from __future__ import annotations

from collections.abc import Hashable, Iterator, Mapping, Sequence
from contextlib import contextmanager
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    cast,
)

import numpy as np
import pandas as pd

from xarray.core import formatting
from xarray.core.indexes import (
    Index,
    Indexes,
    PandasIndex,
    PandasMultiIndex,
    assert_no_index_corrupted,
    create_default_index_implicit,
)
from xarray.core.types import DataVars, Self, T_DataArray, T_Xarray
from xarray.core.utils import (
    Frozen,
    ReprObject,
    either_dict_or_kwargs,
    emit_user_level_warning,
)
from xarray.core.variable import Variable, as_variable, calculate_dimensions
from xarray.structure.alignment import Aligner
from xarray.structure.merge import merge_coordinates_without_align, merge_coords

if TYPE_CHECKING:
    from xarray.core.common import DataWithCoords
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset
    from xarray.core.datatree import DataTree

# Used as the key corresponding to a DataArray's variable when converting
# arbitrary DataArray objects to datasets
_THIS_ARRAY = ReprObject("<this-array>")


class AbstractCoordinates(Mapping[Hashable, "T_DataArray"]):
    _data: DataWithCoords
    __slots__ = ("_data",)

    def __getitem__(self, key: Hashable) -> T_DataArray:
        raise NotImplementedError()

    @property
    def _names(self) -> set[Hashable]:
        raise NotImplementedError()

    @property
    def dims(self) -> Frozen[Hashable, int] | tuple[Hashable, ...]:
        raise NotImplementedError()

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        raise NotImplementedError()

    @property
    def indexes(self) -> Indexes[pd.Index]:
        """Mapping of pandas.Index objects used for label based indexing.

        Raises an error if this Coordinates object has indexes that cannot
        be coerced to pandas.Index objects.

        See Also
        --------
        Coordinates.xindexes
        """
        return self._data.indexes

    @property
    def xindexes(self) -> Indexes[Index]:
        """Mapping of :py:class:`~xarray.indexes.Index` objects
        used for label based indexing.
        """
        return self._data.xindexes

    @property
    def variables(self):
        raise NotImplementedError()

    def _update_coords(self, coords, indexes):
        raise NotImplementedError()

    def _drop_coords(self, coord_names):
        raise NotImplementedError()

    def __iter__(self) -> Iterator[Hashable]:
        # needs to be in the same order as the dataset variables
        for k in self.variables:
            if k in self._names:
                yield k

    def __len__(self) -> int:
        return len(self._names)

    def __contains__(self, key: Hashable) -> bool:
        return key in self._names

    def __repr__(self) -> str:
        return formatting.coords_repr(self)

    def to_dataset(self) -> Dataset:
        raise NotImplementedError()

    def to_index(self, ordered_dims: Sequence[Hashable] | None = None) -> pd.Index:
        """Convert all index coordinates into a :py:class:`pandas.Index`.

        Parameters
        ----------
        ordered_dims : sequence of hashable, optional
            Possibly reordered version of this object's dimensions indicating
            the order in which dimensions should appear on the result.

        Returns
        -------
        pandas.Index
            Index subclass corresponding to the outer-product of all dimension
            coordinates. This will be a MultiIndex if this object is has more
            than more dimension.
        """
        if ordered_dims is None:
            ordered_dims = list(self.dims)
        elif set(ordered_dims) != set(self.dims):
            raise ValueError(
                "ordered_dims must match dims, but does not: "
                f"{ordered_dims} vs {self.dims}"
            )

        if len(ordered_dims) == 0:
            raise ValueError("no valid index for a 0-dimensional object")
        elif len(ordered_dims) == 1:
            (dim,) = ordered_dims
            return self._data.get_index(dim)
        else:
            indexes = [self._data.get_index(k) for k in ordered_dims]

            # compute the sizes of the repeat and tile for the cartesian product
            # (taken from pandas.core.reshape.util)
            index_lengths = np.fromiter(
                (len(index) for index in indexes), dtype=np.intp
            )
            cumprod_lengths = np.cumprod(index_lengths)

            if cumprod_lengths[-1] == 0:
                # if any factor is empty, the cartesian product is empty
                repeat_counts = np.zeros_like(cumprod_lengths)

            else:
                # sizes of the repeats
                repeat_counts = cumprod_lengths[-1] / cumprod_lengths
            # sizes of the tiles
            tile_counts = np.roll(cumprod_lengths, 1)
            tile_counts[0] = 1

            # loop over the indexes
            # for each MultiIndex or Index compute the cartesian product of the codes

            code_list = []
            level_list = []
            names = []

            for i, index in enumerate(indexes):
                if isinstance(index, pd.MultiIndex):
                    codes, levels = index.codes, index.levels
                else:
                    code, level = pd.factorize(index)
                    codes = [code]
                    levels = [level]

                # compute the cartesian product
                code_list += [
                    np.tile(np.repeat(code, repeat_counts[i]), tile_counts[i])
                    for code in codes
                ]
                level_list += levels
                names += index.names

        return pd.MultiIndex(levels=level_list, codes=code_list, names=names)


class Coordinates(AbstractCoordinates):
    """Dictionary like container for Xarray coordinates (variables + indexes).

