from __future__ import annotations

import collections.abc
import copy
import inspect
from collections import defaultdict
from collections.abc import Callable, Hashable, Iterable, Iterator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Generic, TypeVar, cast, overload

import numpy as np
import pandas as pd

from xarray.core import formatting, nputils, utils
from xarray.core.coordinate_transform import CoordinateTransform
from xarray.core.extension_array import PandasExtensionArray
from xarray.core.indexing import (
    CoordinateTransformIndexingAdapter,
    IndexSelResult,
    PandasIndexingAdapter,
    PandasMultiIndexingAdapter,
)
from xarray.core.utils import (
    Frozen,
    emit_user_level_warning,
    get_valid_numpy_dtype,
    is_allowed_extension_array_dtype,
    is_dict_like,
    is_scalar,
)

if TYPE_CHECKING:
    from xarray.core.types import ErrorOptions, JoinOptions, Self
    from xarray.core.variable import Variable


IndexVars = dict[Any, "Variable"]


class Index:
    """
    Base class inherited by all xarray-compatible indexes.

    Do not use this class directly for creating index objects. Xarray indexes
    are created exclusively from subclasses of ``Index``, mostly via Xarray's
    public API like ``Dataset.set_xindex``.

    Every subclass must at least implement :py:meth:`Index.from_variables`. The
    (re)implementation of the other methods of this base class is optional but
    mostly required in order to support operations relying on indexes such as
    label-based selection or alignment.

    The ``Index`` API closely follows the :py:meth:`Dataset` and
    :py:meth:`DataArray` API, e.g., for an index to support ``.sel()`` it needs
    to implement :py:meth:`Index.sel`, to support ``.stack()`` and
    ``.unstack()`` it needs to implement :py:meth:`Index.stack` and
    :py:meth:`Index.unstack`, etc.

    When a method is not (re)implemented, depending on the case the
    corresponding operation on a :py:meth:`Dataset` or :py:meth:`DataArray`
    either will raise a ``NotImplementedError`` or will simply drop/pass/copy
    the index from/to the result.

    Do not use this class directly for creating index objects.
    """

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> Self:
        """Create a new index object from one or more coordinate variables.

        This factory method must be implemented in all subclasses of Index.

        The coordinate variables may be passed here in an arbitrary number and
        order and each with arbitrary dimensions. It is the responsibility of
        the index to check the consistency and validity of these coordinates.

        Parameters
        ----------
        variables : dict-like
            Mapping of :py:class:`Variable` objects holding the coordinate labels
            to index.

        Returns
        -------
        index : Index
            A new Index object.
        """
        raise NotImplementedError()

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        """Create a new index by concatenating one or more indexes of the same
        type.

        Implementation is optional but required in order to support
        ``concat``. Otherwise it will raise an error if the index needs to be
        updated during the operation.

        Parameters
        ----------
        indexes : sequence of Index objects
            Indexes objects to concatenate together. All objects must be of the
            same type.
        dim : Hashable
            Name of the dimension to concatenate along.
        positions : None or list of integer arrays, optional
            List of integer arrays which specifies the integer positions to which
            to assign each dataset along the concatenated dimension. If not
            supplied, objects are concatenated in the provided order.

        Returns
        -------
        index : Index
            A new Index object.
        """
        raise NotImplementedError()

    @classmethod
    def stack(cls, variables: Mapping[Any, Variable], dim: Hashable) -> Self:
        """Create a new index by stacking coordinate variables into a single new
        dimension.

        Implementation is optional but required in order to support ``stack``.
        Otherwise it will raise an error when trying to pass the Index subclass
        as argument to :py:meth:`Dataset.stack`.

        Parameters
        ----------
        variables : dict-like
            Mapping of :py:class:`Variable` objects to stack together.
        dim : Hashable
            Name of the new, stacked dimension.

        Returns
        -------
        index
            A new Index object.
        """
        raise NotImplementedError(
            f"{cls!r} cannot be used for creating an index of stacked coordinates"
        )

    def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
        """Unstack a (multi-)index into multiple (single) indexes.

        Implementation is optional but required in order to support unstacking
        the coordinates from which this index has been built.

        Returns
        -------
        indexes : tuple
            A 2-length tuple where the 1st item is a dictionary of unstacked
            Index objects and the 2nd item is a :py:class:`pandas.MultiIndex`
            object used to unstack unindexed coordinate variables or data
            variables.
        """
        raise NotImplementedError()

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        """Maybe create new coordinate variables from this index.

        This method is useful if the index data can be reused as coordinate
        variable data. It is often the case when the underlying index structure
        has an array-like interface, like :py:class:`pandas.Index` objects.

        The variables given as argument (if any) are either returned as-is
        (default behavior) or can be used to copy their metadata (attributes and
        encoding) into the new returned coordinate variables.

        Note: the input variables may or may not have been filtered for this
        index.

        Parameters
        ----------
        variables : dict-like, optional
            Mapping of :py:class:`Variable` objects.

        Returns
        -------
        index_variables : dict-like
            Dictionary of :py:class:`Variable` or :py:class:`IndexVariable`
            objects.
        """
        if variables is not None:
            # pass through
            return dict(**variables)
        else:
            return {}

    def should_add_coord_to_array(
        self,
        name: Hashable,
        var: Variable,
        dims: set[Hashable],
    ) -> bool:
        """Define whether or not an index coordinate variable should be added to
        a new DataArray.

        This method is called repeatedly for each Variable associated with this
        index when creating a new DataArray (via its constructor or from a
        Dataset) or updating an existing one. The variables associated with this
        index are the ones passed to :py:meth:`Index.from_variables` and/or
        returned by :py:meth:`Index.create_variables`.

        By default returns ``True`` if the dimensions of the coordinate variable
        are a subset of the array dimensions and ``False`` otherwise (DataArray
        model). This default behavior may be overridden in Index subclasses to
        bypass strict conformance with the DataArray model. This is useful for
        example to include the (n+1)-dimensional cell boundary coordinate
        associated with an interval index.

        Returning ``False`` will either:

        - raise a :py:class:`CoordinateValidationError` when passing the
          coordinate directly to a new or an existing DataArray, e.g., via
          ``DataArray.__init__()`` or ``DataArray.assign_coords()``

        - drop the coordinate (and therefore drop the index) when a new
          DataArray is constructed by indexing a Dataset

        Parameters
        ----------
        name : Hashable
            Name of a coordinate variable associated to this index.
        var : Variable
            Coordinate variable object.
        dims: tuple
            Dimensions of the new DataArray object being created.

        """
        return all(d in dims for d in var.dims)

    def to_pandas_index(self) -> pd.Index:
        """Cast this xarray index to a pandas.Index object or raise a
        ``TypeError`` if this is not supported.

        This method is used by all xarray operations that still rely on
        pandas.Index objects.

        By default it raises a ``TypeError``, unless it is re-implemented in
        subclasses of Index.
        """
        raise TypeError(f"{self!r} cannot be cast to a pandas.Index object")

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> Index | None:
        """Maybe returns a new index from the current index itself indexed by
        positional indexers.

