# -*- encoding:utf-8 -*-

import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

from docscrape import NumpyDocString, FunctionDoc, ClassDoc
from docscrape_sphinx import SphinxDocString, SphinxClassDoc
from nose.tools import *

doc_txt = '''\
  numpy.multivariate_normal(mean, cov, shape=None, spam=None)

  Draw values from a multivariate normal distribution with specified
  mean and covariance.

  The multivariate normal or Gaussian distribution is a generalisation
  of the one-dimensional normal distribution to higher dimensions.

  Parameters
  ----------
  mean : (N,) ndarray
      Mean of the N-dimensional distribution.

      .. math::

         (1+2+3)/3

  cov : (N,N) ndarray
      Covariance matrix of the distribution.
  shape : tuple of ints
      Given a shape of, for example, (m,n,k), m*n*k samples are
      generated, and packed in an m-by-n-by-k arrangement.  Because
      each sample is N-dimensional, the output shape is (m,n,k,N).

  Returns
  -------
  out : ndarray
      The drawn samples, arranged according to `shape`.  If the
      shape given is (m,n,...), then the shape of `out` is is
      (m,n,...,N).

      In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
      value drawn from the distribution.

  Other Parameters
  ----------------
  spam : parrot
      A parrot off its mortal coil.

  Raises
  ------
  RuntimeError
      Some error

  Warns
  -----
  RuntimeWarning
      Some warning

  Warnings
  --------
  Certain warnings apply.

  Notes
  -----

  Instead of specifying the full covariance matrix, popular
  approximations include:

    - Spherical covariance (`cov` is a multiple of the identity matrix)
    - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

  This geometrical property can be seen in two dimensions by plotting
  generated data-points:

  >>> mean = [0,0]
  >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

  >>> x,y = multivariate_normal(mean,cov,5000).T
  >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

  Note that the covariance matrix must be symmetric and non-negative
  definite.

  References
  ----------
  .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
         Processes," 3rd ed., McGraw-Hill Companies, 1991
  .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
         2nd ed., Wiley, 2001.

  See Also
  --------
  some, other, funcs
  otherfunc : relationship

  Examples
  --------
  >>> mean = (1,2)
  >>> cov = [[1,0],[1,0]]
  >>> x = multivariate_normal(mean,cov,(3,3))
  >>> print x.shape
  (3, 3, 2)

  The following is probably true, given that 0.6 is roughly twice the
  standard deviation:

  >>> print list( (x[0,0,:] - mean) < 0.6 )
  [True, True]

  .. index:: random
     :refguide: random;distributions, random;gauss

  '''
doc = NumpyDocString(doc_txt)


def test_signature():
    assert doc['Signature'].startswith('numpy.multivariate_normal(')
    assert doc['Signature'].endswith('spam=None)')

def test_summary():
    assert doc['Summary'][0].startswith('Draw values')
    assert doc['Summary'][-1].endswith('covariance.')

def test_extended_summary():
    assert doc['Extended Summary'][0].startswith('The multivariate normal')

def test_parameters():
    assert_equal(len(doc['Parameters']), 3)
    assert_equal([n for n,_,_ in doc['Parameters']], ['mean','cov','shape'])

    arg, arg_type, desc = doc['Parameters'][1]
    assert_equal(arg_type, '(N,N) ndarray')
    assert desc[0].startswith('Covariance matrix')
    assert doc['Parameters'][0][-1][-2] == '   (1+2+3)/3'

def test_other_parameters():
    assert_equal(len(doc['Other Parameters']), 1)
    assert_equal([n for n,_,_ in doc['Other Parameters']], ['spam'])
    arg, arg_type, desc = doc['Other Parameters'][0]
    assert_equal(arg_type, 'parrot')
    assert desc[0].startswith('A parrot off its mortal coil')

def test_returns():
    assert_equal(len(doc['Returns']), 1)
    arg, arg_type, desc = doc['Returns'][0]
    assert_equal(arg, 'out')
    assert_equal(arg_type, 'ndarray')
    assert desc[0].startswith('The drawn samples')
    assert desc[-1].endswith('distribution.')

def test_notes():
    assert doc['Notes'][0].startswith('Instead')
    assert doc['Notes'][-1].endswith('definite.')
    assert_equal(len(doc['Notes']), 17)

def test_references():
    assert doc['References'][0].startswith('..')
    assert doc['References'][-1].endswith('2001.')