    This collection is a mapping of coordinate names to
    :py:class:`~xarray.DataArray` objects.

    It can be passed directly to the :py:class:`~xarray.Dataset` and
    :py:class:`~xarray.DataArray` constructors via their `coords` argument. This
    will add both the coordinates variables and their index.

    Coordinates are either:

    - returned via the :py:attr:`Dataset.coords`, :py:attr:`DataArray.coords`,
      and :py:attr:`DataTree.coords` properties,
    - built from Xarray or Pandas index objects
      (e.g., :py:meth:`Coordinates.from_xindex` or
      :py:meth:`Coordinates.from_pandas_multiindex`),
    - built manually from input coordinate data and Xarray ``Index`` objects via
      :py:meth:`Coordinates.__init__` (beware that no consistency check is done
      on those inputs).

    To create new coordinates from an existing Xarray ``Index`` object, use
    :py:meth:`Coordinates.from_xindex` instead of
    :py:meth:`Coordinates.__init__`. The latter is useful, e.g., for creating
    coordinates with no default index.

    Parameters
    ----------
    coords: dict-like, optional
        Mapping where keys are coordinate names and values are objects that
        can be converted into a :py:class:`~xarray.Variable` object
        (see :py:func:`~xarray.as_variable`). If another
        :py:class:`~xarray.Coordinates` object is passed, its indexes
        will be added to the new created object.
    indexes: dict-like, optional
        Mapping where keys are coordinate names and values are
        :py:class:`~xarray.indexes.Index` objects. If None (default),
        pandas indexes will be created for each dimension coordinate.
        Passing an empty dictionary will skip this default behavior.

    Examples
    --------
    Create a dimension coordinate with a default (pandas) index:

    >>> xr.Coordinates({"x": [1, 2]})
    Coordinates:
      * x        (x) int64 16B 1 2

    Create a dimension coordinate with no index:

    >>> xr.Coordinates(coords={"x": [1, 2]}, indexes={})
    Coordinates:
        x        (x) int64 16B 1 2

    Create a new Coordinates object from existing dataset coordinates
    (indexes are passed):

    >>> ds = xr.Dataset(coords={"x": [1, 2]})
    >>> xr.Coordinates(ds.coords)
    Coordinates:
      * x        (x) int64 16B 1 2

    Create indexed coordinates from a ``pandas.MultiIndex`` object:

    >>> midx = pd.MultiIndex.from_product([["a", "b"], [0, 1]])
    >>> xr.Coordinates.from_pandas_multiindex(midx, "x")
    Coordinates:
      * x          (x) object 32B MultiIndex
      * x_level_0  (x) object 32B 'a' 'a' 'b' 'b'
      * x_level_1  (x) int64 32B 0 1 0 1

    Create a new Dataset object by passing a Coordinates object:

    >>> midx_coords = xr.Coordinates.from_pandas_multiindex(midx, "x")
    >>> xr.Dataset(coords=midx_coords)
    <xarray.Dataset> Size: 96B
    Dimensions:    (x: 4)
    Coordinates:
      * x          (x) object 32B MultiIndex
      * x_level_0  (x) object 32B 'a' 'a' 'b' 'b'
      * x_level_1  (x) int64 32B 0 1 0 1
    Data variables:
        *empty*

    """

    _data: DataWithCoords

    __slots__ = ("_data",)

    def __init__(
        self,
        coords: Mapping[Any, Any] | None = None,
        indexes: Mapping[Any, Index] | None = None,
    ) -> None:
        # When coordinates are constructed directly, an internal Dataset is
        # created so that it is compatible with the DatasetCoordinates and
        # DataArrayCoordinates classes serving as a proxy for the data.
        # TODO: refactor DataArray / Dataset so that Coordinates store the data.
        from xarray.core.dataset import Dataset

        if coords is None:
            coords = {}

        variables: dict[Hashable, Variable]
        default_indexes: dict[Hashable, PandasIndex] = {}
        coords_obj_indexes: dict[Hashable, Index] = {}

        if isinstance(coords, Coordinates):
            if indexes is not None:
                raise ValueError(
                    "passing both a ``Coordinates`` object and a mapping of indexes "
                    "to ``Coordinates.__init__`` is not allowed "
                    "(this constructor does not support merging them)"
                )
            variables = {k: v.copy() for k, v in coords.variables.items()}
            coords_obj_indexes = dict(coords.xindexes)
        else:
            variables = {}
            for name, data in coords.items():
                var = as_variable(data, name=name, auto_convert=False)
                if var.dims == (name,) and indexes is None:
                    index, index_vars = create_default_index_implicit(var, list(coords))
                    default_indexes.update(dict.fromkeys(index_vars, index))
                    variables.update(index_vars)
                else:
                    variables[name] = var