        This method should be re-implemented in subclasses of Index if the
        wrapped index structure supports indexing operations. For example,
        indexing a ``pandas.Index`` is pretty straightforward as it behaves very
        much like an array. By contrast, it may be harder doing so for a
        structure like a kd-tree that differs much from a simple array.

        If not re-implemented in subclasses of Index, this method returns
        ``None``, i.e., calling :py:meth:`Dataset.isel` will either drop the
        index in the resulting dataset or pass it unchanged if its corresponding
        coordinate(s) are not indexed.

        Parameters
        ----------
        indexers : dict
            A dictionary of positional indexers as passed from
            :py:meth:`Dataset.isel` and where the entries have been filtered
            for the current index.

        Returns
        -------
        maybe_index : Index
            A new Index object or ``None``.
        """
        return None

    def sel(self, labels: dict[Any, Any]) -> IndexSelResult:
        """Query the index with arbitrary coordinate label indexers.

        Implementation is optional but required in order to support label-based
        selection. Otherwise it will raise an error when trying to call
        :py:meth:`Dataset.sel` with labels for this index coordinates.

        Coordinate label indexers can be of many kinds, e.g., scalar, list,
        tuple, array-like, slice, :py:class:`Variable`, :py:class:`DataArray`, etc.
        It is the responsibility of the index to handle those indexers properly.

        Parameters
        ----------
        labels : dict
            A dictionary of coordinate label indexers passed from
            :py:meth:`Dataset.sel` and where the entries have been filtered
            for the current index.

        Returns
        -------
        sel_results : :py:class:`IndexSelResult`
            An index query result object that contains dimension positional indexers.
            It may also contain new indexes, coordinate variables, etc.
        """
        raise NotImplementedError(f"{self!r} doesn't support label-based selection")

    def join(self, other: Self, how: JoinOptions = "inner") -> Self:
        """Return a new index from the combination of this index with another
        index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object to combine with this index.
        join : str, optional
            Method for joining the two indexes (see :py:func:`~xarray.align`).

        Returns
        -------
        joined : Index
            A new Index object.
        """
        raise NotImplementedError(
            f"{self!r} doesn't support alignment with inner/outer join method"
        )

    def reindex_like(self, other: Self) -> dict[Hashable, Any]:
        """Query the index with another index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object used to query this index.

        Returns
        -------
        dim_positional_indexers : dict
            A dictionary where keys are dimension names and values are positional
            indexers.
        """
        raise NotImplementedError(f"{self!r} doesn't support re-indexing labels")

    @overload
    def equals(self, other: Index) -> bool: ...

    @overload
    def equals(
        self, other: Index, *, exclude: frozenset[Hashable] | None = None
    ) -> bool: ...

    def equals(self, other: Index, **kwargs) -> bool:
        """Compare this index with another index of the same type.

        Implementation is optional but required in order to support alignment.

        Parameters
        ----------
        other : Index
            The other Index object to compare with this object.
        exclude : frozenset of hashable, optional
            Dimensions excluded from checking. It is None by default, (i.e.,
            when this method is not called in the context of alignment). For a
            n-dimensional index this option allows an Index to optionally ignore
            any dimension in ``exclude`` when comparing ``self`` with ``other``.
            For a 1-dimensional index this kwarg can be safely ignored, as this
            method is not called when all of the index's dimensions are also
            excluded from alignment (note: the index's dimensions correspond to
            the union of the dimensions of all coordinate variables associated
            with this index).

        Returns
        -------
        is_equal : bool
            ``True`` if the indexes are equal, ``False`` otherwise.

        """
        raise NotImplementedError()

    def roll(self, shifts: Mapping[Any, int]) -> Self | None:
        """Roll this index by an offset along one or more dimensions.

        This method can be re-implemented in subclasses of Index, e.g., when the
        index can be itself indexed.

        If not re-implemented, this method returns ``None``, i.e., calling
        :py:meth:`Dataset.roll` will either drop the index in the resulting
        dataset or pass it unchanged if its corresponding coordinate(s) are not
        rolled.

        Parameters
        ----------
        shifts : mapping of hashable to int, optional
            A dict with keys matching dimensions and values given
            by integers to rotate each of the given dimensions, as passed
            :py:meth:`Dataset.roll`.

        Returns
        -------
        rolled : Index
            A new index with rolled data.
        """
        return None

    def rename(
        self,
        name_dict: Mapping[Any, Hashable],
        dims_dict: Mapping[Any, Hashable],
    ) -> Self:
        """Maybe update the index with new coordinate and dimension names.

        This method should be re-implemented in subclasses of Index if it has
        attributes that depend on coordinate or dimension names.

        By default (if not re-implemented), it returns the index itself.

        Warning: the input names are not filtered for this method, they may
        correspond to any variable or dimension of a Dataset or a DataArray.

        Parameters
        ----------
        name_dict : dict-like
            Mapping of current variable or coordinate names to the desired names,
            as passed from :py:meth:`Dataset.rename_vars`.
        dims_dict : dict-like
            Mapping of current dimension names to the desired names, as passed
            from :py:meth:`Dataset.rename_dims`.

        Returns
        -------
        renamed : Index
            Index with renamed attributes.
        """
        return self

    def copy(self, deep: bool = True) -> Self:
        """Return a (deep) copy of this index.

        Implementation in subclasses of Index is optional. The base class
        implements the default (deep) copy semantics.

        Parameters
        ----------
        deep : bool, optional
            If true (default), a copy of the internal structures
            (e.g., wrapped index) is returned with the new object.

        Returns
        -------
        index : Index
            A new Index object.
        """
        return self._copy(deep=deep)

    def __copy__(self) -> Self:
        return self.copy(deep=False)

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Index:
        return self._copy(deep=True, memo=memo)

    def _copy(self, deep: bool = True, memo: dict[int, Any] | None = None) -> Self:
        cls = self.__class__
        copied = cls.__new__(cls)
        if deep:
            for k, v in self.__dict__.items():
                setattr(copied, k, copy.deepcopy(v, memo))
        else:
            copied.__dict__.update(self.__dict__)
        return copied

    def __getitem__(self, indexer: Any) -> Self:
        raise NotImplementedError()

    def _repr_inline_(self, max_width: int) -> str:
        return self.__class__.__name__


def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
    from xarray.coding.cftimeindex import CFTimeIndex

    if len(index) > 0 and index.dtype == "O" and not isinstance(index, CFTimeIndex):
        try:
            return CFTimeIndex(index)
        except (ImportError, TypeError):
            return index
    else:
        return index


def safe_cast_to_index(array: Any) -> pd.Index:
    """Given an array, safely cast it to a pandas.Index.

    If it is already a pandas.Index, return it unchanged.

    Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
    this function will not attempt to do automatic type conversion but will
    always return an index with dtype=object.
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.variable import Variable
    from xarray.namedarray.pycompat import to_numpy

    if isinstance(array, PandasExtensionArray):
        array = pd.Index(array.array)
    if isinstance(array, pd.Index):
        index = array
    elif isinstance(array, DataArray | Variable):
        # returns the original multi-index for pandas.MultiIndex level coordinates
        index = array._to_index()
    elif isinstance(array, Index):
        index = array.to_pandas_index()
    elif isinstance(array, PandasIndexingAdapter):
        index = array.array
    else:
        kwargs: dict[str, Any] = {}
        if hasattr(array, "dtype"):
            if array.dtype.kind == "O":
                kwargs["dtype"] = "object"
            elif array.dtype == "float16":
                emit_user_level_warning(
                    (
                        "`pandas.Index` does not support the `float16` dtype."
                        " Casting to `float64` for you, but in the future please"
                        " manually cast to either `float32` and `float64`."
                    ),
                    category=DeprecationWarning,
                )
                kwargs["dtype"] = "float64"

        index = pd.Index(to_numpy(array), **kwargs)

    return _maybe_cast_to_cftimeindex(index)


def _sanitize_slice_element(x):
    from xarray.core.dataarray import DataArray
    from xarray.core.variable import Variable

    if not isinstance(x, tuple) and len(np.shape(x)) != 0:
        raise ValueError(
            f"cannot use non-scalar arrays in a slice for xarray indexing: {x}"
        )

    if isinstance(x, Variable | DataArray):
        x = x.values

    if isinstance(x, np.ndarray):
        x = x[()]

    return x


def _query_slice(index, label, coord_name="", method=None, tolerance=None):
    if method is not None or tolerance is not None:
        raise NotImplementedError(
            "cannot use ``method`` argument if any indexers are slice objects"
        )
    indexer = index.slice_indexer(
        _sanitize_slice_element(label.start),
        _sanitize_slice_element(label.stop),
        _sanitize_slice_element(label.step),
    )
    if not isinstance(indexer, slice):
        # unlike pandas, in xarray we never want to silently convert a
        # slice indexer into an array indexer
        raise KeyError(
            "cannot represent labeled-based slice indexer for coordinate "
            f"{coord_name!r} with a slice over integer positions; the index is "
            "unsorted or non-unique"
        )
    return indexer


def _asarray_tuplesafe(values):
    """
    Convert values into a numpy array of at most 1-dimension, while preserving
    tuples.

    Adapted from pandas.core.common._asarray_tuplesafe
    """
    if isinstance(values, tuple):
        result = utils.to_0d_object_array(values)
    else:
        result = np.asarray(values)
        if result.ndim == 2:
            result = np.empty(len(values), dtype=object)
            result[:] = values

    return result


def _is_nested_tuple(possible_tuple):
    return isinstance(possible_tuple, tuple) and any(
        isinstance(value, tuple | list | slice) for value in possible_tuple
    )


def normalize_label(value, dtype=None) -> np.ndarray:
    if getattr(value, "ndim", 1) <= 1:
        value = _asarray_tuplesafe(value)
    if dtype is not None and dtype.kind == "f" and value.dtype.kind != "b":
        # pd.Index built from coordinate with float precision != 64
        # see https://github.com/pydata/xarray/pull/3153 for details
        # bypass coercing dtype for boolean indexers (ignore index)
        # see https://github.com/pydata/xarray/issues/5727
        value = np.asarray(value, dtype=dtype)
    return value


def as_scalar(value: np.ndarray):
    # see https://github.com/pydata/xarray/pull/4292 for details
    return value[()] if value.dtype.kind in "mM" else value.item()


def get_indexer_nd(index: pd.Index, labels, method=None, tolerance=None) -> np.ndarray:
    """Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional
    labels
    """
    flat_labels = np.ravel(labels)
    if flat_labels.dtype == "float16":
        flat_labels = flat_labels.astype("float64")
    flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance)
    indexer = flat_indexer.reshape(labels.shape)
    return indexer


T_PandasIndex = TypeVar("T_PandasIndex", bound="PandasIndex")


class PandasIndex(Index):
    """Wrap a pandas.Index as an xarray compatible index."""

    index: pd.Index
    dim: Hashable
    coord_dtype: Any

    __slots__ = ("coord_dtype", "dim", "index")

    def __init__(
        self,
        array: Any,
        dim: Hashable,
        coord_dtype: Any = None,
        *,
        fastpath: bool = False,
    ):
        if fastpath:
            index = array
        else:
            index = safe_cast_to_index(array)

        if index.name is None:
            # make a shallow copy: cheap and because the index name may be updated
            # here or in other constructors (cannot use pd.Index.rename as this
            # constructor is also called from PandasMultiIndex)
            index = index.copy()
            index.name = dim

        self.index = index
        self.dim = dim
        if coord_dtype is None:
            if is_allowed_extension_array_dtype(index.dtype):
                cast(pd.api.extensions.ExtensionDtype, index.dtype)
                coord_dtype = index.dtype
            else:
                coord_dtype = get_valid_numpy_dtype(index)
        self.coord_dtype = coord_dtype

    def _replace(self, index, dim=None, coord_dtype=None):
        if dim is None:
            dim = self.dim
        if coord_dtype is None:
            coord_dtype = self.coord_dtype
        return type(self)(index, dim, coord_dtype, fastpath=True)

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> PandasIndex:
        if len(variables) != 1:
            raise ValueError(
                f"PandasIndex only accepts one variable, found {len(variables)} variables"
            )

        name, var = next(iter(variables.items()))

        if var.ndim == 0:
            raise ValueError(
                f"cannot set a PandasIndex from the scalar variable {name!r}, "
                "only 1-dimensional variables are supported. "
                f"Note: you might want to use `obj.expand_dims({name!r})` to create a "
                f"new dimension and turn {name!r} as an indexed dimension coordinate."
            )
        elif var.ndim != 1:
            raise ValueError(
                "PandasIndex only accepts a 1-dimensional variable, "
                f"variable {name!r} has {var.ndim} dimensions"
            )

        dim = var.dims[0]

        # TODO: (benbovy - explicit indexes): add __index__ to ExplicitlyIndexesNDArrayMixin?
        # this could be eventually used by Variable.to_index() and would remove the need to perform
        # the checks below.

