from ga_util import *
import scipy.stats as stats
rv = stats
#import scipy.io.dumb_shelve
import string
import os, sys
import time, pprint, types,copy
import dumbdbm
#import thread, sync
if sys.platform != 'win32':
    import fcntl
    timer = time.clock      #clock behaves differently work on linux
else:
    timer = time.time

dberror = dumbdbm.error

def max_score(pop): return max(map(lambda x: x.score(),pop))

class galg:
    """A basic genetic algorithm.  The genetic algorithm is responsible
       for evolving a population of genomes.  While the population and
       the genomes are in charge of defining most of the genetic operators
       such as selection, scaling, mutation, and crossover, it is the
       genetic algorithm class that orchestrates the evolution and calls
       the operators in the correct order.  Most of the work is done
       in the **step()** method.
    """
    valid_settings = ['pop_size','p_replace',
                            'p_cross', 'p_mutate','p_deviation',
                            'gens','rand_seed','rand_alg','dbase','update_rate']
    output_settings = ['crossover','selector', 'scaler','genome_type']
    default_settings = {'pop_size':150,'p_replace':.8,
                            'p_cross': .8, 'p_mutate':'gene',
                            'p_deviation': 0.,'gens':35,
                            'rand_seed':0,'rand_alg':'CMRG',
                            'update_rate': 10000,'dbase':''}
    default_verbose = 1

    def __init__(self,pop):
        self.verbose = self.default_verbose
        self.settings = copy.copy(galg.default_settings)
        self.pop = pop
    def test_settings(self,settings):
        for key in settings.keys():
            try:
                self.output_settings.index(key)
                print 'Warning: The key "%s" in settings is readonly.' % key
            except ValueError:
                try: self.valid_settings.index(key)
                except ValueError:
                    print 'Warning: The key "%s" in not a valid setting.' % key
                    print 'The valid settings are %s' % self.valid_settings

    def initialize(self,reseed = 1):
        b = timer()
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']; alg = self.settings['rand_alg']
        if reseed: rv.initialize(seed = sd, algorithm = alg)
        self.settings['seed_used'] = rv.initial_seed()
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop.model_genome.crossover # get the crossover op from the first genome
        self.pop.settings = self.settings #should these be shared?
        self.size_pop(self.settings['pop_size'])

        self.settings['crossover'] = string.split(str(self.crossover))[0][1:]
        self.settings['selector'] = string.split(str(self.pop.selector))[0][1:]
        self.settings['scaler'] = string.split(str(self.pop.scaler))[0][1:]
        self.settings['genome_type'] = string.split(str(self.pop.model_genome))[0][1:]
#               self._print(self.settings)

        self.pop.initialize(self.settings);
        self.stats = {'selections':0,'crossovers':0,'mutations':0,
                          'replacements':0,'pop_evals':1,'ind_evals':0}
        self.stats.update(self.pop.stats)
        self.step_time = timer() - b
        self.init_dbase()
    def size_pop(self,s):
        self.settings['pop_size'] = s
        self.pop._size(s)

    def step(self,steps=1):
        sz = len(self.pop)
        replace = int(self.settings['p_replace'] * len(self.pop))
        p_crossover = self.settings['p_cross']
        for st in range(steps):
            b = timer()
            for i in range(0,replace,2):
                mom,dad= self.pop.select(2)
                self.stats['selections'] = self.stats['selections'] + 2
                if flip_coin(p_crossover):
                    try:
                        bro,sis = self.crossover((mom,dad))
                        self.stats['crossovers'] = self.stats['crossovers'] + 2
                        self.pop.append(bro); self.pop.append(sis)
                    except ValueError:
                        #crossover failed - just act as if this iteration never happened
                        i = i - 2
                        #print 'crossover failure - ignoring and continuing'
                else:
                    self.pop.append(mom.clone());self.pop.append(dad.clone());
            if replace % 2: #we did one to many - remove the last individual
                del self.pop[-1]
                self.stats['crossovers'] = self.stats['crossovers'] - 1
            e1 = timer();
            self.stats['mutations'] = self.stats['mutations'] + self.pop[sz:].mutate()
#                       for ind in self.pop[sz:]:
#                               m = ind.mutate()
#                               self.stats['mutations'] = self.stats['mutations'] + m
            e2 = timer();
            self.pop.touch()
            self.pop.evaluate()
            e3 = timer();
            del self.pop[sz:] #touch removed from del
            self.pop.scale()
            self.pop.update_stats()
            self.stats['pop_evals'] = self.stats['pop_evals'] + 1
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            #print 'cross:',e1-b,'mutate:',e2-e1,'eval:',e3-e2,'rest:',e-e3
        self.stats.update(self.pop.stats)
        self.db_entry['best_scores'].append(self.stats['current']['max'])