        if indexes is None:
            indexes = {}
        else:
            indexes = dict(indexes)

        indexes.update(default_indexes)
        indexes.update(coords_obj_indexes)

        no_coord_index = set(indexes) - set(variables)
        if no_coord_index:
            raise ValueError(
                f"no coordinate variables found for these indexes: {no_coord_index}"
            )

        for k, idx in indexes.items():
            if not isinstance(idx, Index):
                raise TypeError(f"'{k}' is not an `xarray.indexes.Index` object")

        # maybe convert to base variable
        for k, v in variables.items():
            if k not in indexes:
                variables[k] = v.to_base_variable()

        self._data = Dataset._construct_direct(
            coord_names=set(variables), variables=variables, indexes=indexes
        )

    @classmethod
    def _construct_direct(
        cls,
        coords: dict[Any, Variable],
        indexes: dict[Any, Index],
        dims: dict[Any, int] | None = None,
    ) -> Self:
        from xarray.core.dataset import Dataset

        obj = object.__new__(cls)
        obj._data = Dataset._construct_direct(
            coord_names=set(coords),
            variables=coords,
            indexes=indexes,
            dims=dims,
        )
        return obj

    @classmethod
    def from_xindex(cls, index: Index) -> Self:
        """Create Xarray coordinates from an existing Xarray index.

        Parameters
        ----------
        index : Index
            Xarray index object. The index must support generating new
            coordinate variables from itself.

        Returns
        -------
        coords : Coordinates
            A collection of Xarray indexed coordinates created from the index.

        """
        variables = index.create_variables()

        if not variables:
            raise ValueError(
                "`Coordinates.from_xindex()` only supports index objects that can generate "
                "new coordinate variables from scratch. The given index (shown below) did not "
                f"create any coordinate.\n{index!r}"
            )

        indexes = dict.fromkeys(variables, index)

        return cls(coords=variables, indexes=indexes)

    @classmethod
    def from_pandas_multiindex(cls, midx: pd.MultiIndex, dim: Hashable) -> Self:
        """Wrap a pandas multi-index as Xarray coordinates (dimension + levels).

        The returned coordinate variables can be directly assigned to a
        :py:class:`~xarray.Dataset` or :py:class:`~xarray.DataArray` via the
        ``coords`` argument of their constructor.

        Parameters
        ----------
        midx : :py:class:`pandas.MultiIndex`
            Pandas multi-index object.
        dim : str
            Dimension name.

        Returns
        -------
        coords : Coordinates
            A collection of Xarray indexed coordinates created from the multi-index.

        """
        xr_idx = PandasMultiIndex(midx, dim)

        variables = xr_idx.create_variables()
        indexes = dict.fromkeys(variables, xr_idx)

        return cls(coords=variables, indexes=indexes)

    @property
    def _names(self) -> set[Hashable]:
        return self._data._coord_names

    @property
    def dims(self) -> Frozen[Hashable, int] | tuple[Hashable, ...]:
        """Mapping from dimension names to lengths or tuple of dimension names."""
        return self._data.dims

    @property
    def sizes(self) -> Frozen[Hashable, int]:
        """Mapping from dimension names to lengths."""
        return self._data.sizes

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        """Mapping from coordinate names to dtypes.

        Cannot be modified directly.

        See Also
        --------
        Dataset.dtypes
        """
        return Frozen({n: v.dtype for n, v in self._data.variables.items()})

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        """Low level interface to Coordinates contents as dict of Variable objects.

        This dictionary is frozen to prevent mutation.
        """
        return self._data.variables

    def to_dataset(self) -> Dataset:
        """Convert these coordinates into a new Dataset."""
        names = [name for name in self._data._variables if name in self._names]
        return self._data._copy_listed(names)

    def __getitem__(self, key: Hashable) -> DataArray:
        return self._data[key]

    def __delitem__(self, key: Hashable) -> None:
        # redirect to DatasetCoordinates.__delitem__
        del self._data.coords[key]

    def equals(self, other: Self) -> bool:
        """Two Coordinates objects are equal if they have matching variables,
        all of which are equal.

        See Also
        --------
        Coordinates.identical
        """
        if not isinstance(other, Coordinates):
            return False
        return self.to_dataset().equals(other.to_dataset())

    def identical(self, other: Self) -> bool:
        """Like equals, but also checks all variable attributes.