        # preserve wrapped pd.Index (if any)
        # accessing `.data` can load data from disk, so we only access if needed
        data = var._data if isinstance(var._data, PandasIndexingAdapter) else var.data  # type: ignore[redundant-expr]
        # multi-index level variable: get level index
        if isinstance(var._data, PandasMultiIndexingAdapter):
            level = var._data.level
            if level is not None:
                data = var._data.array.get_level_values(level)

        obj = cls(data, dim, coord_dtype=var.dtype)
        assert not isinstance(obj.index, pd.MultiIndex)
        # Rename safely
        # make a shallow copy: cheap and because the index name may be updated
        # here or in other constructors (cannot use pd.Index.rename as this
        # constructor is also called from PandasMultiIndex)
        obj.index = obj.index.copy()
        obj.index.name = name

        return obj

    @staticmethod
    def _concat_indexes(indexes, dim, positions=None) -> pd.Index:
        new_pd_index: pd.Index

        if not indexes:
            new_pd_index = pd.Index([])
        else:
            if not all(idx.dim == dim for idx in indexes):
                dims = ",".join({f"{idx.dim!r}" for idx in indexes})
                raise ValueError(
                    f"Cannot concatenate along dimension {dim!r} indexes with "
                    f"dimensions: {dims}"
                )
            pd_indexes = [idx.index for idx in indexes]
            new_pd_index = pd_indexes[0].append(pd_indexes[1:])

            if positions is not None:
                indices = nputils.inverse_permutation(np.concatenate(positions))
                new_pd_index = new_pd_index.take(indices)

        return new_pd_index

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        new_pd_index = cls._concat_indexes(indexes, dim, positions)

        if not indexes:
            coord_dtype = None
        else:
            indexes_coord_dtypes = {idx.coord_dtype for idx in indexes}
            if len(indexes_coord_dtypes) == 1:
                coord_dtype = next(iter(indexes_coord_dtypes))
            else:
                coord_dtype = np.result_type(*indexes_coord_dtypes)

        return cls(new_pd_index, dim=dim, coord_dtype=coord_dtype)

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import IndexVariable

        name = self.index.name
        attrs: Mapping[Hashable, Any] | None
        encoding: Mapping[Hashable, Any] | None

        if variables is not None and name in variables:
            var = variables[name]
            attrs = var.attrs
            encoding = var.encoding
        else:
            attrs = None
            encoding = None

        data = PandasIndexingAdapter(self.index, dtype=self.coord_dtype)
        var = IndexVariable(self.dim, data, attrs=attrs, encoding=encoding)
        return {name: var}

    def to_pandas_index(self) -> pd.Index:
        return self.index

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> PandasIndex | None:
        from xarray.core.variable import Variable

        indxr = indexers[self.dim]
        if isinstance(indxr, Variable):
            if indxr.dims != (self.dim,):
                # can't preserve a index if result has new dimensions
                return None
            else:
                indxr = indxr.data
        if not isinstance(indxr, slice) and is_scalar(indxr):
            # scalar indexer: drop index
            return None

        return self._replace(self.index[indxr])  # type: ignore[index]

    def sel(
        self, labels: dict[Any, Any], method=None, tolerance=None
    ) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method is not None and not isinstance(method, str):
            raise TypeError("``method`` must be a string")

        assert len(labels) == 1
        coord_name, label = next(iter(labels.items()))

        if isinstance(label, slice):
            indexer = _query_slice(self.index, label, coord_name, method, tolerance)
        elif is_dict_like(label):
            raise ValueError(
                "cannot use a dict-like object for selection on "
                "a dimension that does not have a MultiIndex"
            )
        else:
            label_array = normalize_label(label, dtype=self.coord_dtype)
            if label_array.ndim == 0:
                label_value = as_scalar(label_array)
                if isinstance(self.index, pd.CategoricalIndex):
                    if method is not None:
                        raise ValueError(
                            "'method' is not supported when indexing using a CategoricalIndex."
                        )
                    if tolerance is not None:
                        raise ValueError(
                            "'tolerance' is not supported when indexing using a CategoricalIndex."
                        )
                    indexer = self.index.get_loc(label_value)
                elif method is not None:
                    indexer = get_indexer_nd(self.index, label_array, method, tolerance)
                    if np.any(indexer < 0):
                        raise KeyError(f"not all values found in index {coord_name!r}")
                else:
                    try:
                        indexer = self.index.get_loc(label_value)
                    except KeyError as e:
                        raise KeyError(
                            f"not all values found in index {coord_name!r}. "
                            "Try setting the `method` keyword argument (example: method='nearest')."
                        ) from e

            elif label_array.dtype.kind == "b":
                indexer = label_array
            else:
                indexer = get_indexer_nd(self.index, label_array, method, tolerance)
                if np.any(indexer < 0):
                    raise KeyError(f"not all values found in index {coord_name!r}")

            # attach dimension names and/or coordinates to positional indexer
            if isinstance(label, Variable):
                indexer = Variable(label.dims, indexer)
            elif isinstance(label, DataArray):
                indexer = DataArray(indexer, coords=label._coords, dims=label.dims)

        return IndexSelResult({self.dim: indexer})

    def equals(self, other: Index, *, exclude: frozenset[Hashable] | None = None):
        if not isinstance(other, PandasIndex):
            return False
        return self.index.equals(other.index) and self.dim == other.dim

    def join(
        self,
        other: Self,
        how: str = "inner",
    ) -> Self:
        if how == "outer":
            index = self.index.union(other.index)
        else:
            # how = "inner"
            index = self.index.intersection(other.index)

        coord_dtype = np.result_type(self.coord_dtype, other.coord_dtype)
        return type(self)(index, self.dim, coord_dtype=coord_dtype)

    def reindex_like(
        self, other: Self, method=None, tolerance=None
    ) -> dict[Hashable, Any]:
        if not self.index.is_unique:
            raise ValueError(
                f"cannot reindex or align along dimension {self.dim!r} because the "
                "(pandas) index has duplicate values"
            )

        return {self.dim: get_indexer_nd(self.index, other.index, method, tolerance)}

    def roll(self, shifts: Mapping[Any, int]) -> PandasIndex:
        shift = shifts[self.dim] % self.index.shape[0]

        if shift != 0:
            new_pd_idx = self.index[-shift:].append(self.index[:-shift])
        else:
            new_pd_idx = self.index[:]

        return self._replace(new_pd_idx)

    def rename(self, name_dict, dims_dict):
        if self.index.name not in name_dict and self.dim not in dims_dict:
            return self

        new_name = name_dict.get(self.index.name, self.index.name)
        index = self.index.rename(new_name)
        new_dim = dims_dict.get(self.dim, self.dim)
        return self._replace(index, dim=new_dim)

    def _copy(
        self: T_PandasIndex, deep: bool = True, memo: dict[int, Any] | None = None
    ) -> T_PandasIndex:
        if deep:
            # pandas is not using the memo
            index = self.index.copy(deep=True)
        else:
            # index will be copied in constructor
            index = self.index
        return self._replace(index)

    def __getitem__(self, indexer: Any):
        return self._replace(self.index[indexer])

    def __repr__(self):
        return f"PandasIndex({self.index!r})"


def _check_dim_compat(variables: Mapping[Any, Variable], all_dims: str = "equal"):
    """Check that all multi-index variable candidates are 1-dimensional and
    either share the same (single) dimension or each have a different dimension.

