import copy
import dumbdbm
import pprint
import sys
import time

from ga_util import flip_coin, my_mean, my_std
from prng import prng


if sys.platform != 'win32':
    timer = time.clock      #clock behaves differently work on linux
else:
    timer = time.time

dberror = dumbdbm.error

def max_score(pop):
    """ Find the maximum score in a population.
    """
    return max([x.score() for x in pop])

class galg(object):
    """ A basic genetic algorithm.

    The genetic algorithm is responsible for evolving a population of genomes.
    While the population and the genomes are in charge of defining most of the
    genetic operators such as selection, scaling, mutation, and crossover, it is
    the genetic algorithm class that orchestrates the evolution and calls the
    operators in the correct order.  Most of the work is done in the **step()**
    method.
    """
    valid_settings = ['pop_size', 'p_replace', 'p_cross', 'p_mutate',
        'p_deviation', 'gens', 'rand_seed', 'dbase', 'update_rate']
    output_settings = ['crossover', 'selector', 'scaler', 'genome_type']
    default_settings = dict(
        pop_size = 150,
        p_replace = .8,
        p_cross = .8,
        p_mutate = 'gene',
        p_deviation = 0.,
        gens = 35,
        rand_seed = 0,
        update_rate = 10000,
        dbase = '',
    )
    default_verbose = 1

    def __init__(self, pop):
        self.verbose = self.default_verbose
        self.settings = copy.copy(galg.default_settings)
        self.pop = pop

    def test_settings(self, settings):
        """ Check that a settings dictionary is consistent with the settings
        that we can accept.
        """
        for key in settings.keys():
            if key in self.output_settings:
                print 'Warning: The key "%s" in settings is readonly.' % key
            elif key not in self.valid_settings:
                print 'Warning: The key "%s" in not a valid setting.' % key
                print 'The valid settings are %s' % self.valid_settings

    def initialize(self, reseed=True):
        b = timer()
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']
        if reseed:
            prng.seed(sd)
        self.settings['seed_used'] = sd
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop.model_genome.crossover # get the crossover op from the first genome
        self.pop.settings = self.settings #should these be shared?
        self.size_pop(self.settings['pop_size'])

        self.settings['crossover'] = str(self.crossover).split()[0][1:]
        self.settings['selector'] = str(self.pop.selector).split()[0][1:]
        self.settings['scaler'] = str(self.pop.scaler).split()[0][1:]
        self.settings['genome_type'] = str(self.pop.model_genome).split()[0][1:]

        self.pop.initialize(self.settings);
        self.stats = {'selections':0,'crossovers':0,'mutations':0,
                          'replacements':0,'pop_evals':1,'ind_evals':0}
        self.stats.update(self.pop.stats)
        self.step_time = timer() - b
        self.init_dbase()

    def size_pop(self, s):
        """ Set the size of the population.
        """
        self.settings['pop_size'] = s
        self.pop._size(s)

    def step(self, steps=1):
        """ Perform a number of steps.
        """
        sz = len(self.pop)
        replace = int(self.settings['p_replace'] * len(self.pop))
        p_crossover = self.settings['p_cross']
        for st in range(steps):
            b = timer()
            for i in range(0,replace,2):
                mom,dad= self.pop.select(2)
                self.stats['selections'] = self.stats['selections'] + 2
                if flip_coin(p_crossover):
                    try:
                        bro,sis = self.crossover((mom,dad))
                        self.stats['crossovers'] = self.stats['crossovers'] + 2
                        self.pop.append(bro); self.pop.append(sis)
                    except ValueError:
                        #crossover failed - just act as if this iteration never happened
                        i = i - 2
                        #print 'crossover failure - ignoring and continuing'
                else:
                    self.pop.append(mom.clone());self.pop.append(dad.clone());
            if replace % 2: #we did one to many - remove the last individual
                del self.pop[-1]
                self.stats['crossovers'] = self.stats['crossovers'] - 1
            e1 = timer();
            self.stats['mutations'] = self.stats['mutations'] + self.pop[sz:].mutate()
#                       for ind in self.pop[sz:]:
#                               m = ind.mutate()
#                               self.stats['mutations'] = self.stats['mutations'] + m
            e2 = timer();
            self.pop.touch()
            self.pop.evaluate()
            e3 = timer();
            del self.pop[sz:] #touch removed from del
            self.pop.scale()
            self.pop.update_stats()
            self.stats['pop_evals'] = self.stats['pop_evals'] + 1
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            #print 'cross:',e1-b,'mutate:',e2-e1,'eval:',e3-e2,'rest:',e-e3
        self.stats.update(self.pop.stats)
        self.db_entry['best_scores'].append(self.stats['current']['max'])

    def evolve(self):
        b = timer()
        self.initialize()
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step()
            self.p_dev = self.pop_deviation()
            self.iteration_output()
            if(self.gen % self.settings['update_rate'] == 0):
                self.update_dbase()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()