        See Also
        --------
        Coordinates.equals
        """
        if not isinstance(other, Coordinates):
            return False
        return self.to_dataset().identical(other.to_dataset())

    def _update_coords(
        self, coords: dict[Hashable, Variable], indexes: dict[Hashable, Index]
    ) -> None:
        # redirect to DatasetCoordinates._update_coords
        self._data.coords._update_coords(coords, indexes)

    def _drop_coords(self, coord_names):
        # redirect to DatasetCoordinates._drop_coords
        self._data.coords._drop_coords(coord_names)

    def _merge_raw(self, other, reflexive):
        """For use with binary arithmetic."""
        if other is None:
            variables = dict(self.variables)
            indexes = dict(self.xindexes)
        else:
            coord_list = [self, other] if not reflexive else [other, self]
            variables, indexes = merge_coordinates_without_align(coord_list)
        return variables, indexes

    @contextmanager
    def _merge_inplace(self, other):
        """For use with in-place binary arithmetic."""
        if other is None:
            yield
        else:
            # don't include indexes in prioritized, because we didn't align
            # first and we want indexes to be checked
            prioritized = {
                k: (v, None)
                for k, v in self.variables.items()
                if k not in self.xindexes
            }
            variables, indexes = merge_coordinates_without_align(
                [self, other], prioritized
            )
            yield
            self._update_coords(variables, indexes)

    def merge(self, other: Mapping[Any, Any] | None) -> Dataset:
        """Merge two sets of coordinates to create a new Dataset

        The method implements the logic used for joining coordinates in the
        result of a binary operation performed on xarray objects:

        - If two index coordinates conflict (are not equal), an exception is
          raised. You must align your data before passing it to this method.
        - If an index coordinate and a non-index coordinate conflict, the non-
          index coordinate is dropped.
        - If two non-index coordinates conflict, both are dropped.

        Parameters
        ----------
        other : dict-like, optional
            A :py:class:`Coordinates` object or any mapping that can be turned
            into coordinates.

        Returns
        -------
        merged : Dataset
            A new Dataset with merged coordinates.
        """
        from xarray.core.dataset import Dataset

        if other is None:
            return self.to_dataset()

        if not isinstance(other, Coordinates):
            other = Dataset(coords=other).coords

        coords, indexes = merge_coordinates_without_align([self, other])
        coord_names = set(coords)
        return Dataset._construct_direct(
            variables=coords, coord_names=coord_names, indexes=indexes
        )

    def __setitem__(self, key: Hashable, value: Any) -> None:
        self.update({key: value})

    def update(self, other: Mapping[Any, Any]) -> None:
        """Update this Coordinates variables with other coordinate variables."""

        if not len(other):
            return

        other_coords: Coordinates

        if isinstance(other, Coordinates):
            # Coordinates object: just pass it (default indexes won't be created)
            other_coords = other
        else:
            other_coords = create_coords_with_default_indexes(
                getattr(other, "variables", other)
            )

        # Discard original indexed coordinates prior to merge allows to:
        # - fail early if the new coordinates don't preserve the integrity of existing
        #   multi-coordinate indexes
        # - drop & replace coordinates without alignment (note: we must keep indexed
        #   coordinates extracted from the DataArray objects passed as values to
        #   `other` - if any - as those are still used for aligning the old/new coordinates)
        coords_to_align = drop_indexed_coords(set(other_coords) & set(other), self)

        coords, indexes = merge_coords(
            [coords_to_align, other_coords],
            priority_arg=1,
            indexes=coords_to_align.xindexes,
        )

        # special case for PandasMultiIndex: updating only its dimension coordinate
        # is still allowed but depreciated.
        # It is the only case where we need to actually drop coordinates here (multi-index levels)
        # TODO: remove when removing PandasMultiIndex's dimension coordinate.
        self._drop_coords(self._names - coords_to_align._names)

        self._update_coords(coords, indexes)

    def assign(self, coords: Mapping | None = None, **coords_kwargs: Any) -> Self:
        """Assign new coordinates (and indexes) to a Coordinates object, returning
        a new object with all the original coordinates in addition to the new ones.

        Parameters
        ----------
        coords : mapping of dim to coord, optional
            A mapping whose keys are the names of the coordinates and values are the
            coordinates to assign. The mapping will generally be a dict or
            :class:`Coordinates`.

            * If a value is a standard data value — for example, a ``DataArray``,
              scalar, or array — the data is simply assigned as a coordinate.

            * A coordinate can also be defined and attached to an existing dimension
              using a tuple with the first element the dimension name and the second
              element the values for this new coordinate.

        **coords_kwargs
            The keyword arguments form of ``coords``.
            One of ``coords`` or ``coords_kwargs`` must be provided.

        Returns
        -------
        new_coords : Coordinates
            A new Coordinates object with the new coordinates (and indexes)
            in addition to all the existing coordinates.