def test_examples():
    assert doc['Examples'][0].startswith('>>>')
    assert doc['Examples'][-1].endswith('True]')

def test_index():
    assert_equal(doc['index']['default'], 'random')
    print doc['index']
    assert_equal(len(doc['index']), 2)
    assert_equal(len(doc['index']['refguide']), 2)

def non_blank_line_by_line_compare(a,b):
    a = [l for l in a.split('\n') if l.strip()]
    b = [l for l in b.split('\n') if l.strip()]
    for n,line in enumerate(a):
        if not line == b[n]:
            raise AssertionError("Lines %s of a and b differ: "
                                 "\n>>> %s\n<<< %s\n" %
                                 (n,line,b[n]))
def test_str():
    non_blank_line_by_line_compare(str(doc),
"""numpy.multivariate_normal(mean, cov, shape=None, spam=None)

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

Parameters
----------
mean : (N,) ndarray
    Mean of the N-dimensional distribution.

    .. math::

       (1+2+3)/3

cov : (N,N) ndarray
    Covariance matrix of the distribution.
shape : tuple of ints
    Given a shape of, for example, (m,n,k), m*n*k samples are
    generated, and packed in an m-by-n-by-k arrangement.  Because
    each sample is N-dimensional, the output shape is (m,n,k,N).

Returns
-------
out : ndarray
    The drawn samples, arranged according to `shape`.  If the
    shape given is (m,n,...), then the shape of `out` is is
    (m,n,...,N).

    In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
    value drawn from the distribution.

Other Parameters
----------------
spam : parrot
    A parrot off its mortal coil.

Raises
------
RuntimeError : 
    Some error

Warns
-----
RuntimeWarning : 
    Some warning

Warnings
--------
Certain warnings apply.

See Also
--------
`some`_, `other`_, `funcs`_

`otherfunc`_
    relationship

Notes
-----
Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

References
----------
.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

Examples
--------
>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]

.. index:: random
   :refguide: random;distributions, random;gauss""")


def test_sphinx_str():
    sphinx_doc = SphinxDocString(doc_txt)
    non_blank_line_by_line_compare(str(sphinx_doc),
"""
.. index:: random
   single: random;distributions, random;gauss

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

:Parameters:

    **mean** : (N,) ndarray

        Mean of the N-dimensional distribution.

        .. math::

           (1+2+3)/3

    **cov** : (N,N) ndarray

        Covariance matrix of the distribution.

    **shape** : tuple of ints

        Given a shape of, for example, (m,n,k), m*n*k samples are
        generated, and packed in an m-by-n-by-k arrangement.  Because
        each sample is N-dimensional, the output shape is (m,n,k,N).

:Returns:

    **out** : ndarray

        The drawn samples, arranged according to `shape`.  If the
        shape given is (m,n,...), then the shape of `out` is is
        (m,n,...,N).
        
        In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
        value drawn from the distribution.

:Other Parameters:

    **spam** : parrot

        A parrot off its mortal coil.
 
:Raises:

    **RuntimeError** : 

        Some error

:Warns:

    **RuntimeWarning** : 

        Some warning

.. warning::

    Certain warnings apply.

.. seealso::
    
    :obj:`some`, :obj:`other`, :obj:`funcs`
    
    :obj:`otherfunc`
        relationship
    
.. rubric:: Notes

Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

.. rubric:: References

.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

.. only:: latex

   [1]_, [2]_

.. rubric:: Examples

>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]
""")

       
doc2 = NumpyDocString("""
    Returns array of indices of the maximum values of along the given axis.

    Parameters
    ----------
    a : {array_like}
        Array to look in.
    axis : {None, integer}
        If None, the index is into the flattened array, otherwise along
        the specified axis""")

def test_parameters_without_extended_description():
    assert_equal(len(doc2['Parameters']), 2)

doc3 = NumpyDocString("""
    my_signature(*params, **kwds)

    Return this and that.
    """)

def test_escape_stars():
    signature = str(doc3).split('\n')[0]
    assert_equal(signature, 'my_signature(\*params, \*\*kwds)')

doc4 = NumpyDocString(
    """a.conj()

    Return an array with all complex-valued elements conjugated.""")

def test_empty_extended_summary():
    assert_equal(doc4['Extended Summary'], [])

doc5 = NumpyDocString(
    """
    a.something()

    Raises
    ------
    LinAlgException
        If array is singular.