    """
    if any(var.ndim != 1 for var in variables.values()):
        raise ValueError("PandasMultiIndex only accepts 1-dimensional variables")

    dims = {var.dims for var in variables.values()}

    if all_dims == "equal" and len(dims) > 1:
        raise ValueError(
            "unmatched dimensions for multi-index variables "
            + ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
        )

    if all_dims == "different" and len(dims) < len(variables):
        raise ValueError(
            "conflicting dimensions for multi-index product variables "
            + ", ".join([f"{k!r} {v.dims}" for k, v in variables.items()])
        )


T_PDIndex = TypeVar("T_PDIndex", bound=pd.Index)


def remove_unused_levels_categories(index: T_PDIndex) -> T_PDIndex:
    """
    Remove unused levels from MultiIndex and unused categories from CategoricalIndex
    """
    if isinstance(index, pd.MultiIndex):
        new_index = cast(pd.MultiIndex, index.remove_unused_levels())
        # if it contains CategoricalIndex, we need to remove unused categories
        # manually. See https://github.com/pandas-dev/pandas/issues/30846
        if any(isinstance(lev, pd.CategoricalIndex) for lev in new_index.levels):
            levels = []
            for i, level in enumerate(new_index.levels):
                if isinstance(level, pd.CategoricalIndex):
                    level = level[new_index.codes[i]].remove_unused_categories()
                else:
                    level = level[new_index.codes[i]]
                levels.append(level)
            # TODO: calling from_array() reorders MultiIndex levels. It would
            # be best to avoid this, if possible, e.g., by using
            # MultiIndex.remove_unused_levels() (which does not reorder) on the
            # part of the MultiIndex that is not categorical, or by fixing this
            # upstream in pandas.
            new_index = pd.MultiIndex.from_arrays(levels, names=new_index.names)
        return cast(T_PDIndex, new_index)

    if isinstance(index, pd.CategoricalIndex):
        return index.remove_unused_categories()  # type: ignore[attr-defined]

    return index


class PandasMultiIndex(PandasIndex):
    """Wrap a pandas.MultiIndex as an xarray compatible index."""

    index: pd.MultiIndex
    dim: Hashable
    coord_dtype: Any
    level_coords_dtype: dict[str, Any]

    __slots__ = ("coord_dtype", "dim", "index", "level_coords_dtype")

    def __init__(self, array: Any, dim: Hashable, level_coords_dtype: Any = None):
        super().__init__(array, dim)

        # default index level names
        names = []
        for i, idx in enumerate(self.index.levels):
            name = idx.name or f"{dim}_level_{i}"
            if name == dim:
                raise ValueError(
                    f"conflicting multi-index level name {name!r} with dimension {dim!r}"
                )
            names.append(name)
        self.index.names = names

        if level_coords_dtype is None:
            level_coords_dtype = {
                idx.name: get_valid_numpy_dtype(idx) for idx in self.index.levels
            }
        self.level_coords_dtype = level_coords_dtype

    def _replace(self, index, dim=None, level_coords_dtype=None) -> PandasMultiIndex:
        if dim is None:
            dim = self.dim
        index.name = dim
        if level_coords_dtype is None:
            level_coords_dtype = self.level_coords_dtype
        return type(self)(index, dim, level_coords_dtype)

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> PandasMultiIndex:
        _check_dim_compat(variables)
        dim = next(iter(variables.values())).dims[0]

        index = pd.MultiIndex.from_arrays(
            [var.values for var in variables.values()], names=variables.keys()
        )
        index.name = dim
        level_coords_dtype = {name: var.dtype for name, var in variables.items()}
        obj = cls(index, dim, level_coords_dtype=level_coords_dtype)

        return obj

    @classmethod
    def concat(
        cls,
        indexes: Sequence[Self],
        dim: Hashable,
        positions: Iterable[Iterable[int]] | None = None,
    ) -> Self:
        new_pd_index = cls._concat_indexes(indexes, dim, positions)

        if not indexes:
            level_coords_dtype = None
        else:
            level_coords_dtype = {}
            for name in indexes[0].level_coords_dtype:
                level_coords_dtype[name] = np.result_type(
                    *[idx.level_coords_dtype[name] for idx in indexes]
                )

        return cls(new_pd_index, dim=dim, level_coords_dtype=level_coords_dtype)

    @classmethod
    def stack(
        cls, variables: Mapping[Any, Variable], dim: Hashable
    ) -> PandasMultiIndex:
        """Create a new Pandas MultiIndex from the product of 1-d variables (levels) along a
        new dimension.

        Level variables must have a dimension distinct from each other.

        Keeps levels the same (doesn't refactorize them) so that it gives back the original
        labels after a stack/unstack roundtrip.

        """
        _check_dim_compat(variables, all_dims="different")

        level_indexes = [safe_cast_to_index(var) for var in variables.values()]
        for name, idx in zip(variables, level_indexes, strict=True):
            if isinstance(idx, pd.MultiIndex):
                raise ValueError(
                    f"cannot create a multi-index along stacked dimension {dim!r} "
                    f"from variable {name!r} that wraps a multi-index"
                )

        # from_product sorts by default, so we can't use that always
        # https://github.com/pydata/xarray/issues/980
        # https://github.com/pandas-dev/pandas/issues/14672
        if all(index.is_monotonic_increasing for index in level_indexes):
            index = pd.MultiIndex.from_product(
                level_indexes, sortorder=0, names=variables.keys()
            )
        else:
            split_labels, levels = zip(
                *[lev.factorize() for lev in level_indexes], strict=True
            )
            labels_mesh = np.meshgrid(*split_labels, indexing="ij")
            labels = [x.ravel().tolist() for x in labels_mesh]

            index = pd.MultiIndex(
                levels=levels, codes=labels, sortorder=0, names=variables.keys()
            )
        level_coords_dtype = {k: var.dtype for k, var in variables.items()}

        return cls(index, dim, level_coords_dtype=level_coords_dtype)

    def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]:
        clean_index = remove_unused_levels_categories(self.index)

        if not clean_index.is_unique:
            raise ValueError(
                "Cannot unstack MultiIndex containing duplicates. Make sure entries "
                f"are unique, e.g., by  calling ``.drop_duplicates('{self.dim}')``, "
                "before unstacking."
            )

        new_indexes: dict[Hashable, Index] = {}
        for name, lev in zip(clean_index.names, clean_index.levels, strict=True):
            idx = PandasIndex(
                lev.copy(), name, coord_dtype=self.level_coords_dtype[name]
            )
            new_indexes[name] = idx

        return new_indexes, clean_index

    @classmethod
    def from_variables_maybe_expand(
        cls,
        dim: Hashable,
        current_variables: Mapping[Any, Variable],
        variables: Mapping[Any, Variable],
    ) -> tuple[PandasMultiIndex, IndexVars]:
        """Create a new multi-index maybe by expanding an existing one with
        new variables as index levels.

