
    if pipeline is not None:
        pipeline = lookup_pipeline(pipeline)
        default_pipeline_name = pipeline.name
    else:
        default_pipeline_name = "main"




    #
    #   Lookup target jobs
    #
    if target_tasks is None:
        target_tasks = []
    if forcedtorun_tasks is None:
        forcedtorun_tasks = []
    # lookup names, prioritise the specified pipeline or "main"
    target_tasks = lookup_tasks_from_user_specified_names("Target", target_tasks, default_pipeline_name, "__main__", True)
    forcedtorun_tasks = lookup_tasks_from_user_specified_names("Forced to run", forcedtorun_tasks,
                                                               default_pipeline_name, "__main__", True)

    #
    #   Empty target, either run the specified tasks from the pipeline
    #   or will run every single task under the sun
    #
    if not target_tasks:
        if pipeline:
            target_tasks.extend(list(pipeline.tasks))
        if not target_tasks:
            for pipeline_name in Pipeline.pipelines.keys():
                target_tasks.extend(list(Pipeline.pipelines[pipeline_name].tasks))

    # make sure pipeline is defined
    pipeline = lookup_pipeline(pipeline)


    # Unique task list
    target_tasks = list(set(target_tasks))

    #
    #   Make sure all tasks in dependency list from (forcedtorun_tasks and target_tasks)
    #       are setup and linked to real functions
    #
    processed_tasks = set()
    completed_pipeline_names = set()
    incomplete_pipeline_names = set()

    # get list of all involved pipelines
    for task in forcedtorun_tasks + target_tasks:
        if task.pipeline.name not in completed_pipeline_names:
            incomplete_pipeline_names.add(task.pipeline.name)

    # set up each pipeline.
    # These will in turn lookup up their antecedents (even in another pipeline) and
    #   set them up as well.
    for pipeline_name in incomplete_pipeline_names:
        if pipeline_name in completed_pipeline_names:
            continue
        completed_pipeline_names = completed_pipeline_names.union(
            pipeline.pipelines[pipeline_name]._complete_task_setup(processed_tasks))



    return checksum_level, job_history, pipeline, runtime_data, target_tasks, forcedtorun_tasks
# _____________________________________________________________________________

#   pipeline_printout_in_dot_format

# _____________________________________________________________________________
def pipeline_printout_graph(stream,
                            output_format=None,
                            target_tasks=[],
                            forcedtorun_tasks=[],
                            draw_vertically=True,
                            ignore_upstream_of_target=False,
                            skip_uptodate_tasks=False,
                            gnu_make_maximal_rebuild_mode=True,
                            test_all_task_for_update=True,
                            no_key_legend=False,
                            minimal_key_legend=True,
                            user_colour_scheme=None,
                            pipeline_name="Pipeline:",
                            size=(11, 8),
                            dpi = 120,
                            runtime_data = None,
                            checksum_level = None,
                            history_file = None,
                            pipeline = None):
    # Remember to add further extra parameters here to
    #   "extra_pipeline_printout_graph_options" inside cmdline.py
    # This will forward extra parameters from the
    # command line to pipeline_printout_graph
    """
    print out pipeline dependencies in various formats

    :param stream: where to print to
    :type stream: file-like object with ``write()`` function
    :param output_format: ["dot", "svg", "ps", "png"]. All but the
                          first depends on the
                          `dot <http://www.graphviz.org>`_ program.
    :param target_tasks: targets task functions which will be run if they are
                         out-of-date.
    :param forcedtorun_tasks: task functions which will be run whether or not
                              they are out-of-date.
    :param draw_vertically: Top to bottom instead of left to right.
    :param ignore_upstream_of_target: Don't draw upstream tasks of targets.
    :param skip_uptodate_tasks: Don't draw up-to-date tasks if possible.
    :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
                                          out-of-date tasks. Runs minimal
                                          set to build targets if set to
                                          ``True``. Use with caution.
    :param test_all_task_for_update: Ask all task functions if they are
                                     up-to-date.
    :param no_key_legend: Don't draw key/legend for graph.
    :param minimal_key_legend: Only legend entries for used task types
    :param user_colour_scheme: Dictionary specifying flowchart colour scheme
    :param pipeline_name: Pipeline Title
    :param size: tuple of x and y dimensions
    :param dpi: print resolution
    :param runtime_data: Experimental feature: pass data to tasks at run time
    :param history_file: Database file storing checksums and file timestamps
                         for input/output files.
    :param checksum_level: Several options for checking up-to-dateness are
                           available: Default is level 1.
                           level 0 : Use only file timestamps
                           level 1 : above, plus timestamp of successful job completion
                           level 2 : above, plus a checksum of the pipeline function body
                           level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators
    """

    # EXTRA pipeline_run DEBUGGING
    global EXTRA_PIPELINERUN_DEBUGGING
    EXTRA_PIPELINERUN_DEBUGGING = False


    (checksum_level,
     job_history,
     pipeline,
     runtime_data,
     target_tasks,
     forcedtorun_tasks ) = _pipeline_prepare_to_run(checksum_level, history_file,
                                                    pipeline, runtime_data,
                                                    target_tasks, forcedtorun_tasks)


    (topological_sorted, ignore_param1, ignore_param2, ignore_param3) = \
        topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
                                   gnu_make_maximal_rebuild_mode,
                                   extra_data_for_signal=[
                                       t_verbose_logger(0, 0, None, runtime_data), job_history],
                                   signal_callback=is_node_up_to_date)
    if not len(target_tasks):
        target_tasks = topological_sorted[-1:]

    # open file if (unicode?) string
    close_stream = False
    if isinstance(stream, path_str_type):
        stream = open(stream, "wb")
        close_stream = True

    # derive format automatically from name
    if output_format is None:
        output_format = os.path.splitext(stream.name)[1].lstrip(".")

    try:
        graph_printout(stream,
                       output_format,
                       target_tasks,
                       forcedtorun_tasks,
                       draw_vertically,
                       ignore_upstream_of_target,
                       skip_uptodate_tasks,
                       gnu_make_maximal_rebuild_mode,
                       test_all_task_for_update,
                       no_key_legend,
                       minimal_key_legend,
                       user_colour_scheme,
                       pipeline_name,
                       size,
                       dpi,
                       extra_data_for_signal=[t_verbose_logger(0, 0, None, runtime_data), job_history],
                       signal_callback=is_node_up_to_date)
    finally:
        # if this is a stream we opened, we have to close it ourselves
        if close_stream:
            stream.close()