    def iteration_output(self):
        output = ( 'gen: ' + `self.gen` + ' '
                 + 'max: ' + `self.stats['current']['max']`  + ' '
                 + 'dev: ' + `self.p_dev` + ' '
                + 'eval time: ' + `self.step_time` + ' ')
        self._print( output )

    def pre_evolve(self):   pass
    def post_evolve(self):  pass
    def pop_deviation(self):
        #calculate the std deviation across all populations as a percent of mean
        scores = self.pop.scores()
        denom = my_mean(scores)
        if denom == 0.: denom = .0001  # what should I do here?
        return abs(my_std(scores)/denom)
    #dbase stuff
    def init_dbase(self):
        self.db_entry = {}
        self.db_entry['settings'] = self.settings
        t=time.time()
        self.db_entry['raw_time'] = t
        self.db_entry['time'] = time.ctime(t)
        self.db_entry['best_scores'] = [self.stats['current']['max']]
        self.db_entry['stats'] = [copy.deepcopy(self.stats)]
        self.db_entry['step_time'] = [self.step_time]
        self.db_entry['optimization_type'] = str(self.__class__).split()[0][1:]

    def update_dbase(self):
#               self.db_entry['best_scores'].append(self.pop.best().score())
        self.db_entry['stats'].append(copy.deepcopy(self.stats))
        self.db_entry['step_time'].append(self.step_time)

    def write_dbase(self):
        """This does not do file locking on NT - which isn't that big
           a deal because at the most, two runs are going at a time, and
           they are unlikely going to write at the same time (but could).
           On NT, hopefully we're using the gdbm module which does automatic
           file locking.
        """
        # XXX: broken. No my_shelve. Rewrite.
        raise NotImplementedError
#        if(self.settings['dbase'] != ''):
#            fname= self.settings['dbase']
#            try:
#                if sys.platform == 'win32': pass
#                else:
#                    f = open(fname +'.lock','a')
#                    fcntl.flock(f.fileno(),fcntl.LOCK_EX)
#                try:
#                    try: db = my_shelve.open(fname,'w')
#                    except dberror: db = my_shelve.open(fname,'c')
#                    keys = db.keys()
#                    if(len(keys) == 0): self.dbkey = `1`
#                    else:
#                        gkeys=[]
#                        for k in keys:
#                            try: gkeys.append(string.atoi(k))
#                            except ValueError: pass
#                        self.dbkey = `max(gkeys)+1`
#                    print 'DB NAME: ', self.settings['dbase'], 'KEY: ', self.dbkey
#                    db[self.dbkey] = self.db_entry
#                    db.close()
#                except: pass #if an error occured, we still need to unlock the db
#                if sys.platform == 'win32': pass
#                else:
#                    fcntl.flock(f.fileno(),fcntl.LOCK_UN)
#                    f.close()
#            except:
#                if sys.platform == 'win32': pass
#                else:
#                    f = open('error.lock','a')
#                    f.write(os.environ['HOST'])
#                    f.close()
#
#        else:   "no dbase specified"

    def _print(self, val, level=1):
        if(self.verbose >= level):
            if isinstance(val, basestring):
                print val
            else:
                pp = pprint.PrettyPrinter(indent=4)
                pp.pprint(val)


    ALL = -1



class m_galg(galg):
    valid_settings = galg.valid_settings + ['num_pops', 'migrants']
    default_settings = galg.default_settings
    default_settings['pop_size'] = 30; default_settings['num_pops'] = 4
    default_settings['migrants'] = 2

    verbose = 1

    def __init__(self,pop):
        galg.__init__(self,pop)
#               self.GAs = self.GAs + [galg(pop.clone())]
        self.settings = copy.copy(self.default_settings)

    def initialize(self, mode='serial', reseed=True):
        b = timer()
        #same as galg
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']
        if reseed:
            prng.seed(sd)
        self.settings['seed_used'] = sd
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop[0].crossover # get the crossover op from the first genome
        self.pop.settings = self.settings
        #end same as galg

        #set up my population to hold the best from each sub-pop
        self.pop._size(0) #erase any current member of the pop
        self.pop._size(self.settings['num_pops'])
        self.crossover = self.pop[0].crossover

        #extract the galg settings so we don't get a ton of warnings
        #and create the sub ga_s
        sub_ga_settings = {}
        self.GAs = []
        for key in galg.valid_settings:
            sub_ga_settings[key] = self.settings[key]
        for i in range(self.settings['num_pops']):
            self.GAs.append(galg(self.pop.clone()))
            self.GAs[i].settings = sub_ga_settings.copy()

        self.settings['crossover'] = str(self.crossover).split()[0][1:]
        self.settings['selector'] = str(self.pop.selector).split()[0][1:]
        self.settings['scaler'] = str(self.pop.scaler).split()[0][1:]
        self.settings['genome_type'] = str(self.pop.model_genome).split()[0][1:]
        self._print(self.settings)

