## Automatically adapted for scipy Oct 31, 2005 by

# $Id: plwf.py 2182 2006-08-29 07:22:11Z oliphant $
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved.  See Legal.htm for full text and disclaimer.

#
#  PLWF.PY
#  Simple "painter's algorithm"-class routine for making 3-D wire frames
#  and related models.
#
#  $Id: plwf.py 2182 2006-08-29 07:22:11Z oliphant $
#

## execfile ("pl3d.py")
from types import *
from pl3d import *

def plwf (z, y = None, x = None, fill = None, shade = 0, edges = 1,
   ecolor =  None, ewidth = None, cull = None, scale = None, cmax = None,
   clear = 1) :

    """
    plwf (z)
    or plwf (z, y, x)

      plots a 3-D wire frame of the given Z array, which must have the
      same dimensions as the mesh (X, Y).  If X and Y are not given, they
      default to the first and second indices of Z, respectively.
      The drawing order of the zones is determined by a simple "painter's
      algorithm", which works fairly well if the mesh is reasonably near
      rectilinear, but can fail even then if the viewpoint is chosen to
      produce extreme fisheye perspective effects.  Look at the resulting
      plot carefully to be sure the algorithm has correctly rendered the
      model in each case.

    KEYWORDS: fill   -- optional colors to use (default is to make zones
                        have background color), same dimension options as
                        for z argument to plf function
              shade  -- set non-zero to compute shading from current
                        3D lighting sources
              edges  -- default is 1 (draw edges), but if you provide fill
                        colors, you may set to 0 to supress the edges
              ecolor, ewidth  -- color and width of edges
              cull   -- default is 1 (cull back surfaces), but if you want
                        to see the "underside" of the model, set to 0
              scale  -- by default, Z is scaled to "reasonable" maximum
                        and minimum values related to the scale of (X,Y).
                        This keyword alters the default scaling factor, in
                        the sense that scale=2.0 will produce twice the
                        Z-relief of the default scale=1.0.
              cmax   -- the ambient= keyword in light3 can be used to
                        control how dark the darkest surface is; use this
                        to control how light the lightest surface is
                        the lightwf routine can change this parameter
                        interactively

    SEE ALSO: lightwf, plm, plf, orient3, light3, fma3, window3
    """

    _draw3 = get_draw3_ ( )
    _square = get_square_ ( )
    [_xfactor, _yfactor] = get_factors_ ( )

    if (type (z) == ListType) :
        xyz = z [0]
        fill = z [1]
        shade = z [2]
        edges = z [3]
        ecolor = z [4]
        ewidth = z [5]
        cull = z [6]
        cmax = z [7]

        xyz1 = get3_xy(xyz, 1)
        x = xyz [0] # the original x
        y = xyz [1] # the original y


        # rotate (x,y,0) into on-screen orientation to determine order
        # just use four corners for this
        nx = shape (x)
        ny = nx [1]
        nx = nx [0]
        xx = array([[x [0, 0], x[nx - 1, 0]],
                    [x [0, ny - 1] , x[nx - 1, ny - 1]]])
        yy = array([[y [0, 0], y[nx - 1, 0]],
                    [y [0, ny - 1] , y[nx - 1, ny - 1]]])
        xyzc = array ( [ xx , yy, array ( [ [0., 0.], [0., 0.]])])
        xyzc = get3_xy(xyzc, 1)

        # compute mean i-edge and j-edge vector z-components
        iedge = avg_ (xyzc [2, :, -1] - xyzc [2, :, 0])
        jedge = avg_ (xyzc [2, -1] - xyzc [2, 0])

        # compute shading if necessary
        if (shade) :
            xyz = xyz1
            fill = get3_light (xyz)
        # The order either requires a transpose or not, reversal of the
        # order of the first dimension or not, and reversal of the order
        # of the second dimension or not.

        # The direction with the minimum magnitude average z-component must
        # vary fastest in the painting order.  If this is the j-direction,
        # a transpose will be required to make this the i-direction.
        if abs (iedge) < abs (jedge) :
            tmp = iedge
            iedge = jedge
            jedge = tmp
            x = transpose (array (xyz1 [0]))
            y = transpose (array (xyz1 [1]))
            if fill != None :
                fill = transpose (fill)
        else :
            x = xyz1 [0]
            y = xyz1 [1]