        The index and its corresponding coordinates may be created along a new dimension.
        """
        names: list[Hashable] = []
        codes: list[Iterable[int]] = []
        levels: list[Iterable[Any]] = []
        level_variables: dict[Any, Variable] = {}

        _check_dim_compat({**current_variables, **variables})

        if len(current_variables) > 1:
            # expand from an existing multi-index
            data = cast(
                PandasMultiIndexingAdapter, next(iter(current_variables.values()))._data
            )
            current_index = data.array
            names.extend(current_index.names)
            codes.extend(current_index.codes)
            levels.extend(current_index.levels)
            for name in current_index.names:
                level_variables[name] = current_variables[name]

        elif len(current_variables) == 1:
            # expand from one 1D variable (no multi-index): convert it to an index level
            var = next(iter(current_variables.values()))
            new_var_name = f"{dim}_level_0"
            names.append(new_var_name)
            cat = pd.Categorical(var.values, ordered=True)
            codes.append(cat.codes)
            levels.append(cat.categories)
            level_variables[new_var_name] = var

        for name, var in variables.items():
            names.append(name)
            cat = pd.Categorical(var.values, ordered=True)
            codes.append(cat.codes)
            levels.append(cat.categories)
            level_variables[name] = var

        codes_as_lists = [list(x) for x in codes]
        index = pd.MultiIndex(levels=levels, codes=codes_as_lists, names=names)
        level_coords_dtype = {k: var.dtype for k, var in level_variables.items()}
        obj = cls(index, dim, level_coords_dtype=level_coords_dtype)
        index_vars = obj.create_variables(level_variables)

        return obj, index_vars

    def keep_levels(
        self, level_variables: Mapping[Any, Variable]
    ) -> PandasMultiIndex | PandasIndex:
        """Keep only the provided levels and return a new multi-index with its
        corresponding coordinates.

        """
        index = self.index.droplevel(
            [k for k in self.index.names if k not in level_variables]
        )

        if isinstance(index, pd.MultiIndex):
            level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
            return self._replace(index, level_coords_dtype=level_coords_dtype)
        else:
            # backward compatibility: rename the level coordinate to the dimension name
            return PandasIndex(
                index.rename(self.dim),
                self.dim,
                coord_dtype=self.level_coords_dtype[index.name],
            )

    def reorder_levels(
        self, level_variables: Mapping[Any, Variable]
    ) -> PandasMultiIndex:
        """Re-arrange index levels using input order and return a new multi-index with
        its corresponding coordinates.

        """
        index = cast(pd.MultiIndex, self.index.reorder_levels(level_variables.keys()))
        level_coords_dtype = {k: self.level_coords_dtype[k] for k in index.names}
        return self._replace(index, level_coords_dtype=level_coords_dtype)

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import IndexVariable

        if variables is None:
            variables = {}

        index_vars: IndexVars = {}
        for name in (self.dim,) + tuple(self.index.names):
            if name == self.dim:
                level = None
                dtype = None
            else:
                level = name
                dtype = self.level_coords_dtype[name]  # type: ignore[index]  # TODO: are Hashables ok?

            var = variables.get(name)
            if var is not None:
                attrs = var.attrs
                encoding = var.encoding
            else:
                attrs = {}
                encoding = {}

            data = PandasMultiIndexingAdapter(self.index, dtype=dtype, level=level)  # type: ignore[arg-type]  # TODO: are Hashables ok?
            index_vars[name] = IndexVariable(
                self.dim,
                data,
                attrs=attrs,
                encoding=encoding,
                fastpath=True,
            )

        return index_vars

    def sel(self, labels, method=None, tolerance=None) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method is not None or tolerance is not None:
            raise ValueError(
                "multi-index does not support ``method`` and ``tolerance``"
            )

        new_index = None
        scalar_coord_values = {}

        indexer: int | slice | np.ndarray | Variable | DataArray

        # label(s) given for multi-index level(s)
        if all(lbl in self.index.names for lbl in labels):
            label_values = {}
            for k, v in labels.items():
                label_array = normalize_label(v, dtype=self.level_coords_dtype[k])
                try:
                    label_values[k] = as_scalar(label_array)
                except ValueError as err:
                    # label should be an item not an array-like
                    raise ValueError(
                        "Vectorized selection is not "
                        f"available along coordinate {k!r} (multi-index level)"
                    ) from err

            has_slice = any(isinstance(v, slice) for v in label_values.values())

            if len(label_values) == self.index.nlevels and not has_slice:
                indexer = self.index.get_loc(
                    tuple(label_values[k] for k in self.index.names)
                )
            else:
                indexer, new_index = self.index.get_loc_level(
                    tuple(label_values.values()), level=tuple(label_values.keys())
                )
                scalar_coord_values.update(label_values)
                # GH2619. Raise a KeyError if nothing is chosen
                if indexer.dtype.kind == "b" and indexer.sum() == 0:  # type: ignore[union-attr]
                    raise KeyError(f"{labels} not found")

        # assume one label value given for the multi-index "array" (dimension)
        else:
            if len(labels) > 1:
                coord_name = next(iter(set(labels) - set(self.index.names)))
                raise ValueError(
                    f"cannot provide labels for both coordinate {coord_name!r} (multi-index array) "
                    f"and one or more coordinates among {self.index.names!r} (multi-index levels)"
                )

            coord_name, label = next(iter(labels.items()))

            if is_dict_like(label):
                invalid_levels = tuple(
                    name for name in label if name not in self.index.names
                )
                if invalid_levels:
                    raise ValueError(
                        f"multi-index level names {invalid_levels} not found in indexes {tuple(self.index.names)}"
                    )
                return self.sel(label)

            elif isinstance(label, slice):
                indexer = _query_slice(self.index, label, coord_name)

            elif isinstance(label, tuple):
                if _is_nested_tuple(label):
                    indexer = self.index.get_locs(label)
                elif len(label) == self.index.nlevels:
                    indexer = self.index.get_loc(label)
                else:
                    levels = [self.index.names[i] for i in range(len(label))]
                    indexer, new_index = self.index.get_loc_level(label, level=levels)
                    scalar_coord_values.update(dict(zip(levels, label, strict=True)))

            else:
                label_array = normalize_label(label)
                if label_array.ndim == 0:
                    label_value = as_scalar(label_array)
                    indexer, new_index = self.index.get_loc_level(label_value, level=0)
                    scalar_coord_values[self.index.names[0]] = label_value
                elif label_array.dtype.kind == "b":
                    indexer = label_array
                else:
                    if label_array.ndim > 1:
                        raise ValueError(
                            "Vectorized selection is not available along "
                            f"coordinate {coord_name!r} with a multi-index"
                        )
                    indexer = get_indexer_nd(self.index, label_array)
                    if np.any(indexer < 0):
                        raise KeyError(f"not all values found in index {coord_name!r}")