        if mode[0] == 'p' or mode[0] == 'P':
            # XXX: what?
            """
                sys.setcheckinterval(1000)
                finished = sync.event()
                bar = sync.barrier(len(self.GAs))
                for ga in self.GAs:
                        thread.start_new_thread(GA_initializer,(bar,finished,ga))
                finished.wait()
                sys.setcheckinterval(10)
                """
        else:
            for ga in self.GAs: ga.initialize(reseed = False)
        cnt = 0
        for ga in self.GAs:
            self.pop[cnt] = ga.pop.best()
            cnt = cnt + 1
        self.pop.sort()
        self.init_stats()
        self.step_time = timer() - b
        self.init_dbase()

    def init_stats(self):
        #first set up the pops stats, since we don't officially initialize it.
        self.pop.stats = {'current':{},'initial':{},'overall':{}}
        self.pop.stats['selections'] =0; self.pop.stats['crossovers'] =0
        self.pop.stats['mutations'] = 0; self.pop.stats['replacements'] = 0
        self.pop.stats['ind_evals'] = 0
        self.stats = self.pop.stats.copy()
        self.update_stats()
    def update_stats(self):
        """Gather statistics from the various populations to the mga's population.
        """
        sum_fields = ['selections','crossovers','mutations','replacements','ind_evals']
        s = []
        for ga in self.GAs:
            for field in sum_fields:
                self.pop.stats[field] = self.pop.stats[field] + ga.stats[field]
            s = s + ga.pop.scores().tolist()

        self.pop.stats['current']['max'] = self.pop.best().score()
        self.pop.stats['current']['avg'] = my_mean(s)
        self.pop.stats['current']['min'] = min(s)
        if len(s) > 1: self.pop.stats['current']['dev'] = my_std(s)
        else: self.pop.stats['current']['dev'] = 0
        try: self.pop.stats['overall']['max'] = max(self.pop.stats['overall']['max'],
                                                            self.pop.stats['current']['max'])
        except KeyError: self.pop.stats['overall']['max'] = self.pop.stats['current']['max']
        try: self.pop.stats['overall']['min'] = min(self.pop.stats['overall']['min'],
                                                            self.pop.stats['current']['min'])
        except KeyError: self.pop.stats['overall']['min'] = self.pop.stats['current']['min']
        self.pop.stats  # XXX: Is this a no-op?
        self.pop.stats['pop_evals'] = self.GAs[0].stats['pop_evals']
        self.stats.update(self.pop.stats)


    def step(self,steps=1,mode = 'serial'):
        for st in range(steps):
            b = timer()
            cnt = 0
            #self.pop._size(0) # used if we keep a single pop
            if mode[0] == 'p' or mode[0] == 'P':
                """
                    sys.setcheckinterval(100)
                    finished = sync.event()
                    bar = sync.barrier(len(self.GAs))
                    for ga in self.GAs:
                            thread.start_new_thread(GA_stepper,(bar,finished,ga))
                    finished.wait()
                    sys.setcheckinterval(10)
                    """
            else:
                for ga in self.GAs: ga.step()

            for ga in self.GAs:
                #replace the worst member of the local pop
                self.pop[-1] = ga.pop.best()
                self.pop.sort()
                #probabaly not the fast approach to things, but... keeps an itelligent pop
                #for ind in ga.pop: self.pop.append(ind)

            self.migrate()
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            self.update_stats()
            self.db_entry['best_scores'].append(self.stats['current']['max'])

    def pop_deviation(self):
        """calculate the std deviation across all populations"""
        all_scores = []
        for ga in self.GAs:
            all_scores = all_scores + ga.pop.scores().tolist()
        if len(all_scores) > 1:
            denom = my_mean(all_scores)
            if denom == 0.: denom = .0001  # what should I do here?
            return abs(my_std(all_scores)/denom)
        return 0

    def evolve(self, mode = 'serial'):
        b = timer()
        self.initialize(mode)
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step(1,mode)
            self.p_dev = self.pop_deviation()
            self.iteration_output()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()

    def migrate(self):
        """Migration moves members from one population to another.  It takes
           the best N individuals of GAs[0] and puts clones of them into
           GAs[1], replacing the worst individuals.  Likewise,
           GAs[1] best replace GAs[2] worst.  GAs[-1] best are moved
           to GAs[0].  This 'stepping stone' migration of individuals allows
           good ideas to move from one population to another, but still
           allows the individual population to maintain som diversity.
        """
        if len(self.GAs) == 1: return
        migrants = self.settings['migrants']
        if migrants > self.settings['pop_size']:
            migrants = self.settings['pop_size']

        movers = []
        for i in range(migrants):
            movers.append(self.GAs[0].pop[i])
        for ga in self.GAs[1:]:
            for i in range(migrants):
                ga.pop[-i] = movers[i].clone() #replace the worst individual
                movers[i] = ga.pop[i]
        for i in range(migrants):
            self.GAs[0].pop[-i] = movers[i].clone() #replace the worst individual


"""
def GA_stepper(bar,finished,GA):
        t1 = timer()
        GA.step()
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()

def GA_initializer(bar,finished,GA):
        t1 = timer()
        GA.initialize(reseed = False)
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()
"""