# _____________________________________________________________________________

#   get_completed_task_strings

# _____________________________________________________________________________
def get_completed_task_strings(incomplete_tasks, all_tasks, forcedtorun_tasks, verbose,
                               verbose_abbreviated_path, indent, runtime_data, job_history):
    """
    Printout list of completed tasks
    """
    completed_task_strings = []
    if len(all_tasks) > len(incomplete_tasks):
        completed_task_strings.append("")
        completed_task_strings.append("_" * 40)
        completed_task_strings.append("Tasks which are up-to-date:")
        completed_task_strings.append("")
        completed_task_strings.append("")
        set_of_incomplete_tasks = set(incomplete_tasks)

        for t in all_tasks:
            # Only print Up to date tasks
            if t in set_of_incomplete_tasks:
                continue
            # LOGGER
            completed_task_strings.extend(t._printout(runtime_data,
                                                      t in forcedtorun_tasks, job_history, False,
                                                      verbose, verbose_abbreviated_path, indent))

        completed_task_strings.append("_" * 40)
        completed_task_strings.append("")
        completed_task_strings.append("")

    return completed_task_strings

# _____________________________________________________________________________

#   pipeline_printout

# _____________________________________________________________________________


def pipeline_printout(output_stream=None,
                      target_tasks=[],
                      forcedtorun_tasks=[],
                      # verbose defaults to 4 if None
                      verbose=None,
                      indent=4,
                      gnu_make_maximal_rebuild_mode=True,
                      wrap_width=100,
                      runtime_data=None,
                      checksum_level=None,
                      history_file=None,
                      verbose_abbreviated_path=None,
                      pipeline=None):
    # Remember to add further extra parameters here to
    #   "extra_pipeline_printout_options" inside cmdline.py
    # This will forward extra parameters from the command
    # line to pipeline_printout
    """
    Printouts the parts of the pipeline which will be run

    Because the parameters of some jobs depend on the results of previous
    tasks, this function produces only the current snap-shot of task jobs.
    In particular, tasks which generate variable number of inputs into
    following tasks will not produce the full range of jobs.

    ::
        verbose = 0 : Nothing
        verbose = 1 : Out-of-date Task names
        verbose = 2 : All Tasks (including any task function docstrings)
        verbose = 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
        verbose = 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
        verbose = 5 : All Jobs in Out-of-date Tasks,  (include only list of up-to-date tasks)
        verbose = 6 : All jobs in All Tasks whether out of date or not

    :param output_stream: where to print to
    :type output_stream: file-like object with ``write()`` function
    :param target_tasks: targets task functions which will be run if they are
                         out-of-date
    :param forcedtorun_tasks: task functions which will be run whether or not
                              they are out-of-date
    :param verbose: level 0 : nothing
                    level 1 : Out-of-date Task names
                    level 2 : All Tasks (including any task function docstrings)
                    level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
                    level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
                    level 5 : All Jobs in Out-of-date Tasks,  (include only list of up-to-date tasks)
                    level 6 : All jobs in All Tasks whether out of date or not
                    level 10: logs messages useful only for debugging ruffus pipeline code
    :param indent: How much indentation for pretty format.
    :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
                                          out-of-date tasks. Runs minimal
                                          set to build targets if set to
                                          ``True``. Use with caution.
    :param wrap_width: The maximum length of each line
    :param runtime_data: Experimental feature: pass data to tasks at run time
    :param checksum_level: Several options for checking up-to-dateness are
                           available: Default is level 1.
                           level 0 : Use only file timestamps
                           level 1 : above, plus timestamp of successful job completion
                           level 2 : above, plus a checksum of the pipeline function body
                           level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators
    :param history_file: Database file storing checksums and file timestamps for input/output files.
    :param verbose_abbreviated_path: whether input and output paths are abbreviated.
        level 0: The full (expanded, abspath) input or output path
        level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with ``[,,,]/``
        level < 0: Input / Output parameters are truncated to ``MMM`` letters where ``verbose_abbreviated_path ==-MMM``. Subdirectories are first removed to see if this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by ``<???>``
    """
    # do nothing!
    if verbose == 0:
        return

    #
    # default values
    #
    if verbose_abbreviated_path is None:
        verbose_abbreviated_path = 2
    if verbose is None:
        verbose = 4

    # EXTRA pipeline_run DEBUGGING
    global EXTRA_PIPELINERUN_DEBUGGING
    EXTRA_PIPELINERUN_DEBUGGING = False

    if output_stream is None:
        output_stream = sys.stdout

    if not hasattr(output_stream, "write"):
        raise Exception("The first parameter to pipeline_printout needs to be "
                        "an output file, e.g. sys.stdout and not %s"
                        % str(output_stream))

    logging_strm = t_verbose_logger(verbose, verbose_abbreviated_path,
                                    t_stream_logger(output_stream), runtime_data)

    (checksum_level,
     job_history,
     pipeline,
     runtime_data,
     target_tasks,
     forcedtorun_tasks ) = _pipeline_prepare_to_run(checksum_level, history_file,
                                                    pipeline, runtime_data,
                                                    target_tasks, forcedtorun_tasks)



    (incomplete_tasks,
     self_terminated_nodes,
     dag_violating_edges,
     dag_violating_nodes) = \
        topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
                                   gnu_make_maximal_rebuild_mode,
                                   extra_data_for_signal=[
                                       t_verbose_logger(0, 0, None, runtime_data), job_history],
                                   signal_callback=is_node_up_to_date)

    #
    #   raise error if DAG violating nodes
    #
    if len(dag_violating_nodes):
        dag_violating_tasks = ", ".join(t._name for t in dag_violating_nodes)

        e = error_circular_dependencies("Circular dependencies found in the pipeline involving "
                                        "one or more of (%s)" % (dag_violating_tasks,))
        raise e

    wrap_indent = " " * (indent + 11)

