import numpy as np

_data_cache = None


def isosurface(data, level):
    """
    Generate isosurface from volumetric data using marching cubes algorithm.
    See Paul Bourke, "Polygonising a Scalar Field"  
    (http://paulbourke.net/geometry/polygonise/)

    *data*   3D numpy array of scalar values
    *level*  The level at which to generate an isosurface

    Returns an array of vertex coordinates (Nv, 3) and an array of 
    per-face vertex indexes (Nf, 3)    
    """
    # For improvement, see:
    # 
    # Efficient implementation of Marching Cubes' cases with topological 
    # guarantees.
    # Thomas Lewiner, Helio Lopes, Antonio Wilson Vieira and Geovan Tavares.
    # Journal of Graphics Tools 8(2): pp. 1-15 (december 2003)

    (face_shift_tables, edge_shifts, 
     edge_table, n_table_faces) = _get_data_cache()

    # mark everything below the isosurface level
    mask = data < level

    # Because we make use of the strides data attribute below, we have to make 
    # sure that the data is contiguous (which it won't be if the user did 
    # data.transpose() for example). Note that this doesn't copy the data if it 
    # is already contiguous.
    data = np.ascontiguousarray(data)

    # make eight sub-fields and compute indexes for grid cells
    index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte)
    fields = np.empty((2, 2, 2), dtype=object)
    slices = [slice(0, -1), slice(1, None)]
    for i in [0, 1]:
        for j in [0, 1]:
            for k in [0, 1]:
                fields[i, j, k] = mask[slices[i], slices[j], slices[k]]
                # this is just to match Bourk's vertex numbering scheme:
                vertIndex = i - 2*j*i + 3*j + 4*k
                index += (fields[i, j, k] * 2**vertIndex).astype(np.ubyte)

    # Generate table of edges that have been cut
    cut_edges = np.zeros([x+1 for x in index.shape]+[3], dtype=np.uint32)
    edges = edge_table[index]
    for i, shift in enumerate(edge_shifts[:12]):        
        slices = [slice(shift[j], cut_edges.shape[j]+(shift[j]-1)) 
                  for j in range(3)]
        cut_edges[slices[0], slices[1], slices[2], shift[3]] += edges & 2**i

    # for each cut edge, interpolate to see where exactly the edge is cut and 
    # generate vertex positions
    m = cut_edges > 0
    vertex_inds = np.argwhere(m)  # argwhere is slow!
    vertexes = vertex_inds[:, :3].astype(np.float32).copy()
    dataFlat = data.reshape(data.shape[0]*data.shape[1]*data.shape[2])

    # re-use the cut_edges array as a lookup table for vertex IDs
    cut_edges[vertex_inds[:, 0], 
              vertex_inds[:, 1], 
              vertex_inds[:, 2], 
              vertex_inds[:, 3]] = np.arange(vertex_inds.shape[0])

    for i in [0, 1, 2]:
        vim = vertex_inds[:, 3] == i
        vi = vertex_inds[vim, :3]
        vi_flat = (vi * (np.array(data.strides[:3]) // 
                         data.itemsize)[np.newaxis, :]).sum(axis=1)
        v1 = dataFlat[vi_flat]
        v2 = dataFlat[vi_flat + data.strides[i]//data.itemsize]
        vertexes[vim, i] += (level-v1) / (v2-v1)

    # compute the set of vertex indexes for each face. 

    # This works, but runs a bit slower.
    # all cells with at least one face:
    # cells = np.argwhere((index != 0) & (index != 255))  
    # cellInds = index[cells[:, 0], cells[:, 1], cells[:, 2]]
    # verts = faceTable[cellInds]
    # mask = verts[..., 0, 0] != 9
    # we now have indexes into cut_edges:
    # verts[...,:3] += cells[:, np.newaxis, np.newaxis,:]
    # verts = verts[mask]
    # and these are the vertex indexes we want:
    # faces = cut_edges[verts[..., 0], verts[..., 1], verts[..., 2], 
    #                  verts[..., 3]]  

    # To allow this to be vectorized efficiently, we count the number of faces 
    # in each grid cell and handle each group of cells with the same number 
    # together.