        Examples
        --------
        >>> coords = xr.Coordinates()
        >>> coords
        Coordinates:
            *empty*

        >>> coords.assign(x=[1, 2])
        Coordinates:
          * x        (x) int64 16B 1 2

        >>> midx = pd.MultiIndex.from_product([["a", "b"], [0, 1]])
        >>> coords.assign(xr.Coordinates.from_pandas_multiindex(midx, "y"))
        Coordinates:
          * y          (y) object 32B MultiIndex
          * y_level_0  (y) object 32B 'a' 'a' 'b' 'b'
          * y_level_1  (y) int64 32B 0 1 0 1

        """
        # TODO: this doesn't support a callable, which is inconsistent with `DataArray.assign_coords`
        coords = either_dict_or_kwargs(coords, coords_kwargs, "assign")
        new_coords = self.copy()
        new_coords.update(coords)
        return new_coords

    def _overwrite_indexes(
        self,
        indexes: Mapping[Any, Index],
        variables: Mapping[Any, Variable] | None = None,
    ) -> Self:
        results = self.to_dataset()._overwrite_indexes(indexes, variables)

        # TODO: remove cast once we get rid of DatasetCoordinates
        # and DataArrayCoordinates (i.e., Dataset and DataArray encapsulate Coordinates)
        return cast(Self, results.coords)

    def _reindex_callback(
        self,
        aligner: Aligner,
        dim_pos_indexers: dict[Hashable, Any],
        variables: dict[Hashable, Variable],
        indexes: dict[Hashable, Index],
        fill_value: Any,
        exclude_dims: frozenset[Hashable],
        exclude_vars: frozenset[Hashable],
    ) -> Self:
        """Callback called from ``Aligner`` to create a new reindexed Coordinate."""
        aligned = self.to_dataset()._reindex_callback(
            aligner,
            dim_pos_indexers,
            variables,
            indexes,
            fill_value,
            exclude_dims,
            exclude_vars,
        )

        # TODO: remove cast once we get rid of DatasetCoordinates
        # and DataArrayCoordinates (i.e., Dataset and DataArray encapsulate Coordinates)
        return cast(Self, aligned.coords)

    def _ipython_key_completions_(self):
        """Provide method for the key-autocompletions in IPython."""
        return self._data._ipython_key_completions_()

    def copy(
        self,
        deep: bool = False,
        memo: dict[int, Any] | None = None,
    ) -> Self:
        """Return a copy of this Coordinates object."""
        # do not copy indexes (may corrupt multi-coordinate indexes)
        # TODO: disable variables deepcopy? it may also be problematic when they
        # encapsulate index objects like pd.Index
        variables = {
            k: v._copy(deep=deep, memo=memo) for k, v in self.variables.items()
        }

        # TODO: getting an error with `self._construct_direct`, possibly because of how
        # a subclass implements `_construct_direct`. (This was originally the same
        # runtime code, but we switched the type definitions in #8216, which
        # necessitates the cast.)
        return cast(
            Self,
            Coordinates._construct_direct(
                coords=variables, indexes=dict(self.xindexes), dims=dict(self.sizes)
            ),
        )


class DatasetCoordinates(Coordinates):
    """Dictionary like container for Dataset coordinates (variables + indexes).

    This collection can be passed directly to the :py:class:`~xarray.Dataset`
    and :py:class:`~xarray.DataArray` constructors via their `coords` argument.
    This will add both the coordinates variables and their index.
    """

    _data: Dataset

    __slots__ = ("_data",)

    def __init__(self, dataset: Dataset):
        self._data = dataset

    @property
    def _names(self) -> set[Hashable]:
        return self._data._coord_names

    @property
    def dims(self) -> Frozen[Hashable, int]:
        # deliberately display all dims, not just those on coordinate variables - see https://github.com/pydata/xarray/issues/9466
        return self._data.dims

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        """Mapping from coordinate names to dtypes.

        Cannot be modified directly, but is updated when adding new variables.

        See Also
        --------
        Dataset.dtypes
        """
        return Frozen(
            {
                n: v.dtype
                for n, v in self._data._variables.items()
                if n in self._data._coord_names
            }
        )

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        return Frozen(
            {k: v for k, v in self._data.variables.items() if k in self._names}
        )

    def __getitem__(self, key: Hashable) -> DataArray:
        if key in self._data.data_vars:
            raise KeyError(key)
        return self._data[key]

    def to_dataset(self) -> Dataset:
        """Convert these coordinates into a new Dataset"""

        names = [name for name in self._data._variables if name in self._names]
        return self._data._copy_listed(names)

    def _update_coords(
        self, coords: dict[Hashable, Variable], indexes: dict[Hashable, Index]
    ) -> None:
        variables = self._data._variables.copy()
        variables.update(coords)