    #
    #   Get updated nodes as all_nodes - nodes_to_run
    #
    #   LOGGER level 6 : All jobs in All Tasks whether out of date or not
    if verbose == 2 or verbose >= 5:
        (all_tasks, ignore_param1, ignore_param2, ignore_param3) = \
            topologically_sorted_nodes(target_tasks, True, gnu_make_maximal_rebuild_mode,
                                       extra_data_for_signal=[
                                           t_verbose_logger(0, 0, None, runtime_data),
                                           job_history],
                                       signal_callback=is_node_up_to_date)
        for m in get_completed_task_strings(incomplete_tasks, all_tasks, forcedtorun_tasks,
                                            verbose, verbose_abbreviated_path, indent,
                                            runtime_data, job_history):
            output_stream.write(textwrap.fill(m, subsequent_indent=wrap_indent,
                                              width=wrap_width) + "\n")

    output_stream.write("\n" + "_" * 40 + "\nTasks which will be run:\n\n")
    for t in incomplete_tasks:
        # LOGGER
        messages = t._printout(runtime_data, t in forcedtorun_tasks,
                               job_history, True, verbose,
                               verbose_abbreviated_path, indent)
        for m in messages:
            output_stream.write(textwrap.fill(m, subsequent_indent=wrap_indent,
                                              width=wrap_width) + "\n")

    if verbose:
        # LOGGER
        output_stream.write("_" * 40 + "\n")


# _____________________________________________________________________________

#   get_semaphore

# _____________________________________________________________________________
def get_semaphore(t, _job_limit_semaphores, syncmanager):
    """
    return semaphore to limit the number of concurrent jobs
    """
    #
    #   Is this task limited in the number of jobs?
    #
    if t.semaphore_name not in t._job_limit_semaphores:
        return None

    #
    #   create semaphore if not yet created
    #
    if t.semaphore_name not in _job_limit_semaphores:
        maximum_jobs_num = t._job_limit_semaphores[t.semaphore_name]
        _job_limit_semaphores[t.semaphore_name] = syncmanager.BoundedSemaphore(maximum_jobs_num)
    return _job_limit_semaphores[t.semaphore_name]


# _____________________________________________________________________________

#   job_needs_to_run

#       Helper function for make_job_parameter_generator
# _____________________________________________________________________________
def job_needs_to_run(task, params, force_rerun, logger, verbose, job_name,
                     job_history, verbose_abbreviated_path):
    """
    Check if job parameters out of date / needs to rerun
    """

    #
    #    Out of date because forced to run
    #
    if force_rerun:
        # LOGGER: Out-of-date Jobs in Out-of-date Tasks
        log_at_level(logger, 3, verbose, "    force task %s to rerun "
                     % job_name)
        return True

    if not task.needs_update_func:
        # LOGGER: Out-of-date Jobs in Out-of-date Tasks
        log_at_level(logger, 3, verbose, "    %s no function to check "
                     "if up-to-date " % job_name)
        return True

    # extra clunky hack to also pass task info--
    # makes sure that there haven't been code or
    # arg changes
    if task.needs_update_func == needs_update_check_modify_time:
        needs_update, msg = task.needs_update_func(
            *params, task=task, job_history=job_history,
            verbose_abbreviated_path=verbose_abbreviated_path)
    else:
        needs_update, msg = task.needs_update_func(*params)

    if not needs_update:
        # LOGGER: All Jobs in Out-of-date Tasks
        log_at_level(logger, 5, verbose,
                     "    %s unnecessary: already up to date " % job_name)
        return False

    # LOGGER: Out-of-date Jobs in Out-of-date
    # Tasks: Why out of date
    if not log_at_level(logger, 4, verbose, "    %s %s " % (job_name, msg)):
        # LOGGER: Out-of-date Jobs in
        # Out-of-date Tasks: No explanation
        log_at_level(logger, 3, verbose, "    %s" % (job_name))

    #
    #   Clunky hack to make sure input files exists right
    #       before job is called for better error messages
    #
    if task.needs_update_func == needs_update_check_modify_time:
        check_input_files_exist(*params)

    return True


# _____________________________________________________________________________
#
#   remove_completed_tasks
#
#       Helper function for make_job_parameter_generator
# _____________________________________________________________________________
def remove_completed_tasks(task_with_completed_job_q, incomplete_tasks,
                           count_remaining_jobs, logger, verbose):
    """
    Remove completed tasks in same thread as job parameters generation to
        prevent race conditions
    Task completion is usually signalled from pipeline_run
    """
    while True:
        try:
            (job_completed_task,
             job_completed_task_name,
             job_completed_node_index,
             job_completed_name) = task_with_completed_job_q.get_nowait()

            if job_completed_task not in incomplete_tasks:
                raise Exception("Last job %s for %s. Missing from "
                                "incomplete tasks in make_job_parameter_generator"
                                % (job_completed_name, job_completed_task_name))
            count_remaining_jobs[job_completed_task] -= 1
            #
            #   Negative job count : something has gone very wrong
            #
            if count_remaining_jobs[job_completed_task] < 0:
                raise Exception("job %s for %s causes job count < 0."
                                % (job_completed_name,
                                   job_completed_task_name))

            #
            #   This Task completed
            #
            if count_remaining_jobs[job_completed_task] == 0:
                log_at_level(logger, 10, verbose, "   Last job for %r. "
                             "Retired from incomplete tasks in pipeline_run "
                             % job_completed_task._get_display_name())
                incomplete_tasks.remove(job_completed_task)
                job_completed_task._completed()
                log_at_level(logger, 1, verbose, "Completed Task = %r "
                             % job_completed_task._get_display_name())

        except queue.Empty:
            break


# _____________________________________________________________________________
#
#   Parameter generator factory for all jobs / tasks
#
# _____________________________________________________________________________
def make_job_parameter_generator(incomplete_tasks, task_parents, logger,
                                 forcedtorun_tasks, task_with_completed_job_q,
                                 runtime_data, verbose,
                                 verbose_abbreviated_path,
                                 syncmanager,
                                 death_event,
                                 touch_files_only, job_history):

    inprogress_tasks = set()
    _job_limit_semaphores = dict()

    # _________________________________________________________________________
    #
    #   Parameter generator returned by factory
    #
    # _________________________________________________________________________
    def parameter_generator():
        count_remaining_jobs = defaultdict(int)
        log_at_level(logger, 10, verbose, "   job_parameter_generator BEGIN")
        while len(incomplete_tasks):
            cnt_jobs_created_for_all_tasks = 0
            cnt_tasks_processed = 0

            #
            #   get rid of all completed tasks first
            #       Completion is signalled from pipeline_run
            #
            remove_completed_tasks(task_with_completed_job_q, incomplete_tasks,
                                   count_remaining_jobs, logger, verbose)

            for t in list(incomplete_tasks):
                #
                #   wrap in execption handler so that we know
                #       which task the original exception came from
                #
                try:
                    log_at_level(logger, 10, verbose, "   job_parameter_generator consider "
                                 "task = %r" % t._get_display_name())