    # determine how many faces to assign to each grid cell
    n_faces = n_table_faces[index]
    tot_faces = n_faces.sum()
    faces = np.empty((tot_faces, 3), dtype=np.uint32)
    ptr = 0

    # this helps speed up an indexing operation later on
    cs = np.array(cut_edges.strides)//cut_edges.itemsize
    cut_edges = cut_edges.flatten()

    # this, strangely, does not seem to help.
    # ins = np.array(index.strides)/index.itemsize
    # index = index.flatten()

    for i in range(1, 6):
        # expensive:
        # all cells which require i faces  (argwhere is expensive)
        cells = np.argwhere(n_faces == i)  
        if cells.shape[0] == 0:
            continue
        # index values of cells to process for this round:
        cellInds = index[cells[:, 0], cells[:, 1], cells[:, 2]]

        # expensive:
        verts = face_shift_tables[i][cellInds]
        # we now have indexes into cut_edges:
        verts[..., :3] += (cells[:, np.newaxis,
                                 np.newaxis, :]).astype(np.uint16)
        verts = verts.reshape((verts.shape[0]*i,)+verts.shape[2:])

        # expensive:
        verts = (verts * cs[np.newaxis, np.newaxis, :]).sum(axis=2)
        vert_inds = cut_edges[verts]
        nv = vert_inds.shape[0]
        faces[ptr:ptr+nv] = vert_inds  # .reshape((nv, 3))
        ptr += nv

    return vertexes, faces


def _get_data_cache():
    # Precompute lookup tables on the first run

    global _data_cache

    if _data_cache is None:
        # map from grid cell index to edge index.
        # grid cell index tells us which corners are below the isosurface,
        # edge index tells us which edges are cut by the isosurface.
        # (Data stolen from Bourk; see above.)
        edge_table = np.array([
            0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a,
            0xd03, 0xe09, 0xf00, 0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 
            0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 
            0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa, 
            0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 
            0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 
            0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 
            0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c, 
            0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 
            0x2cf, 0x1c5, 0xcc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 
            0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 
            0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 
            0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 
            0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 
            0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 
            0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0, 
            0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 
            0x33, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 
            0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 
            0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0], dtype=np.uint16)