    Warns
    -----
    SomeWarning
        If needed
    """)

def test_raises():
    assert_equal(len(doc5['Raises']), 1)
    name,_,desc = doc5['Raises'][0]
    assert_equal(name,'LinAlgException')
    assert_equal(desc,['If array is singular.'])

def test_warns():
    assert_equal(len(doc5['Warns']), 1)
    name,_,desc = doc5['Warns'][0]
    assert_equal(name,'SomeWarning')
    assert_equal(desc,['If needed'])

def test_see_also():
    doc6 = NumpyDocString(
    """
    z(x,theta)

    See Also
    --------
    func_a, func_b, func_c
    func_d : some equivalent func
    foo.func_e : some other func over
             multiple lines
    func_f, func_g, :meth:`func_h`, func_j,
    func_k
    :obj:`baz.obj_q`
    :class:`class_j`: fubar
        foobar
    """)

    assert len(doc6['See Also']) == 12
    for func, desc, role in doc6['See Also']:
        if func in ('func_a', 'func_b', 'func_c', 'func_f',
                    'func_g', 'func_h', 'func_j', 'func_k', 'baz.obj_q'):
            assert(not desc)
        else:
            assert(desc)

        if func == 'func_h':
            assert role == 'meth'
        elif func == 'baz.obj_q':
            assert role == 'obj'
        elif func == 'class_j':
            assert role == 'class'
        else:
            assert role is None

        if func == 'func_d':
            assert desc == ['some equivalent func']
        elif func == 'foo.func_e':
            assert desc == ['some other func over', 'multiple lines']
        elif func == 'class_j':
            assert desc == ['fubar', 'foobar']

def test_see_also_print():
    class Dummy(object):
        """
        See Also
        --------
        func_a, func_b
        func_c : some relationship
                 goes here
        func_d
        """
        pass

    obj = Dummy()
    s = str(FunctionDoc(obj, role='func'))
    assert(':func:`func_a`, :func:`func_b`' in s)
    assert('    some relationship' in s)
    assert(':func:`func_d`' in s)

doc7 = NumpyDocString("""

        Doc starts on second line.

        """)

def test_empty_first_line():
    assert doc7['Summary'][0].startswith('Doc starts')


def test_no_summary():
    str(SphinxDocString("""
    Parameters
    ----------"""))


def test_unicode():
    doc = SphinxDocString("""
    öäöäöäöäöåååå

    öäöäöäööäååå

    Parameters
    ----------
    ååå : äää
        ööö

    Returns
    -------
    ååå : ööö
        äää

    """)
    assert doc['Summary'][0] == u'öäöäöäöäöåååå'.encode('utf-8')

def test_plot_examples():
    cfg = dict(use_plots=True)

    doc = SphinxDocString("""
    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> plt.plot([1,2,3],[4,5,6])
    >>> plt.show()
    """, config=cfg)
    assert 'plot::' in str(doc), str(doc)

    doc = SphinxDocString("""
    Examples
    --------
    .. plot::
    
       import matplotlib.pyplot as plt
       plt.plot([1,2,3],[4,5,6])
       plt.show()
    """, config=cfg)
    assert str(doc).count('plot::') == 1, str(doc)

def test_class_members():

    class Dummy(object):
        """
        Dummy class.

        """
        def spam(self, a, b):
            """Spam\n\nSpam spam."""
            pass
        def ham(self, c, d):
            """Cheese\n\nNo cheese."""
            pass

    for cls in (ClassDoc, SphinxClassDoc):
        doc = cls(Dummy, config=dict(show_class_members=False))
        assert 'Methods' not in str(doc), (cls, str(doc))
        assert 'spam' not in str(doc), (cls, str(doc))
        assert 'ham' not in str(doc), (cls, str(doc))

        doc = cls(Dummy, config=dict(show_class_members=True))
        assert 'Methods' in str(doc), (cls, str(doc))
        assert 'spam' in str(doc), (cls, str(doc))
        assert 'ham' in str(doc), (cls, str(doc))

        if cls is SphinxClassDoc:
            assert '.. autosummary::' in str(doc), str(doc)

if __name__ == "__main__":
    import nose
    nose.run()