                    # ignore tasks in progress
                    if t in inprogress_tasks:
                        continue
                    log_at_level(logger, 10, verbose, "   job_parameter_generator task %r not in "
                                 "progress" % t._get_display_name())

                    # ignore tasks with incomplete dependencies
                    incomplete_parent = False
                    for parent in task_parents[t]:
                        if parent in incomplete_tasks:
                            incomplete_parent = True
                            break
                    if incomplete_parent:
                        continue

                    log_at_level(logger, 10, verbose, "   job_parameter_generator start task %r "
                                 "(parents completed)" % t._get_display_name())
                    force_rerun = t in forcedtorun_tasks
                    inprogress_tasks.add(t)
                    cnt_tasks_processed += 1

                    #
                    # Log active task
                    #
                    if t.is_active:
                        forced_msg = ": Forced to rerun" if force_rerun else ""
                        log_at_level(logger, 1, verbose, "Task enters queue = %r %s"
                                     % (t._get_display_name(), forced_msg))
                        if len(t.func_description):
                            log_at_level(logger, 2, verbose, "    " + t.func_description)
                    #
                    #   Inactive skip loop
                    #
                    else:
                        incomplete_tasks.remove(t)
                        # N.B. inactive tasks are not _completed()
                        # t._completed()
                        t.output_filenames = None
                        log_at_level(logger, 2, verbose, "Inactive Task = %r"
                                     % t._get_display_name())
                        continue

                    #
                    #   Use output parameters generated by running task
                    #
                    t.output_filenames = []

                    #
                    #   If no parameters: just call task function (empty list)
                    #
                    if t.param_generator_func is None:
                        task_parameters = ([[], []],)
                    else:
                        task_parameters = t.param_generator_func(runtime_data)

                    #
                    #   iterate through jobs
                    #
                    cnt_jobs_created = 0
                    for params, unglobbed_params in task_parameters:


                        #
                        #   save output even if uptodate
                        #
                        if len(params) >= 2:
                            # To do: In the case of split subdivide, we should be doing this after
                            #       The job finishes
                            t.output_filenames.append(params[1])

                        job_name = t._get_job_name(unglobbed_params,
                                                   verbose_abbreviated_path,
                                                   runtime_data)

                        if not job_needs_to_run(t, params, force_rerun, logger, verbose, job_name,
                                                job_history, verbose_abbreviated_path):
                            continue

                        # pause for one second before first job of each tasks
                        # @originate tasks do not need to pause,
                        #   because they depend on nothing!
                        if cnt_jobs_created == 0 and touch_files_only < 2:
                            if "ONE_SECOND_PER_JOB" in runtime_data and \
                                    runtime_data["ONE_SECOND_PER_JOB"] and \
                                    t._action_type != Task._action_task_originate:
                                log_at_level(logger, 10, verbose,
                                             "   1 second PAUSE in job_parameter_generator\n\n\n")
                                time.sleep(1.01)
                            else:
                                time.sleep(0.1)

                        count_remaining_jobs[t] += 1
                        cnt_jobs_created += 1
                        cnt_jobs_created_for_all_tasks += 1

                        yield (params,
                               unglobbed_params,
                               t._name,
                               t._node_index,
                               job_name,
                               t.job_wrapper,
                               t.user_defined_work_func,
                               get_semaphore(t, _job_limit_semaphores, syncmanager),
                               death_event,
                               touch_files_only)

                    # if no job came from this task, this task is complete
                    #   we need to retire it here instead of normal completion
                    #       at end of job tasks precisely
                    #       because it created no jobs
                    if cnt_jobs_created == 0:
                        incomplete_tasks.remove(t)
                        t._completed()
                        log_at_level(logger, 1, verbose,
                                     "Uptodate Task = %r" % t._get_display_name())
                        # LOGGER: logs All Tasks (including any task function docstrings)
                        log_at_level(logger, 10, verbose, "   No jobs created for %r. Retired "
                                     "in parameter_generator " % t._get_display_name())

                        #
                        #   Add extra warning if no regular expressions match:
                        #   This is a common class of frustrating errors
                        #
                        # DEBUGGGG!!
                        if verbose >= 1 and \
                                "ruffus_WARNING" in runtime_data and \
                                t.param_generator_func in runtime_data["ruffus_WARNING"]:
                            indent_str = " " * 8
                            for msg in runtime_data["ruffus_WARNING"][t.param_generator_func]:
                                messages = [msg.replace("\n", "\n" + indent_str)]
                                if verbose >= 4 and runtime_data and \
                                    "MATCH_FAILURE" in runtime_data and \
                                    t.param_generator_func in runtime_data["MATCH_FAILURE"]:
                                    for job_msg in runtime_data["MATCH_FAILURE"][t.param_generator_func]:
                                        messages.append(indent_str + "Job Warning: Input substitution failed:")
                                        messages.append(indent_str + "  " +job_msg.replace("\n", "\n" + indent_str + "  "))
                                logger.warning("    In Task %r:\n%s%s "
                                               % (t._get_display_name(), indent_str, "\n".join(messages)))


                #
                #   GeneratorExit thrown when generator doesn't complete.
                #       I.e. there is a break in the pipeline_run loop.
                #       This happens where there are exceptions
                #           signalled from within a job
                #
                #   This is not really an exception, more a way to exit the
                #       generator loop asynchrononously so that cleanups can
                #       happen (e.g. the "with" statement or finally.)
                #
                #   We could write except Exception: below which will catch
                #       everything but KeyboardInterrupt and StopIteration
                #       and GeneratorExit in python 2.6
                #
                #   However, in python 2.5, GeneratorExit inherits from
                #       Exception. So we explicitly catch and rethrow
                #       GeneratorExit.
                except GeneratorExit:
                    raise
                except:
                    exceptionType, exceptionValue, exceptionTraceback = sys.exc_info()
                    exception_stack = traceback.format_exc()
                    exception_name = exceptionType.__module__ + '.' + exceptionType.__name__
                    exception_value = str(exceptionValue)
                    if len(exception_value):
                        exception_value = "(%s)" % exception_value
                    errt = RethrownJobError([(t._name,
                                              "",
                                              exception_name,
                                              exception_value,
                                              exception_stack)])
                    errt.specify_task(t, "Exceptions generating parameters")
                    raise errt