        # Zones must be drawn from back to front, which means that the
        # average z-component of the edge vectors must be positive.  This
        # can be arranged by reversing the order of the elements if
        # necessary.
        if iedge < 0.0 :
            x = reverse (x, 0)
            y = reverse (y, 0)
            if fill != None :
                fill = reverse (fill, 0)
        if jedge < 0.0 :
            x = reverse (x, 1)
            y = reverse (y, 1)
            if fill != None :
                fill = reverse (fill, 1)
        xmax = maxelt_ (x)
        xmin = minelt_ (x)
        ymax = maxelt_ (y)
        ymin = minelt_ (y)
        if _xfactor != 1. :
            xmax = xmax + (_xfactor - 1) * (xmax - xmin) / 2.0
            xmin = xmin - (_xfactor - 1) * (xmax - xmin) / 2.0
        if _yfactor != 1. :
            ymax = ymax + (_yfactor - 1) * (ymax - ymin) / 2.0
            ymin = ymin - (_yfactor - 1) * (ymax - ymin) / 2.0
        if _square :
            xdif = xmax - xmin
            ydif = ymax - ymin
            if xdif > ydif :
                dif = (xdif - ydif) / 2.
                ymin = ymin - dif
                ymax = ymax + dif
            elif ydif > xdif :
                dif = (ydif - xdif) / 2.
                xmin = xmin - dif
                xmax = xmax + dif
        if fill != None :
            if len (fill.shape) == 1:
                fill = bytscl (fill)
            else:
                k = fill.shape [0]
                l = fill.shape [1]
                fill = reshape ( bytscl (ravel (fill)), (k, l))
        if cull == 0 : #transparent mesh
            if ecolor != None :
                plm (y, x, color = ecolor)
            else :
                plm (y, x)
        elif ecolor != None and ewidth != None and cmax != None :
            plf (fill, y, x, edges = edges, ecolor = ecolor,
                 ewidth = ewidth, cmin = 0.0, cmax = cmax, legend = "")
        elif ecolor != None and ewidth != None :
            plf (fill, y, x, edges = edges, ewidth = ewidth,
                 cmin = 0.0, ecolor = ecolor, legend = "")
        elif ecolor != None and cmax != None :
            plf (fill, y, x, edges = edges, ecolor = ecolor,
                 cmin = 0.0, cmax = cmax, legend = "")
        elif ewidth != None and cmax != None :
            plf (fill, y, x, edges = edges,  ewidth = ewidth,
                 cmin = 0.0, cmax = cmax, legend = "")
        elif ecolor != None :
            plf (fill, y, x, edges = edges, ecolor = ecolor,
                 cmin = 0.0, legend = "")
        elif ewidth != None :
            plf (fill, y, x, edges = edges, ewidth = ewidth,
                 cmin = 0.0, legend = "")
        elif cmax != None :
            plf (fill, y, x, edges = edges,
                 cmin = 0.0, cmax = cmax, legend = "")
        else :
            plf (fill, y, x, edges = edges, cmin = 0.0, legend = "")
        return [xmin, xmax, ymin, ymax]

    xyz = xyz_wf (z, y, x, scale = scale)

    if clear :
        clear3 ( )
    set3_object (plwf, [xyz, fill, shade, edges, ecolor, ewidth, cull, cmax])
    if ( _draw3 ) :
        call_idler ( ) # This will traverse and execute the drawing list
                       # if the default idler has been set.

_LightwfError = "LightwfError"

def lightwf (cmax) :

    """
    lightwf (cmax)
      Sets the cmax= parameter interactively, assuming the current
      3D display list contains the result of a previous plwf call.
      This changes the color of the brightest surface in the picture.
      The darkest surface color can be controlled using the ambient=
      keyword to light3.

    SEE ALSO: plwf, light3
    """

    _draw3_list = get_draw3_list_ ()
    _draw3_n = get_draw3_n_ ()
    list = _draw3_list [_draw3_n:]
    if list [0] != plwf :
        raise _LightwfError, "current 3D display list is not a plwf"
    list [1] [7] = cmax
    undo3_set_ (lightwf, list)


_Xyz_wfError = "Xyz_wfError"

def xyz_wf (z, y, x, scale = 1.0) :

    """
    xyz_wf (z, [y, x] [,scale = 1.0])
       returns a 3-by-ni-by-nj array whose 0th entry is x, 1th entry
       is y, and 2th entry is z. z is ni-by-nj. x and y, if present,
       must be the same shape. If not present, integer ranges will
       be used to create an equally spaced coordinate grid in x and y.
       The function which scales the "topography" of z(x,y) is
       potentially useful apart from plwf.
       For example, the xyz array used by plwf can be converted from
       a quadrilateral mesh plotted using plf to a polygon list plotted
       using plfp like this:
         xyz= xyz_wf(z,y,x,scale=scale);
         ni= shape(z)[1];
         nj= shape(z)[2];
         list = ravel (add.outer (
            ravel(add.outer (adders,zeros(nj-1, Int))) +
            arange((ni-1)*(nj-1), dtype = Int),
            array ( [[0, 1], [nj + 1, nj]])))
         xyz=array([take(ravel(xyz[0]),list,0),
            take(ravel(xyz[1]),list,0),
            take(ravel(xyz[2]),list,0)])
         nxyz= ones((ni-1)*(nj-1)) * 4;
       The resulting array xyz is 3-by-(4*(nj-1)*(ni-1)).
       xyz[0:3,4*i:4*(i+1)] are the clockwise coordinates of the
       vertices of cell number i.
    """

    if len (shape (z)) < 2 :
        raise _Xyz_wfError, "impossible dimensions for z array"
    nx = shape (z) [0]
    ny = shape (z) [1]
    if y == None or x == None :
        if x != None or y != None :
            raise _Xyz_wfError, "either give y,x both or neither"
        x = span (0, ny - 1, ny, nx)
        y = transpose (span (0, nx - 1, nx, ny))
    elif shape (x) != shape (z) or shape (y) != shape (z) :
        raise _Xyz_wfError, "x, y, and z must all have same dimensions"
    xyscl = max (maxelt_ (x) - minelt_ (x),
                 maxelt_ (y) - minelt_ (y))
    if scale != None:
        xyscl = xyscl * scale
    dz = maxelt_ (z) - minelt_ (z)
    zscl= dz + (dz == 0.0)
    if zscl :
        z = z * 0.5 * xyscl /zscl
    xbar = avg_ (x)
    ybar = avg_ (y)
    zbar = avg_ (z)
    xyz = array ( [x - xbar, y - ybar, z - zbar], Float)
    return (xyz)