        # Table of triangles to use for filling each grid cell.
        # Each set of three integers tells us which three edges to
        # draw a triangle between.
        # (Data stolen from Bourk; see above.)
        triTable = [
            [],
            [0, 8, 3],
            [0, 1, 9],
            [1, 8, 3, 9, 8, 1],
            [1, 2, 10],
            [0, 8, 3, 1, 2, 10],
            [9, 2, 10, 0, 2, 9],
            [2, 8, 3, 2, 10, 8, 10, 9, 8],
            [3, 11, 2],
            [0, 11, 2, 8, 11, 0],
            [1, 9, 0, 2, 3, 11],
            [1, 11, 2, 1, 9, 11, 9, 8, 11],
            [3, 10, 1, 11, 10, 3],
            [0, 10, 1, 0, 8, 10, 8, 11, 10],
            [3, 9, 0, 3, 11, 9, 11, 10, 9],
            [9, 8, 10, 10, 8, 11],
            [4, 7, 8],
            [4, 3, 0, 7, 3, 4],
            [0, 1, 9, 8, 4, 7],
            [4, 1, 9, 4, 7, 1, 7, 3, 1],
            [1, 2, 10, 8, 4, 7],
            [3, 4, 7, 3, 0, 4, 1, 2, 10],
            [9, 2, 10, 9, 0, 2, 8, 4, 7],
            [2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4],
            [8, 4, 7, 3, 11, 2],
            [11, 4, 7, 11, 2, 4, 2, 0, 4],
            [9, 0, 1, 8, 4, 7, 2, 3, 11],
            [4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1],
            [3, 10, 1, 3, 11, 10, 7, 8, 4],
            [1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4],
            [4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3],
            [4, 7, 11, 4, 11, 9, 9, 11, 10],
            [9, 5, 4],
            [9, 5, 4, 0, 8, 3],
            [0, 5, 4, 1, 5, 0],
            [8, 5, 4, 8, 3, 5, 3, 1, 5],
            [1, 2, 10, 9, 5, 4],
            [3, 0, 8, 1, 2, 10, 4, 9, 5],
            [5, 2, 10, 5, 4, 2, 4, 0, 2],
            [2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8],
            [9, 5, 4, 2, 3, 11],
            [0, 11, 2, 0, 8, 11, 4, 9, 5],
            [0, 5, 4, 0, 1, 5, 2, 3, 11],
            [2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5],
            [10, 3, 11, 10, 1, 3, 9, 5, 4],
            [4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10],
            [5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3],
            [5, 4, 8, 5, 8, 10, 10, 8, 11],
            [9, 7, 8, 5, 7, 9],
            [9, 3, 0, 9, 5, 3, 5, 7, 3],
            [0, 7, 8, 0, 1, 7, 1, 5, 7],
            [1, 5, 3, 3, 5, 7],
            [9, 7, 8, 9, 5, 7, 10, 1, 2],
            [10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3],
            [8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2],
            [2, 10, 5, 2, 5, 3, 3, 5, 7],
            [7, 9, 5, 7, 8, 9, 3, 11, 2],
            [9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11],
            [2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7],
            [11, 2, 1, 11, 1, 7, 7, 1, 5],
            [9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11],
            [5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0],
            [11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0],
            [11, 10, 5, 7, 11, 5],
            [10, 6, 5],
            [0, 8, 3, 5, 10, 6],
            [9, 0, 1, 5, 10, 6],
            [1, 8, 3, 1, 9, 8, 5, 10, 6],
            [1, 6, 5, 2, 6, 1],
            [1, 6, 5, 1, 2, 6, 3, 0, 8],
            [9, 6, 5, 9, 0, 6, 0, 2, 6],
            [5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8],
            [2, 3, 11, 10, 6, 5],
            [11, 0, 8, 11, 2, 0, 10, 6, 5],
            [0, 1, 9, 2, 3, 11, 5, 10, 6],
            [5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11],
            [6, 3, 11, 6, 5, 3, 5, 1, 3],
            [0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6],
            [3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9],
            [6, 5, 9, 6, 9, 11, 11, 9, 8],
            [5, 10, 6, 4, 7, 8],
            [4, 3, 0, 4, 7, 3, 6, 5, 10],
            [1, 9, 0, 5, 10, 6, 8, 4, 7],
            [10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4],
            [6, 1, 2, 6, 5, 1, 4, 7, 8],
            [1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7],
            [8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6],
            [7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9],
            [3, 11, 2, 7, 8, 4, 10, 6, 5],
            [5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11],
            [0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6],
            [9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6],
            [8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6],
            [5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11],
            [0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7],
            [6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9],
            [10, 4, 9, 6, 4, 10],
            [4, 10, 6, 4, 9, 10, 0, 8, 3],
            [10, 0, 1, 10, 6, 0, 6, 4, 0],
            [8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10],
            [1, 4, 9, 1, 2, 4, 2, 6, 4],
            [3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4],
            [0, 2, 4, 4, 2, 6],
            [8, 3, 2, 8, 2, 4, 4, 2, 6],
            [10, 4, 9, 10, 6, 4, 11, 2, 3],
            [0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6],
            [3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10],
            [6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1],
            [9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3],
            [8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1],
            [3, 11, 6, 3, 6, 0, 0, 6, 4],
            [6, 4, 8, 11, 6, 8],
            [7, 10, 6, 7, 8, 10, 8, 9, 10],
            [0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10],
            [10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0],
            [10, 6, 7, 10, 7, 1, 1, 7, 3],
            [1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7],
            [2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9],
            [7, 8, 0, 7, 0, 6, 6, 0, 2],
            [7, 3, 2, 6, 7, 2],
            [2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7],
            [2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7],
            [1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11],
            [11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1],
            [8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6],
            [0, 9, 1, 11, 6, 7],
            [7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0],
            [7, 11, 6],
            [7, 6, 11],
            [3, 0, 8, 11, 7, 6],
            [0, 1, 9, 11, 7, 6],
            [8, 1, 9, 8, 3, 1, 11, 7, 6],
            [10, 1, 2, 6, 11, 7],
            [1, 2, 10, 3, 0, 8, 6, 11, 7],
            [2, 9, 0, 2, 10, 9, 6, 11, 7],
            [6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8],
            [7, 2, 3, 6, 2, 7],
            [7, 0, 8, 7, 6, 0, 6, 2, 0],
            [2, 7, 6, 2, 3, 7, 0, 1, 9],
            [1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6],
            [10, 7, 6, 10, 1, 7, 1, 3, 7],
            [10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8],
            [0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7],
            [7, 6, 10, 7, 10, 8, 8, 10, 9],
            [6, 8, 4, 11, 8, 6],
            [3, 6, 11, 3, 0, 6, 0, 4, 6],
            [8, 6, 11, 8, 4, 6, 9, 0, 1],
            [9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6],
            [6, 8, 4, 6, 11, 8, 2, 10, 1],
            [1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6],
            [4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9],
            [10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3],
            [8, 2, 3, 8, 4, 2, 4, 6, 2],
            [0, 4, 2, 4, 6, 2],
            [1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8],
            [1, 9, 4, 1, 4, 2, 2, 4, 6],
            [8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1],
            [10, 1, 0, 10, 0, 6, 6, 0, 4],
            [4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3],
            [10, 9, 4, 6, 10, 4],
            [4, 9, 5, 7, 6, 11],
            [0, 8, 3, 4, 9, 5, 11, 7, 6],
            [5, 0, 1, 5, 4, 0, 7, 6, 11],
            [11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5],
            [9, 5, 4, 10, 1, 2, 7, 6, 11],
            [6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5],
            [7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2],
            [3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6],
            [7, 2, 3, 7, 6, 2, 5, 4, 9],
            [9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7],
            [3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0],
            [6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8],
            [9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7],
            [1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4],
            [4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10],
            [7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10],
            [6, 9, 5, 6, 11, 9, 11, 8, 9],
            [3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5],
            [0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11],
            [6, 11, 3, 6, 3, 5, 5, 3, 1],
            [1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6],
            [0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10],
            [11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5],
            [6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3],
            [5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2],
            [9, 5, 6, 9, 6, 0, 0, 6, 2],
            [1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8],
            [1, 5, 6, 2, 1, 6],
            [1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6],
            [10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0],
            [0, 3, 8, 5, 6, 10],
            [10, 5, 6],
            [11, 5, 10, 7, 5, 11],
            [11, 5, 10, 11, 7, 5, 8, 3, 0],
            [5, 11, 7, 5, 10, 11, 1, 9, 0],
            [10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1],
            [11, 1, 2, 11, 7, 1, 7, 5, 1],
            [0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11],
            [9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7],
            [7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2],
            [2, 5, 10, 2, 3, 5, 3, 7, 5],
            [8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5],
            [9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2],
            [9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2],
            [1, 3, 5, 3, 7, 5],
            [0, 8, 7, 0, 7, 1, 1, 7, 5],
            [9, 0, 3, 9, 3, 5, 5, 3, 7],
            [9, 8, 7, 5, 9, 7],
            [5, 8, 4, 5, 10, 8, 10, 11, 8],
            [5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0],
            [0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5],
            [10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4],
            [2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8],
            [0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11],
            [0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5],
            [9, 4, 5, 2, 11, 3],
            [2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4],
            [5, 10, 2, 5, 2, 4, 4, 2, 0],
            [3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9],
            [5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2],
            [8, 4, 5, 8, 5, 3, 3, 5, 1],
            [0, 4, 5, 1, 0, 5],
            [8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5],
            [9, 4, 5],
            [4, 11, 7, 4, 9, 11, 9, 10, 11],
            [0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11],
            [1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11],
            [3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4],
            [4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2],
            [9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3],
            [11, 7, 4, 11, 4, 2, 2, 4, 0],
            [11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4],
            [2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9],
            [9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7],
            [3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10],
            [1, 10, 2, 8, 7, 4],
            [4, 9, 1, 4, 1, 7, 7, 1, 3],
            [4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1],
            [4, 0, 3, 7, 4, 3],
            [4, 8, 7],
            [9, 10, 8, 10, 11, 8],
            [3, 0, 9, 3, 9, 11, 11, 9, 10],
            [0, 1, 10, 0, 10, 8, 8, 10, 11],
            [3, 1, 10, 11, 3, 10],
            [1, 2, 11, 1, 11, 9, 9, 11, 8],
            [3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9],
            [0, 2, 11, 8, 0, 11],
            [3, 2, 11],
            [2, 3, 8, 2, 8, 10, 10, 8, 9],
            [9, 10, 2, 0, 9, 2],
            [2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8],
            [1, 10, 2],
            [1, 3, 8, 9, 1, 8],
            [0, 9, 1],
            [0, 3, 8],
            []
        ]