            # extra tests incase final tasks do not result in jobs
            if len(incomplete_tasks) and \
                    (not cnt_tasks_processed or cnt_jobs_created_for_all_tasks):
                log_at_level(logger, 10, verbose, "    incomplete tasks = " +
                             ",".join([t._name for t in incomplete_tasks]))
                yield waiting_for_more_tasks_to_complete()

        yield all_tasks_complete()
        # This function is done
        log_at_level(logger, 10, verbose, "   job_parameter_generator END")

    return parameter_generator


# _____________________________________________________________________________
#
#   feed_job_params_to_process_pool
#
#
# _____________________________________________________________________________
def feed_job_params_to_process_pool_factory(parameter_q, death_event, logger,
                                            verbose):
    """
    Process pool gets its parameters from this generator
    Use factory function to save parameter_queue
    """
    def feed_job_params_to_process_pool():
        log_at_level(logger, 10, verbose, "   Send params to Pooled Process START")
        while 1:
            log_at_level(logger, 10, verbose,
                         "   Get next parameter size = %d" % parameter_q.qsize())
            if not parameter_q.qsize():
                time.sleep(0.1)
            params = parameter_q.get()
            log_at_level(logger, 10, verbose, "   Get next parameter done")

            # all tasks done
            if isinstance(params, all_tasks_complete):
                break

            if death_event.is_set():
                death_event.clear()
                break

            log_at_level(logger, 10, verbose,
                         "   Send params to Pooled Process=>" + str(params[0]))
            yield params

        log_at_level(logger, 10, verbose, "   Send params to Pooled Process END")

    # return generator
    return feed_job_params_to_process_pool

# _____________________________________________________________________________
#
#   fill_queue_with_job_parameters
#
# _____________________________________________________________________________


def fill_queue_with_job_parameters(job_parameters, parameter_q, POOL_SIZE,
                                   logger, verbose):
    """
    Ensures queue filled with number of parameters > jobs / slots (POOL_SIZE)
    """
    log_at_level(logger, 10, verbose, "    fill_queue_with_job_parameters START")
    for params in job_parameters:

        # stop if no more jobs available
        if isinstance(params, waiting_for_more_tasks_to_complete):
            log_at_level(logger, 10, verbose,
                         "    fill_queue_with_job_parameters WAITING for task to complete")
            break

        if not isinstance(params, all_tasks_complete):
            log_at_level(logger, 10, verbose, "    fill_queue_with_job_parameters=>" +
                         str(params[0]))

        # put into queue
        parameter_q.put(params)

        # queue size needs to be at least 2 so that the parameter queue never
        #   consists of a singlewaiting_for_task_to_complete entry which will
        #   cause a loop and everything to hang!
        if parameter_q.qsize() > POOL_SIZE + 1:
            break
    log_at_level(logger, 10, verbose, "    fill_queue_with_job_parameters END")


# _____________________________________________________________________________

#   pipeline_get_task_names

# _____________________________________________________________________________
def pipeline_get_task_names(pipeline=None):
    """
    Get all task names in a pipeline
    Not that does not check if pipeline is wired up properly
    """

    # EXTRA pipeline_run DEBUGGING
    global EXTRA_PIPELINERUN_DEBUGGING
    EXTRA_PIPELINERUN_DEBUGGING = False

    #
    #   pipeline must be a Pipeline or a string naming a pipeline
    #
    pipeline = lookup_pipeline(pipeline)

    #
    #   Make sure all tasks in dependency list are linked to real functions
    #
    processed_tasks = set()
    completed_pipeline_names = pipeline._complete_task_setup(processed_tasks)

    #
    #   Return task names for all nodes willy nilly
    #

    return [n._name for n in node._all_nodes]


# _____________________________________________________________________________

#   get_job_result_output_file_names

# _____________________________________________________________________________
def get_job_result_output_file_names(job_result):
    """
    Excludes input file names being passed through
    """
    if len(job_result.unglobbed_params) <= 1:  # some jobs have no outputs
        return

    unglobbed_input_params  = job_result.unglobbed_params[0]
    unglobbed_output_params = job_result.unglobbed_params[1]

    # some have multiple outputs from one job
    if not isinstance(unglobbed_output_params, list):
        unglobbed_output_params = [unglobbed_output_params]

    # canonical path of input files, retaining any symbolic links:
    #   symbolic links have their own checksumming
    input_file_names = set()
    for i_f_n in get_strings_in_flattened_sequence([unglobbed_input_params]):
        input_file_names.add(os.path.abspath(i_f_n))

    #
    # N.B. output parameters are not necessary all strings
    #   and not all files have been successfully created,
    #   even though the task apparently completed properly!
    # Remember to re-expand globs (from unglobbed paramters)
    #   after the job has run successfully
    #
    for possible_glob_str in get_strings_in_flattened_sequence(unglobbed_output_params):
        for o_f_n in glob.glob(possible_glob_str):
            #
            # Exclude output files if they are input files "passed through"
            #
            if os.path.abspath(o_f_n) in input_file_names:
                continue

            #
            # use paths relative to working directory
            #
            yield os.path.relpath(o_f_n)

    return

#
#   How the job queue works:
#
#   Main loop
#       iterates pool.map using feed_job_params_to_process_pool()
#       (calls parameter_q.get() until all_tasks_complete)
#
#           if errors but want to finish tasks already in pipeine:
#               parameter_q.put(all_tasks_complete())
#               keep going
#        else:
#
#            loops through jobs until no more jobs in non-dependent tasks
#               separate loop in generator so that list of incomplete_tasks
#               does not get updated half way through
#               causing race conditions
#
#               parameter_q.put(params)
#               until waiting_for_more_tasks_to_complete
#               until queue is full (check *after*)
#
# _____________________________________________________________________________

#   pipeline_run

# _____________________________________________________________________________
def pipeline_run(target_tasks=[],
                 forcedtorun_tasks=[],
                 multiprocess=1,
                 logger=stderr_logger,
                 gnu_make_maximal_rebuild_mode=True,
                 # verbose defaults to 1 if None
                 verbose=None,
                 runtime_data=None,
                 one_second_per_job=None,
                 touch_files_only=False,
                 exceptions_terminate_immediately=False,
                 log_exceptions=False,
                 checksum_level=None,
                 multithread=0,
                 history_file=None,
                 # defaults to 2 if None
                 verbose_abbreviated_path=None,
                 pipeline=None):
    # Remember to add further extra parameters here to
    #   "extra_pipeline_run_options" inside cmdline.py
    # This will forward extra parameters from the command line to
    # pipeline_run
    """
    Run pipelines.