        # check for inconsistent state *before* modifying anything in-place
        dims = calculate_dimensions(variables)
        new_coord_names = set(coords)
        for dim in dims:
            if dim in variables:
                new_coord_names.add(dim)

        self._data._variables = variables
        self._data._coord_names.update(new_coord_names)
        self._data._dims = dims

        # TODO(shoyer): once ._indexes is always populated by a dict, modify
        # it to update inplace instead.
        original_indexes = dict(self._data.xindexes)
        original_indexes.update(indexes)
        self._data._indexes = original_indexes

    def _drop_coords(self, coord_names):
        # should drop indexed coordinates only
        for name in coord_names:
            del self._data._variables[name]
            del self._data._indexes[name]
        self._data._coord_names.difference_update(coord_names)

    def __delitem__(self, key: Hashable) -> None:
        if key in self:
            del self._data[key]
        else:
            raise KeyError(
                f"{key!r} is not in coordinate variables {tuple(self.keys())}"
            )

    def _ipython_key_completions_(self):
        """Provide method for the key-autocompletions in IPython."""
        return [
            key
            for key in self._data._ipython_key_completions_()
            if key not in self._data.data_vars
        ]


class DataTreeCoordinates(Coordinates):
    """
    Dictionary like container for coordinates of a DataTree node (variables + indexes).

    This collection can be passed directly to the :py:class:`~xarray.Dataset`
    and :py:class:`~xarray.DataArray` constructors via their `coords` argument.
    This will add both the coordinates variables and their index.
    """

    # TODO: This only needs to be a separate class from `DatasetCoordinates` because DataTree nodes store their variables differently
    # internally than how Datasets do, see https://github.com/pydata/xarray/issues/9203.

    _data: DataTree  # type: ignore[assignment]  # complaining that DataTree is not a subclass of DataWithCoords - this can be fixed by refactoring, see #9203

    __slots__ = ("_data",)

    def __init__(self, datatree: DataTree):
        self._data = datatree

    @property
    def _names(self) -> set[Hashable]:
        return set(self._data._coord_variables)

    @property
    def dims(self) -> Frozen[Hashable, int]:
        # deliberately display all dims, not just those on coordinate variables - see https://github.com/pydata/xarray/issues/9466
        return Frozen(self._data.dims)

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        """Mapping from coordinate names to dtypes.

        Cannot be modified directly, but is updated when adding new variables.

        See Also
        --------
        Dataset.dtypes
        """
        return Frozen({n: v.dtype for n, v in self._data._coord_variables.items()})

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        return Frozen(self._data._coord_variables)

    def __getitem__(self, key: Hashable) -> DataArray:
        if key not in self._data._coord_variables:
            raise KeyError(key)
        return self._data.dataset[key]

    def to_dataset(self) -> Dataset:
        """Convert these coordinates into a new Dataset"""
        return self._data.dataset._copy_listed(self._names)

    def _update_coords(
        self, coords: dict[Hashable, Variable], indexes: dict[Hashable, Index]
    ) -> None:
        from xarray.core.datatree import check_alignment

        # create updated node (`.to_dataset` makes a copy so this doesn't modify in-place)
        node_ds = self._data.to_dataset(inherit=False)
        node_ds.coords._update_coords(coords, indexes)

        # check consistency *before* modifying anything in-place
        # TODO can we clean up the signature of check_alignment to make this less awkward?
        if self._data.parent is not None:
            parent_ds = self._data.parent._to_dataset_view(
                inherit=True, rebuild_dims=False
            )
        else:
            parent_ds = None
        check_alignment(self._data.path, node_ds, parent_ds, self._data.children)

        # assign updated attributes
        coord_variables = dict(node_ds.coords.variables)
        self._data._node_coord_variables = coord_variables
        self._data._node_dims = node_ds._dims
        self._data._node_indexes = node_ds._indexes

    def _drop_coords(self, coord_names):
        # should drop indexed coordinates only
        for name in coord_names:
            del self._data._node_coord_variables[name]
            del self._data._node_indexes[name]

    def __delitem__(self, key: Hashable) -> None:
        if key in self:
            del self._data[key]  # type: ignore[arg-type]  # see https://github.com/pydata/xarray/issues/8836
        else:
            raise KeyError(key)

    def _ipython_key_completions_(self):
        """Provide method for the key-autocompletions in IPython."""
        return [
            key
            for key in self._data._ipython_key_completions_()
            if key in self._data._coord_variables
        ]


class DataArrayCoordinates(Coordinates, Generic[T_DataArray]):
    """Dictionary like container for DataArray coordinates (variables + indexes).

    This collection can be passed directly to the :py:class:`~xarray.Dataset`
    and :py:class:`~xarray.DataArray` constructors via their `coords` argument.
    This will add both the coordinates variables and their index.
    """

    _data: T_DataArray

    __slots__ = ("_data",)

    def __init__(self, dataarray: T_DataArray) -> None:
        self._data = dataarray

    @property
    def dims(self) -> tuple[Hashable, ...]:
        return self._data.dims

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        """Mapping from coordinate names to dtypes.