                # attach dimension names and/or coordinates to positional indexer
                if isinstance(label, Variable):
                    indexer = Variable(label.dims, indexer)
                elif isinstance(label, DataArray):
                    # do not include label-indexer DataArray coordinates that conflict
                    # with the level names of this index
                    coords = {
                        k: v
                        for k, v in label._coords.items()
                        if k not in self.index.names
                    }
                    indexer = DataArray(indexer, coords=coords, dims=label.dims)

        if new_index is not None:
            if isinstance(new_index, pd.MultiIndex):
                level_coords_dtype = {
                    k: self.level_coords_dtype[k] for k in new_index.names
                }
                new_index = self._replace(
                    new_index, level_coords_dtype=level_coords_dtype
                )
                dims_dict = {}
                drop_coords = []
            else:
                new_index = PandasIndex(
                    new_index,
                    new_index.name,
                    coord_dtype=self.level_coords_dtype[new_index.name],
                )
                dims_dict = {self.dim: new_index.index.name}
                drop_coords = [self.dim]

            # variable(s) attrs and encoding metadata are propagated
            # when replacing the indexes in the resulting xarray object
            new_vars = new_index.create_variables()
            indexes = cast(dict[Any, Index], dict.fromkeys(new_vars, new_index))

            # add scalar variable for each dropped level
            variables = new_vars
            for name, val in scalar_coord_values.items():
                variables[name] = Variable([], val)

            return IndexSelResult(
                {self.dim: indexer},
                indexes=indexes,
                variables=variables,
                drop_indexes=list(scalar_coord_values),
                drop_coords=drop_coords,
                rename_dims=dims_dict,
            )

        else:
            return IndexSelResult({self.dim: indexer})

    def join(self, other, how: str = "inner"):
        if how == "outer":
            # bug in pandas? need to reset index.name
            other_index = other.index.copy()
            other_index.name = None
            index = self.index.union(other_index)
            index.name = self.dim
        else:
            # how = "inner"
            index = self.index.intersection(other.index)

        level_coords_dtype = {
            k: np.result_type(lvl_dtype, other.level_coords_dtype[k])
            for k, lvl_dtype in self.level_coords_dtype.items()
        }

        return type(self)(index, self.dim, level_coords_dtype=level_coords_dtype)

    def rename(self, name_dict, dims_dict):
        if not set(self.index.names) & set(name_dict) and self.dim not in dims_dict:
            return self

        # pandas 1.3.0: could simply do `self.index.rename(names_dict)`
        new_names = [name_dict.get(k, k) for k in self.index.names]
        index = self.index.rename(new_names)

        new_dim = dims_dict.get(self.dim, self.dim)
        new_level_coords_dtype = dict(
            zip(new_names, self.level_coords_dtype.values(), strict=True)
        )
        return self._replace(
            index, dim=new_dim, level_coords_dtype=new_level_coords_dtype
        )


class CoordinateTransformIndex(Index):
    """Helper class for creating Xarray indexes based on coordinate transforms.

    - wraps a :py:class:`CoordinateTransform` instance
    - takes care of creating the index (lazy) coordinates
    - supports point-wise label-based selection
    - supports exact alignment only, by comparing indexes based on their transform
      (not on their explicit coordinate labels)

    .. caution::
        This API is experimental and subject to change. Please report any bugs or surprising
        behaviour you encounter.
    """

    transform: CoordinateTransform

    def __init__(
        self,
        transform: CoordinateTransform,
    ):
        self.transform = transform

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> IndexVars:
        from xarray.core.variable import Variable

        new_variables = {}

        for name in self.transform.coord_names:
            # copy attributes, if any
            attrs: Mapping[Hashable, Any] | None

            if variables is not None and name in variables:
                var = variables[name]
                attrs = var.attrs
            else:
                attrs = None

            data = CoordinateTransformIndexingAdapter(self.transform, name)
            new_variables[name] = Variable(self.transform.dims, data, attrs=attrs)

        return new_variables

    def isel(
        self, indexers: Mapping[Any, int | slice | np.ndarray | Variable]
    ) -> Index | None:
        # TODO: support returning a new index (e.g., possible to re-calculate the
        # the transform or calculate another transform on a reduced dimension space)
        return None

    def sel(
        self, labels: dict[Any, Any], method=None, tolerance=None
    ) -> IndexSelResult:
        from xarray.core.dataarray import DataArray
        from xarray.core.variable import Variable

        if method != "nearest":
            raise ValueError(
                "CoordinateTransformIndex only supports selection with method='nearest'"
            )

        labels_set = set(labels)
        coord_names_set = set(self.transform.coord_names)

        missing_labels = coord_names_set - labels_set
        if missing_labels:
            missing_labels_str = ",".join([f"{name}" for name in missing_labels])
            raise ValueError(f"missing labels for coordinate(s): {missing_labels_str}.")

        label0_obj = next(iter(labels.values()))
        dim_size0 = getattr(label0_obj, "sizes", {})

        is_xr_obj = [
            isinstance(label, DataArray | Variable) for label in labels.values()
        ]
        if not all(is_xr_obj):
            raise TypeError(
                "CoordinateTransformIndex only supports advanced (point-wise) indexing "
                "with either xarray.DataArray or xarray.Variable objects."
            )
        dim_size = [getattr(label, "sizes", {}) for label in labels.values()]
        if any(ds != dim_size0 for ds in dim_size):
            raise ValueError(
                "CoordinateTransformIndex only supports advanced (point-wise) indexing "
                "with xarray.DataArray or xarray.Variable objects of matching dimensions."
            )

        coord_labels = {
            name: labels[name].values for name in self.transform.coord_names
        }
        dim_positions = self.transform.reverse(coord_labels)

        results: dict[str, Variable | DataArray] = {}
        dims0 = tuple(dim_size0)
        for dim, pos in dim_positions.items():
            # TODO: rounding the decimal positions is not always the behavior we expect
            # (there are different ways to represent implicit intervals)
            # we should probably make this customizable.
            pos = np.round(pos).astype("int")
            if isinstance(label0_obj, Variable):
                results[dim] = Variable(dims0, pos)
            else:
                # dataarray
                results[dim] = DataArray(pos, dims=dims0)

        return IndexSelResult(results)

    def equals(
        self, other: Index, *, exclude: frozenset[Hashable] | None = None
    ) -> bool:
        if not isinstance(other, CoordinateTransformIndex):
            return False
        return self.transform.equals(other.transform, exclude=exclude)

    def rename(
        self,
        name_dict: Mapping[Any, Hashable],
        dims_dict: Mapping[Any, Hashable],
    ) -> Self:
        coord_names = self.transform.coord_names
        dims = self.transform.dims
        dim_size = self.transform.dim_size

        if not set(coord_names) & set(name_dict) and not set(dims) & set(dims_dict):
            return self

        new_transform = copy.deepcopy(self.transform)
        new_transform.coord_names = tuple(name_dict.get(n, n) for n in coord_names)
        new_transform.dims = tuple(str(dims_dict.get(d, d)) for d in dims)
        new_transform.dim_size = {
            str(dims_dict.get(d, d)): v for d, v in dim_size.items()
        }

        return type(self)(new_transform)


def create_default_index_implicit(
    dim_variable: Variable,
    all_variables: Mapping | Iterable[Hashable] | None = None,
) -> tuple[PandasIndex, IndexVars]:
    """Create a default index from a dimension variable.