    :param target_tasks: targets task functions which will be run if they are
                         out-of-date
    :param forcedtorun_tasks: task functions which will be run whether or not
                              they are out-of-date
    :param multiprocess: The number of concurrent jobs running on different
                         processes.
    :param multithread: The number of concurrent jobs running as different
                        threads. If > 1, ruffus will use multithreading
                        *instead of* multiprocessing (and ignore the
                        multiprocess parameter). Using multi threading
                        is particularly useful to manage high performance
                        clusters which otherwise are prone to
                        "processor storms" when large number of cores finish
                        jobs at the same time. (Thanks Andreas Heger)
    :param logger: Where progress will be logged. Defaults to stderr output.
    :type logger: `logging <http://docs.python.org/library/logging.html>`_
                  objects
    :param verbose:

                    * level 0 : nothing
                    * level 1 : Out-of-date Task names
                    * level 2 : All Tasks (including any task function docstrings)
                    * level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
                    * level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings
                    * level 5 : All Jobs in Out-of-date Tasks,  (include only list of up-to-date
                      tasks)
                    * level 6 : All jobs in All Tasks whether out of date or not
                    * level 10: logs messages useful only for debugging ruffus pipeline code
    :param touch_files_only: Create or update input/output files only to
                             simulate running the pipeline. Do not run jobs.
                             If set to CHECKSUM_REGENERATE, will regenerate
                             the checksum history file to reflect the existing
                             i/o files on disk.
    :param exceptions_terminate_immediately: Exceptions cause immediate
                                             termination rather than waiting
                                             for N jobs to finish where
                                             N = multiprocess
    :param log_exceptions: Print exceptions to logger as soon as they occur.
    :param checksum_level: Several options for checking up-to-dateness are
                           available: Default is level 1.

                           * level 0 : Use only file timestamps
                           * level 1 : above, plus timestamp of successful job completion
                           * level 2 : above, plus a checksum of the pipeline function body
                           * level 3 : above, plus a checksum of the pipeline
                             function default arguments and the
                             additional arguments passed in by task
                             decorators
    :param one_second_per_job: To work around poor file timepstamp resolution
                               for some file systems. Defaults to True if
                               checksum_level is 0 forcing Tasks to take a
                               minimum of 1 second to complete.
    :param runtime_data: Experimental feature: pass data to tasks at run time
    :param gnu_make_maximal_rebuild_mode: Defaults to re-running *all*
                                          out-of-date tasks. Runs minimal
                                          set to build targets if set to
                                          ``True``. Use with caution.
    :param history_file: Database file storing checksums and file timestamps
                         for input/output files.
    :param verbose_abbreviated_path: whether input and output paths are abbreviated.

                                     * level 0: The full (expanded, abspath) input or output path
                                     * level > 1: The number of subdirectories to include.
                                       Abbreviated paths are prefixed with ``[,,,]/``
                                     * level < 0: Input / Output parameters are truncated
                                       to ``MMM`` letters where ``verbose_abbreviated_path
                                       ==-MMM``. Subdirectories are first removed to see
                                       if this allows the paths to fit in the specified
                                       limit. Otherwise abbreviated paths are prefixed by
                                       ``<???>``
    """
    # DEBUGGG
    #print("pipeline_run start", file = sys.stderr)

    #
    # default values
    #
    if touch_files_only is False:
        touch_files_only = 0
    elif touch_files_only is True:
        touch_files_only = 1
    else:
        touch_files_only = 2
        # we are not running anything so do it as quickly as possible
        one_second_per_job = False
    if verbose is None:
        verbose = 1
    if verbose_abbreviated_path is None:
        verbose_abbreviated_path = 2

    # EXTRA pipeline_run DEBUGGING
    global EXTRA_PIPELINERUN_DEBUGGING
    if verbose >= 10:
        EXTRA_PIPELINERUN_DEBUGGING = True
    else:
        EXTRA_PIPELINERUN_DEBUGGING = False

    syncmanager = multiprocessing.Manager()

    #
    #   whether using multiprocessing or multithreading
    #
    if multithread:
        pool = ThreadPool(multithread)
        parallelism = multithread
    elif multiprocess > 1:
        pool = Pool(multiprocess)
        parallelism = multiprocess
    else:
        parallelism = 1
        pool = None

    if verbose == 0:
        logger = black_hole_logger
    elif verbose >= 11:
        #   debugging aid: See t_stderr_logger
        #   Each invocation of add_unique_prefix adds a unique prefix to
        #       all subsequent output So that individual runs of pipeline run
        #       are tagged
        if hasattr(logger, "add_unique_prefix"):
            logger.add_unique_prefix()


    (checksum_level,
     job_history,
     pipeline,
     runtime_data,
     target_tasks,
     forcedtorun_tasks ) = _pipeline_prepare_to_run(checksum_level, history_file,
                                                    pipeline, runtime_data,
                                                    target_tasks, forcedtorun_tasks)


    #
    #   Supplement mtime with system clock if using CHECKSUM_HISTORY_TIMESTAMPS
    #       we don't need to default to adding 1 second delays between jobs
    #
    if one_second_per_job is None:
        if checksum_level == CHECKSUM_FILE_TIMESTAMPS:
            log_at_level(logger, 10, verbose,
                         "   Checksums rely on FILE TIMESTAMPS only and we don't know if the "
                         "system file time resolution: Pause 1 second...")
            runtime_data["ONE_SECOND_PER_JOB"] = True
        else:
            log_at_level(logger, 10, verbose, "   Checksum use calculated time as well: "
                         "No 1 second pause...")
            runtime_data["ONE_SECOND_PER_JOB"] = False
    else:
        log_at_level(logger, 10, verbose, "   One second per job specified to be %s"
                     % one_second_per_job)
        runtime_data["ONE_SECOND_PER_JOB"] = one_second_per_job

    if touch_files_only and verbose >= 1:
        logger.info("Touch output files instead of remaking them.")