        Cannot be modified directly, but is updated when adding new variables.

        See Also
        --------
        DataArray.dtype
        """
        return Frozen({n: v.dtype for n, v in self._data._coords.items()})

    @property
    def _names(self) -> set[Hashable]:
        return set(self._data._coords)

    def __getitem__(self, key: Hashable) -> T_DataArray:
        return self._data._getitem_coord(key)

    def _update_coords(
        self, coords: dict[Hashable, Variable], indexes: dict[Hashable, Index]
    ) -> None:
        validate_dataarray_coords(
            self._data.shape, Coordinates._construct_direct(coords, indexes), self.dims
        )

        self._data._coords = coords
        self._data._indexes = indexes

    def _drop_coords(self, coord_names):
        # should drop indexed coordinates only
        for name in coord_names:
            del self._data._coords[name]
            del self._data._indexes[name]

    @property
    def variables(self):
        return Frozen(self._data._coords)

    def to_dataset(self) -> Dataset:
        from xarray.core.dataset import Dataset

        coords = {k: v.copy(deep=False) for k, v in self._data._coords.items()}
        indexes = dict(self._data.xindexes)
        return Dataset._construct_direct(coords, set(coords), indexes=indexes)

    def __delitem__(self, key: Hashable) -> None:
        if key not in self:
            raise KeyError(
                f"{key!r} is not in coordinate variables {tuple(self.keys())}"
            )
        assert_no_index_corrupted(self._data.xindexes, {key})

        del self._data._coords[key]
        if key in self._data._indexes:
            del self._data._indexes[key]

    def _ipython_key_completions_(self):
        """Provide method for the key-autocompletions in IPython."""
        return self._data._ipython_key_completions_()


def drop_indexed_coords(
    coords_to_drop: set[Hashable], coords: Coordinates
) -> Coordinates:
    """Drop indexed coordinates associated with coordinates in coords_to_drop.

    This will raise an error in case it corrupts any passed index and its
    coordinate variables.

    """
    new_variables = dict(coords.variables)
    new_indexes = dict(coords.xindexes)

    for idx, idx_coords in coords.xindexes.group_by_index():
        idx_drop_coords = set(idx_coords) & coords_to_drop

        # special case for pandas multi-index: still allow but deprecate
        # dropping only its dimension coordinate.
        # TODO: remove when removing PandasMultiIndex's dimension coordinate.
        if isinstance(idx, PandasMultiIndex) and idx_drop_coords == {idx.dim}:
            idx_drop_coords.update(idx.index.names)
            emit_user_level_warning(
                f"updating coordinate {idx.dim!r}, which is a PandasMultiIndex, would leave "
                f"the multi-index level coordinates {list(idx.index.names)!r} in an inconsistent state. "
                f"This will raise an error in the future. Use `.drop_vars({list(idx_coords)!r})` "
                "to drop the coordinates' values before assigning new coordinate values.",
                FutureWarning,
            )

        elif idx_drop_coords and len(idx_drop_coords) != len(idx_coords):
            idx_drop_coords_str = ", ".join(f"{k!r}" for k in idx_drop_coords)
            idx_coords_str = ", ".join(f"{k!r}" for k in idx_coords)
            raise ValueError(
                f"cannot drop or update coordinate(s) {idx_drop_coords_str}, which would corrupt "
                f"the following index built from coordinates {idx_coords_str}:\n"
                f"{idx}"
            )

        for k in idx_drop_coords:
            del new_variables[k]
            del new_indexes[k]

    return Coordinates._construct_direct(coords=new_variables, indexes=new_indexes)


def assert_coordinate_consistent(obj: T_Xarray, coords: Mapping[Any, Variable]) -> None:
    """Make sure the dimension coordinate of obj is consistent with coords.

    obj: DataArray or Dataset
    coords: Dict-like of variables
    """
    for k in obj.dims:
        # make sure there are no conflict in dimension coordinates
        if k in coords and k in obj.coords and not coords[k].equals(obj[k].variable):
            raise IndexError(
                f"dimension coordinate {k!r} conflicts between "
                f"indexed and indexing objects:\n{obj[k]}\nvs.\n{coords[k]}"
            )


def create_coords_with_default_indexes(
    coords: Mapping[Any, Any], data_vars: DataVars | None = None
) -> Coordinates:
    """Returns a Coordinates object from a mapping of coordinates (arbitrary objects).

    Create default (pandas) indexes for each of the input dimension coordinates.
    Extract coordinates from each input DataArray.