        # maps edge ID (0-11) to (x, y, z) cell offset and edge ID (0-2)
        edge_shifts = np.array([
            [0, 0, 0, 0],   
            [1, 0, 0, 1],
            [0, 1, 0, 0],
            [0, 0, 0, 1],
            [0, 0, 1, 0],
            [1, 0, 1, 1],
            [0, 1, 1, 0],
            [0, 0, 1, 1],
            [0, 0, 0, 2],
            [1, 0, 0, 2],
            [1, 1, 0, 2],
            [0, 1, 0, 2],
            # [9, 9, 9, 9] fake
            # don't use ubyte here! This value gets added to cell index later; 
            # will need the extra precision.
        ], dtype=np.uint16) 
        n_table_faces = np.array([len(f)/3 for f in triTable], dtype=np.ubyte)
        face_shift_tables = [None]
        for i in range(1, 6):
            # compute lookup table of index: vertexes mapping
            faceTableI = np.zeros((len(triTable), i*3), dtype=np.ubyte)
            faceTableInds = np.argwhere(n_table_faces == i)[:, 0]
            faceTableI[faceTableInds] = np.array([triTable[j] for j in
                                                  faceTableInds])
            faceTableI = faceTableI.reshape((len(triTable), i, 3))
            face_shift_tables.append(edge_shifts[faceTableI])

        _data_cache = (face_shift_tables, edge_shifts, edge_table, 
                       n_table_faces)

    return _data_cache