    #
    #   To update the checksum file, we force all tasks to rerun
    #       but then don't actually call the task function...
    #
    #   So starting with target_tasks and forcedtorun_tasks,
    #       we harvest all upstream dependencies willy, nilly
    #       and assign the results to forcedtorun_tasks
    #
    if touch_files_only == 2:
        (forcedtorun_tasks, ignore_param1, ignore_param2, ignore_param3) = \
            topologically_sorted_nodes(target_tasks + forcedtorun_tasks, True,
                                       gnu_make_maximal_rebuild_mode,
                                       extra_data_for_signal=[t_verbose_logger(0, 0, None,
                                                                               runtime_data),
                                                              job_history],
                                       signal_callback=is_node_up_to_date)

    #
    #   If verbose >=10, for debugging:
    #       Prints which tasks trigger the pipeline rerun...
    #       i.e. start from the farthest task, prints out all the up to date
    #       tasks, and the first out of date task
    #
    (incomplete_tasks, self_terminated_nodes,
     dag_violating_edges, dag_violating_nodes) = \
        topologically_sorted_nodes(target_tasks, forcedtorun_tasks,
                                   gnu_make_maximal_rebuild_mode,
                                   extra_data_for_signal=[
                                       t_verbose_logger(verbose, verbose_abbreviated_path,
                                                        logger, runtime_data),
                                       job_history],
                                   signal_callback=is_node_up_to_date)

    if len(dag_violating_nodes):
        dag_violating_tasks = ", ".join(t._name for t in dag_violating_nodes)

        e = error_circular_dependencies("Circular dependencies found in the "
                                        "pipeline involving one or more of "
                                        "(%s)" % (dag_violating_tasks))
        raise e

    #
    # get dependencies. Only include tasks which will be run
    #
    set_of_incomplete_tasks = set(incomplete_tasks)
    task_parents = defaultdict(set)
    for t in set_of_incomplete_tasks:
        task_parents[t] = set()
        for parent in t._get_inward():
            if parent in set_of_incomplete_tasks:
                task_parents[t].add(parent)

    #
    #   Print Complete tasks
    #
    #   LOGGER level 5 : All jobs in All Tasks whether out of date or not
    if verbose == 2 or verbose >= 5:
        (all_tasks, ignore_param1, ignore_param2, ignore_param3) \
            = topologically_sorted_nodes(target_tasks, True,
                                         gnu_make_maximal_rebuild_mode,
                                         extra_data_for_signal=[t_verbose_logger(0, 0, None,
                                                                                 runtime_data),
                                                                job_history],
                                         signal_callback=is_node_up_to_date)
        # indent hardcoded to 4
        for m in get_completed_task_strings(incomplete_tasks, all_tasks,
                                            forcedtorun_tasks, verbose,
                                            verbose_abbreviated_path, 4,
                                            runtime_data, job_history):
            logger.info(m)

    # print json.dumps(task_parents.items(), indent=4, cls=task_encoder)
    logger.info("")
    logger.info("_" * 40)
    logger.info("Tasks which will be run:")
    logger.info("")
    logger.info("")

    # prepare tasks for pipeline run:
    #
    #   clear task outputs
    #       task.output_filenames = None
    #
    #    **********
    #      BEWARE
    #    **********
    #
    #    Because state is stored, ruffus is *not* reentrant.
    #
    #    **********
    #      BEWARE
    #    **********
    for t in incomplete_tasks:
        t._init_for_pipeline()

    #
    # prime queue with initial set of job parameters
    #
    death_event = syncmanager.Event()
    parameter_q = queue.Queue()
    task_with_completed_job_q = queue.Queue()
    parameter_generator = make_job_parameter_generator(incomplete_tasks, task_parents,
                                                       logger, forcedtorun_tasks,
                                                       task_with_completed_job_q,
                                                       runtime_data, verbose,
                                                       verbose_abbreviated_path,
                                                       syncmanager, death_event,
                                                       touch_files_only, job_history)
    job_parameters = parameter_generator()
    fill_queue_with_job_parameters(job_parameters, parameter_q, parallelism, logger, verbose)

    #
    #   N.B.
    #   Handling keyboard shortcuts may require
    #       See http://stackoverflow.com/questions/1408356/
    #           keyboard-interrupts-with-pythons-multiprocessing-pool
    #
    #   When waiting for a condition in threading.Condition.wait(),
    #       KeyboardInterrupt is never sent
    #       unless a timeout is specified
    #
    #
    #
    #   #
    # whether using multiprocessing
    #   #
    #   pool = Pool(parallelism) if multiprocess > 1 else None
    #   if pool:
    #       pool_func = pool.imap_unordered
    #       job_iterator_timeout = []
    #   else:
    #       pool_func = imap
    #       job_iterator_timeout = [999999999999]
    #
    #
    #   ....
    #
    #
    #   it = pool_func(run_pooled_job_without_exceptions,
    #                  feed_job_params_to_process_pool())
    #   while 1:
    #      try:
    #          job_result = it.next(*job_iterator_timeout)
    #
    #          ...
    #
    #      except StopIteration:
    #          break

    if pool:
        pool_func = pool.imap_unordered
    else:
        pool_func = map

    feed_job_params_to_process_pool = feed_job_params_to_process_pool_factory(
        parameter_q, death_event, logger, verbose)

    #
    #   for each result from job
    #
    job_errors = RethrownJobError()
    tasks_with_errors = set()

    #
    #   job_result.job_name / job_result.return_value
    #       Reserved for returning result from job...
    #       How?
    #
    #   Rewrite for loop so we can call iter.next() with a timeout
    try:

        # for job_result in pool_func(run_pooled_job_without_exceptions,
        # feed_job_params_to_process_pool()):
        ii = iter(pool_func(run_pooled_job_without_exceptions, feed_job_params_to_process_pool()))
        while 1:
            #   Use a timeout of 3 years per job..., so that the condition
            #       we are waiting for in the thread can be interrupted by
            #       signals... In other words, so that Ctrl-C works
            #   Yucky part is that timeout is an extra parameter to
            #       IMapIterator.next(timeout=None) but next() for normal
            #       iterators do not take any extra parameters.
            if pool:
                job_result = ii.next(timeout=99999999)
            else:
                job_result = next(ii)
            # run next task
            log_at_level(logger, 11, verbose, "r" * 80 + "\n")
            t = node._lookup_node_from_index(job_result.node_index)

            # remove failed jobs from history-- their output is bogus now!
            if job_result.state in (JOB_ERROR, JOB_SIGNALLED_BREAK):
                log_at_level(logger, 10, verbose, "   JOB ERROR / JOB_SIGNALLED_BREAK: " + job_result.job_name)
                # remove outfile from history if it exists
                for o_f_n in get_job_result_output_file_names(job_result):
                    job_history.pop(o_f_n, None)