    """
    # Note: data_vars is needed here only because a pd.MultiIndex object
    # can be promoted as coordinates.
    # TODO: It won't be relevant anymore when this behavior will be dropped
    # in favor of the more explicit ``Coordinates.from_pandas_multiindex()``.

    from xarray.core.dataarray import DataArray

    all_variables = dict(coords)
    if data_vars is not None:
        all_variables.update(data_vars)

    indexes: dict[Hashable, Index] = {}
    variables: dict[Hashable, Variable] = {}

    # promote any pandas multi-index in data_vars as coordinates
    coords_promoted: dict[Hashable, Any] = {}
    pd_mindex_keys: list[Hashable] = []

    for k, v in all_variables.items():
        if isinstance(v, pd.MultiIndex):
            coords_promoted[k] = v
            pd_mindex_keys.append(k)
        elif k in coords:
            coords_promoted[k] = v

    if pd_mindex_keys:
        pd_mindex_keys_fmt = ",".join([f"'{k}'" for k in pd_mindex_keys])
        emit_user_level_warning(
            f"the `pandas.MultiIndex` object(s) passed as {pd_mindex_keys_fmt} coordinate(s) or "
            "data variable(s) will no longer be implicitly promoted and wrapped into "
            "multiple indexed coordinates in the future "
            "(i.e., one coordinate for each multi-index level + one dimension coordinate). "
            "If you want to keep this behavior, you need to first wrap it explicitly using "
            "`mindex_coords = xarray.Coordinates.from_pandas_multiindex(mindex_obj, 'dim')` "
            "and pass it as coordinates, e.g., `xarray.Dataset(coords=mindex_coords)`, "
            "`dataset.assign_coords(mindex_coords)` or `dataarray.assign_coords(mindex_coords)`.",
            FutureWarning,
        )

    dataarray_coords: list[DataArrayCoordinates] = []

    for name, obj in coords_promoted.items():
        if isinstance(obj, DataArray):
            dataarray_coords.append(obj.coords)

        variable = as_variable(obj, name=name, auto_convert=False)

        if variable.dims == (name,):
            # still needed to convert to IndexVariable first due to some
            # pandas multi-index edge cases.
            variable = variable.to_index_variable()
            idx, idx_vars = create_default_index_implicit(variable, all_variables)
            indexes.update(dict.fromkeys(idx_vars, idx))
            variables.update(idx_vars)
            all_variables.update(idx_vars)
        else:
            variables[name] = variable

    new_coords = Coordinates._construct_direct(coords=variables, indexes=indexes)

    # extract and merge coordinates and indexes from input DataArrays
    if dataarray_coords:
        prioritized = {k: (v, indexes.get(k)) for k, v in variables.items()}
        variables, indexes = merge_coordinates_without_align(
            dataarray_coords + [new_coords],
            prioritized=prioritized,
        )
        new_coords = Coordinates._construct_direct(coords=variables, indexes=indexes)

    return new_coords


class CoordinateValidationError(ValueError):
    """Error class for Xarray coordinate validation failures."""


def validate_dataarray_coords(
    shape: tuple[int, ...],
    coords: Coordinates | Mapping[Hashable, Variable],
    dim: tuple[Hashable, ...],
):
    """Validate coordinates ``coords`` to include in a DataArray defined by
    ``shape`` and dimensions ``dim``.

    If a coordinate is associated with an index, the validation is performed by
    the index. By default the coordinate dimensions must match (a subset of) the
    array dimensions (in any order) to conform to the DataArray model. The index
    may override this behavior with other validation rules, though.

    Non-index coordinates must all conform to the DataArray model. Scalar
    coordinates are always valid.
    """
    sizes = dict(zip(dim, shape, strict=True))
    dim_set = set(dim)

    indexes: Mapping[Hashable, Index]
    if isinstance(coords, Coordinates):
        indexes = coords.xindexes
    else:
        indexes = {}

    for k, v in coords.items():
        if k in indexes:
            invalid = not indexes[k].should_add_coord_to_array(k, v, dim_set)
        else:
            invalid = any(d not in dim for d in v.dims)

        if invalid:
            raise CoordinateValidationError(
                f"coordinate {k} has dimensions {v.dims}, but these "
                "are not a subset of the DataArray "
                f"dimensions {dim}"
            )

        for d, s in v.sizes.items():
            if d in sizes and s != sizes[d]:
                raise CoordinateValidationError(
                    f"conflicting sizes for dimension {d!r}: "
                    f"length {sizes[d]} on the data but length {s} on "
                    f"coordinate {k!r}"
                )


def coordinates_from_variable(variable: Variable) -> Coordinates:
    (name,) = variable.dims
    new_index, index_vars = create_default_index_implicit(variable)
    indexes = dict.fromkeys(index_vars, new_index)
    new_vars = new_index.create_variables()
    new_vars[name].attrs = variable.attrs
    return Coordinates(new_vars, indexes)