    def evolve(self):
        b = timer()
        self.initialize()
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step()
            self.p_dev = self.pop_deviation()
            self.iteration_output()
            if(self.gen % self.settings['update_rate'] == 0):
                self.update_dbase()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()
    def iteration_output(self):
        output = ( 'gen: ' + `self.gen` + ' '
                 + 'max: ' + `self.stats['current']['max']`  + ' '
                 + 'dev: ' + `self.p_dev` + ' '
                + 'eval time: ' + `self.step_time` + ' ')
        self._print( output )

    def pre_evolve(self):   pass
    def post_evolve(self):  pass
    def pop_deviation(self):
        #calculate the std deviation across all populations as a percent of mean
        scores = self.pop.scores()
        denom = my_mean(scores)
        if denom == 0.: denom = .0001  # what should I do here?
        return abs(my_std(scores)/denom)
    #dbase stuff
    def init_dbase(self):
        self.db_entry = {}
        self.db_entry['settings'] = self.settings
        t=time.time()
        self.db_entry['raw_time'] = t
        self.db_entry['time'] = time.ctime(t)
        self.db_entry['best_scores'] = [self.stats['current']['max']]
        self.db_entry['stats'] = [copy.deepcopy(self.stats)]
        self.db_entry['step_time'] = [self.step_time]
        self.db_entry['optimization_type'] = string.split(str(self.__class__))[0][1:]

    def update_dbase(self):
#               self.db_entry['best_scores'].append(self.pop.best().score())
        self.db_entry['stats'].append(copy.deepcopy(self.stats))
        self.db_entry['step_time'].append(self.step_time)

    def write_dbase(self):
        """This does not do file locking on NT - which isn't that big
           a deal because at the most, two runs are going at a time, and
           they are unlikely going to write at the same time (but could).
           On NT, hopefully we're using the gdbm module which does automatic
           file locking.
        """
        if(self.settings['dbase'] != ''):
            fname= self.settings['dbase']
            try:
                if sys.platform == 'win32': pass
                else:
                    f = open(fname +'.lock','a')
                    fcntl.flock(f.fileno(),fcntl.LOCK_EX)
                try:
                    try: db = my_shelve.open(fname,'w')
                    except dberror: db = my_shelve.open(fname,'c')
                    keys = db.keys()
                    if(len(keys) == 0): self.dbkey = `1`
                    else:
                        gkeys=[]
                        for k in keys:
                            try: gkeys.append(string.atoi(k))
                            except ValueError: pass
                        self.dbkey = `max(gkeys)+1`
                    print 'DB NAME: ', self.settings['dbase'], 'KEY: ', self.dbkey
                    db[self.dbkey] = self.db_entry
                    db.close()
                except: pass #if an error occured, we still need to unlock the db
                if sys.platform == 'win32': pass
                else:
                    fcntl.flock(f.fileno(),fcntl.LOCK_UN)
                    f.close()
            except:
                if sys.platform == 'win32': pass
                else:
                    f = open('error.lock','a')
                    f.write(os.environ['HOST'])
                    f.close()

        else:   "no dbase specified"

    def _print(self,val, level = 1):
        if(self.verbose >= level):
            if type(val) == types.StringType: print val
            else:
                pp = pprint.PrettyPrinter(indent=4)
                pp.pprint(val)


    ALL = -1
class m_galg(galg):
    valid_settings = galg.valid_settings + ['num_pops', 'migrants']
    default_settings = galg.default_settings
    default_settings['pop_size'] = 30; default_settings['num_pops'] = 4
    default_settings['migrants'] = 2

    verbose = 1
    def __init__(self,pop):
        galg.__init__(self,pop)
#               self.GAs = self.GAs + [galg(pop.clone())]
        self.settings = copy.copy(self.default_settings)

    def initialize(self, mode = 'serial'):
        b = timer()
        #same as galg
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']; alg = self.settings['rand_alg']
        rv.initialize(seed = sd, algorithm = alg)
        self.settings['seed_used'] = rv.initial_seed()
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop[0].crossover # get the crossover op from the first genome
        self.pop.settings = self.settings
        #end same as galg

        #set up my population to hold the best from each sub-pop
        self.pop._size(0) #erase any current member of the pop
        self.pop._size(self.settings['num_pops'])
        self.crossover = self.pop[0].crossover

        #extract the galg settings so we don't get a ton of warnings
        #and create the sub ga_s
        sub_ga_settings = {}
        self.GAs = []
        for key in galg.valid_settings:
            sub_ga_settings[key] = self.settings[key]
        for i in range(self.settings['num_pops']):
            self.GAs.append(galg(self.pop.clone()))
            self.GAs[i].settings = sub_ga_settings.copy()

        self.settings['crossover'] = string.split(str(self.crossover))[0][1:]
        self.settings['selector'] = string.split(str(self.pop.selector))[0][1:]
        self.settings['scaler'] = string.split(str(self.pop.scaler))[0][1:]
        self.settings['genome_type'] = string.split(str(self.pop.model_genome))[0][1:]
        self._print(self.settings)