            # only save poolsize number of errors
            if job_result.state == JOB_ERROR:
                log_at_level(logger, 10, verbose, "   Exception caught for %s"
                             % job_result.job_name)
                job_errors.append(job_result.exception)
                tasks_with_errors.add(t)

                #
                # print to logger immediately
                #
                if log_exceptions:
                    log_at_level(logger, 10, verbose, "   Log Exception")
                    logger.error(job_errors.get_nth_exception_str())

                #
                # break if too many errors
                #
                if len(job_errors) >= parallelism or exceptions_terminate_immediately:
                    log_at_level(logger, 10, verbose, "   Break loop %s %s %s "
                                 % (exceptions_terminate_immediately,
                                    len(job_errors), parallelism))
                    parameter_q.put(all_tasks_complete())
                    break

            # break immediately if the user says stop
            elif job_result.state == JOB_SIGNALLED_BREAK:
                job_errors.append(job_result.exception)
                job_errors.specify_task(t, "Exceptions running jobs")
                log_at_level(logger, 10, verbose, "   Break loop JOB_SIGNALLED_BREAK %s %s "
                             % (len(job_errors), parallelism))
                parameter_q.put(all_tasks_complete())
                break

            else:
                if job_result.state == JOB_UP_TO_DATE:
                    # LOGGER: All Jobs in Out-of-date Tasks
                    log_at_level(logger, 5, verbose, "    %s unnecessary: already up to date"
                                 % job_result.job_name)
                else:
                    # LOGGER: Out-of-date Jobs in Out-of-date Tasks
                    log_at_level(logger, 3, verbose, "    %s completed" % job_result.job_name)
                    # save this task name and the job (input and output files)
                    # alternatively, we could just save the output file and its
                    # completion time, or on the other end of the spectrum,
                    # we could save a checksum of the function that generated
                    # this file, something akin to:
                    # chksum = md5.md5(marshal.dumps(t.user_defined_work_func.func_code.co_code))
                    # we could even checksum the arguments to the function that
                    # generated this file:
                    # chksum2 = md5.md5(marshal.dumps(t.user_defined_work_func.func_defaults) +
                    #                   marshal.dumps(t.args))

                    for o_f_n in get_job_result_output_file_names(job_result):
                        try:
                            log_at_level(logger, 10, verbose, "   Job History : " + o_f_n)
                            mtime = os.path.getmtime(o_f_n)
                            #
                            #   use probably higher resolution
                            #       time.time() over mtime which might have 1 or 2s
                            #       resolutions, unless there is clock skew and the
                            #       filesystem time > system time (e.g. for networks)
                            #
                            epoch_seconds = time.time()
                            # Aargh. go back to insert one second between jobs
                            if epoch_seconds < mtime:
                                if one_second_per_job is None and \
                                        not runtime_data["ONE_SECOND_PER_JOB"]:
                                    log_at_level(logger, 10, verbose,
                                                 "   Switch to 1s per job")
                                    runtime_data["ONE_SECOND_PER_JOB"] = True
                            elif epoch_seconds - mtime < 1.1:
                                mtime = epoch_seconds
                            chksum = JobHistoryChecksum(o_f_n, mtime,
                                                        job_result.unglobbed_params[2:], t)
                            job_history[o_f_n] = chksum
                            log_at_level(logger, 10, verbose, "   Job History Saved: " + o_f_n)
                        except:
                            pass

            log_at_level(logger, 10, verbose, "   _is_up_to_date completed task & checksum...")
            #
            #   _is_up_to_date completed task after checksumming
            #
            task_with_completed_job_q.put((t,
                                           job_result.task_name,
                                           job_result.node_index,
                                           job_result.job_name))

            # make sure queue is still full after each job is retired
            # do this after undating which jobs are incomplete
            log_at_level(logger, 10, verbose, "   job errors?")
            if len(job_errors):
                # parameter_q.clear()
                # if len(job_errors) == 1 and not parameter_q._closed:
                log_at_level(logger, 10, verbose, "   all tasks completed...")
                parameter_q.put(all_tasks_complete())
            else:
                log_at_level(logger, 10, verbose, "   Fill queue with more parameter...")
                fill_queue_with_job_parameters(job_parameters, parameter_q, parallelism, logger,
                                               verbose)
    # The equivalent of the normal end of a fall loop
    except StopIteration as e:
        pass
    except:
        exception_name, exception_value, exception_Traceback = sys.exc_info()
        exception_stack = traceback.format_exc()
        # save exception to rethrow later
        job_errors.append((None, None, exception_name, exception_value, exception_stack))
        for ee in exception_value, exception_name, exception_stack:
            log_at_level(logger, 10, verbose, "       Exception caught %s" % (ee,))
        log_at_level(logger, 10, verbose, "   Get next parameter size = %d" % parameter_q.qsize())
        log_at_level(logger, 10, verbose, "   Task with completed "
                     "jobs size = %d" % task_with_completed_job_q.qsize())
        parameter_q.put(all_tasks_complete())
        try:
            death_event.clear()
        except:
            pass

        if pool:
            log_at_level(logger, 10, verbose, "       pool.close")
            pool.close()
            log_at_level(logger, 10, verbose, "       pool.terminate")
            try:
                pool.terminate()
            except:
                pass
            log_at_level(logger, 10, verbose, "       pool.terminated")
        raise job_errors

    # log_at_level (logger, 10, verbose, "       syncmanager.shutdown")
    # syncmanager.shutdown()

    if pool:
        log_at_level(logger, 10, verbose, "       pool.close")
        # pool.join()
        pool.close()
        log_at_level(logger, 10, verbose, "       pool.terminate")
        # an exception may be thrown after a signal is caught (Ctrl-C)
        #   when the EventProxy(s) for death_event might be left hanging
        try:
            pool.terminate()
        except:
            pass
        log_at_level(logger, 10, verbose, "       pool.terminated")

    # Switch back off EXTRA pipeline_run DEBUGGING
    EXTRA_PIPELINERUN_DEBUGGING = False

    if len(job_errors):
        raise job_errors


#   use high resolution timestamps where available
#       default in python 2.5 and greater
#   N.B. File modify times / stat values have 1 second precision for many file
#       systems and may not be accurate to boot, especially over the network.
os.stat_float_times(True)


if __name__ == '__main__':
    import unittest

    #
    #   debug parameter ignored if called as a module
    #
    if sys.argv.count("--debug"):
        sys.argv.remove("--debug")
    unittest.main()