        if mode[0] == 'p' or mode[0] == 'P':
            """
                sys.setcheckinterval(1000)
                finished = sync.event()
                bar = sync.barrier(len(self.GAs))
                for ga in self.GAs:
                        thread.start_new_thread(GA_initializer,(bar,finished,ga))
                finished.wait()
                sys.setcheckinterval(10)
                """
        else:
            for ga in self.GAs: ga.initialize(reseed = 0)
        cnt = 0
        for ga in self.GAs:
            self.pop[cnt] = ga.pop.best()
            cnt = cnt + 1
        self.pop.sort()
        self.init_stats()
        self.step_time = timer() - b
        self.init_dbase()

    def init_stats(self):
        #first set up the pops stats, since we don't officially initialize it.
        self.pop.stats = {'current':{},'initial':{},'overall':{}}
        self.pop.stats['selections'] =0; self.pop.stats['crossovers'] =0
        self.pop.stats['mutations'] = 0; self.pop.stats['replacements'] = 0
        self.pop.stats['ind_evals'] = 0
        self.stats = self.pop.stats.copy()
        self.update_stats()
    def update_stats(self):
        """Gather statistics from the various populations to the mga's population.
        """
        sum_fields = ['selections','crossovers','mutations','replacements','ind_evals']
        s = []
        for ga in self.GAs:
            for field in sum_fields:
                self.pop.stats[field] = self.pop.stats[field] + ga.stats[field]
            s = s + ga.pop.scores().tolist()

        self.pop.stats['current']['max'] = self.pop.best().score()
        self.pop.stats['current']['avg'] = my_mean(s)
        self.pop.stats['current']['min'] = min(s)
        if len(s) > 1: self.pop.stats['current']['dev'] = my_std(s)
        else: self.pop.stats['current']['dev'] = 0
        try: self.pop.stats['overall']['max'] = max(self.pop.stats['overall']['max'],
                                                            self.pop.stats['current']['max'])
        except KeyError: self.pop.stats['overall']['max'] = self.pop.stats['current']['max']
        try: self.pop.stats['overall']['min'] = min(self.pop.stats['overall']['min'],
                                                            self.pop.stats['current']['min'])
        except KeyError: self.pop.stats['overall']['min'] = self.pop.stats['current']['min']
        self.pop.stats
        self.pop.stats['pop_evals'] = self.GAs[0].stats['pop_evals']
        self.stats.update(self.pop.stats)


    def step(self,steps=1,mode = 'serial'):
        for st in range(steps):
            b = timer()
            cnt = 0
            #self.pop._size(0) # used if we keep a single pop
            if mode[0] == 'p' or mode[0] == 'P':
                """
                    sys.setcheckinterval(100)
                    finished = sync.event()
                    bar = sync.barrier(len(self.GAs))
                    for ga in self.GAs:
                            thread.start_new_thread(GA_stepper,(bar,finished,ga))
                    finished.wait()
                    sys.setcheckinterval(10)
                    """
            else:
                for ga in self.GAs: ga.step()

            for ga in self.GAs:
                #replace the worst member of the local pop
                self.pop[-1] = ga.pop.best()
                self.pop.sort()
                #probabaly not the fast approach to things, but... keeps an itelligent pop
                #for ind in ga.pop: self.pop.append(ind)

            self.migrate()
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            self.update_stats()
            self.db_entry['best_scores'].append(self.stats['current']['max'])

    def pop_deviation(self):
        """calculate the std deviation across all populations"""
        all_scores = []
        for ga in self.GAs:
            all_scores = all_scores + ga.pop.scores().tolist()
        if len(all_scores) > 1:
            denom = my_mean(all_scores)
            if denom == 0.: denom = .0001  # what should I do here?
            return abs(my_std(all_scores)/denom)
        return 0

    def evolve(self, mode = 'serial'):
        b = timer()
        self.initialize(mode)
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step(1,mode)
            self.p_dev = self.pop_deviation()
            self.iteration_output()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()

    def migrate(self):
        """Migration moves members from one population to another.  It takes
           the best N individuals of GAs[0] and puts clones of them into
           GAs[1], replacing the worst individuals.  Likewise,
           GAs[1] best replace GAs[2] worst.  GAs[-1] best are moved
           to GAs[0].  This 'stepping stone' migration of individuals allows
           good ideas to move from one population to another, but still
           allows the individual population to maintain som diversity.
        """
        if len(self.GAs) == 1: return
        migrants = self.settings['migrants']
        if migrants > self.settings['pop_size']:
            migrants = self.settings['pop_size']

        movers = []
        for i in range(migrants):
            movers.append(self.GAs[0].pop[i])
        for ga in self.GAs[1:]:
            for i in range(migrants):
                ga.pop[-i] = movers[i].clone() #replace the worst individual
                movers[i] = ga.pop[i]
        for i in range(migrants):
            self.GAs[0].pop[-i] = movers[i].clone() #replace the worst individual


"""
def GA_stepper(bar,finished,GA):
        t1 = timer()
        GA.step()
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()

def GA_initializer(bar,finished,GA):
        t1 = timer()
        GA.initialize(reseed = 0)
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()
"""