    Create a PandasMultiIndex if the given variable wraps a pandas.MultiIndex,
    otherwise create a PandasIndex (note that this will become obsolete once we
    depreciate implicitly passing a pandas.MultiIndex as a coordinate).

    """
    if all_variables is None:
        all_variables = {}
    if not isinstance(all_variables, Mapping):
        all_variables = dict.fromkeys(all_variables)

    name = dim_variable.dims[0]
    array = getattr(dim_variable._data, "array", None)
    index: PandasIndex

    if isinstance(array, pd.MultiIndex):
        index = PandasMultiIndex(array, name)
        index_vars = index.create_variables()
        # check for conflict between level names and variable names
        duplicate_names = [k for k in index_vars if k in all_variables and k != name]
        if duplicate_names:
            # dirty workaround for an edge case where both the dimension
            # coordinate and the level coordinates are given for the same
            # multi-index object => do not raise an error
            # TODO: remove this check when removing the multi-index dimension coordinate
            if len(duplicate_names) < len(index.index.names):
                conflict = True
            else:
                duplicate_vars = [all_variables[k] for k in duplicate_names]
                conflict = any(
                    v is None or not dim_variable.equals(v) for v in duplicate_vars
                )

            if conflict:
                conflict_str = "\n".join(duplicate_names)
                raise ValueError(
                    f"conflicting MultiIndex level / variable name(s):\n{conflict_str}"
                )
    else:
        dim_var = {name: dim_variable}
        index = PandasIndex.from_variables(dim_var, options={})
        index_vars = index.create_variables(dim_var)

    return index, index_vars


# generic type that represents either a pandas or an xarray index
T_PandasOrXarrayIndex = TypeVar("T_PandasOrXarrayIndex", Index, pd.Index)


class Indexes(collections.abc.Mapping, Generic[T_PandasOrXarrayIndex]):
    """Immutable proxy for Dataset or DataArray indexes.

    It is a mapping where keys are coordinate names and values are either pandas
    or xarray indexes.

    It also contains the indexed coordinate variables and provides some utility
    methods.

    """

    _index_type: type[Index | pd.Index]
    _indexes: dict[Any, T_PandasOrXarrayIndex]
    _variables: dict[Any, Variable]

    __slots__ = (
        "__coord_name_id",
        "__id_coord_names",
        "__id_index",
        "_dims",
        "_index_type",
        "_indexes",
        "_variables",
    )

    def __init__(
        self,
        indexes: Mapping[Any, T_PandasOrXarrayIndex] | None = None,
        variables: Mapping[Any, Variable] | None = None,
        index_type: type[Index | pd.Index] = Index,
    ):
        """Constructor not for public consumption.

        Parameters
        ----------
        indexes : dict
            Indexes held by this object.
        variables : dict
            Indexed coordinate variables in this object. Entries must
            match those of `indexes`.
        index_type : type
            The type of all indexes, i.e., either :py:class:`xarray.indexes.Index`
            or :py:class:`pandas.Index`.

        """
        if indexes is None:
            indexes = {}
        if variables is None:
            variables = {}

        unmatched_keys = set(indexes) ^ set(variables)
        if unmatched_keys:
            raise ValueError(
                f"unmatched keys found in indexes and variables: {unmatched_keys}"
            )

        if any(not isinstance(idx, index_type) for idx in indexes.values()):
            index_type_str = f"{index_type.__module__}.{index_type.__name__}"
            raise TypeError(
                f"values of indexes must all be instances of {index_type_str}"
            )

        self._index_type = index_type
        self._indexes = dict(**indexes)
        self._variables = dict(**variables)

        self._dims: Mapping[Hashable, int] | None = None
        self.__coord_name_id: dict[Any, int] | None = None
        self.__id_index: dict[int, T_PandasOrXarrayIndex] | None = None
        self.__id_coord_names: dict[int, tuple[Hashable, ...]] | None = None

    @property
    def _coord_name_id(self) -> dict[Any, int]:
        if self.__coord_name_id is None:
            self.__coord_name_id = {k: id(idx) for k, idx in self._indexes.items()}
        return self.__coord_name_id

    @property
    def _id_index(self) -> dict[int, T_PandasOrXarrayIndex]:
        if self.__id_index is None:
            self.__id_index = {id(idx): idx for idx in self.get_unique()}
        return self.__id_index

    @property
    def _id_coord_names(self) -> dict[int, tuple[Hashable, ...]]:
        if self.__id_coord_names is None:
            id_coord_names: Mapping[int, list[Hashable]] = defaultdict(list)
            for k, v in self._coord_name_id.items():
                id_coord_names[v].append(k)
            self.__id_coord_names = {k: tuple(v) for k, v in id_coord_names.items()}

        return self.__id_coord_names

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        return Frozen(self._variables)

    @property
    def dims(self) -> Mapping[Hashable, int]:
        from xarray.core.variable import calculate_dimensions

        if self._dims is None:
            self._dims = calculate_dimensions(self._variables)

        return Frozen(self._dims)

    def copy(self) -> Indexes:
        return type(self)(dict(self._indexes), dict(self._variables))

    def get_unique(self) -> list[T_PandasOrXarrayIndex]:
        """Return a list of unique indexes, preserving order."""

        unique_indexes: list[T_PandasOrXarrayIndex] = []
        seen: set[int] = set()

        for index in self._indexes.values():
            index_id = id(index)
            if index_id not in seen:
                unique_indexes.append(index)
                seen.add(index_id)

        return unique_indexes

    def is_multi(self, key: Hashable) -> bool:
        """Return True if ``key`` maps to a multi-coordinate index,
        False otherwise.
        """
        return len(self._id_coord_names[self._coord_name_id[key]]) > 1

    def get_all_coords(
        self, key: Hashable, errors: ErrorOptions = "raise"
    ) -> dict[Hashable, Variable]:
        """Return all coordinates having the same index.

        Parameters
        ----------
        key : hashable
            Index key.
        errors : {"raise", "ignore"}, default: "raise"
            If "raise", raises a ValueError if `key` is not in indexes.
            If "ignore", an empty tuple is returned instead.

        Returns
        -------
        coords : dict
            A dictionary of all coordinate variables having the same index.

        """
        if errors not in ["raise", "ignore"]:
            raise ValueError('errors must be either "raise" or "ignore"')

        if key not in self._indexes:
            if errors == "raise":
                raise ValueError(f"no index found for {key!r} coordinate")
            else:
                return {}

        all_coord_names = self._id_coord_names[self._coord_name_id[key]]
        return {k: self._variables[k] for k in all_coord_names}

    def get_all_dims(
        self, key: Hashable, errors: ErrorOptions = "raise"
    ) -> Mapping[Hashable, int]:
        """Return all dimensions shared by an index.

        Parameters
        ----------
        key : hashable
            Index key.
        errors : {"raise", "ignore"}, default: "raise"
            If "raise", raises a ValueError if `key` is not in indexes.
            If "ignore", an empty tuple is returned instead.

        Returns
        -------
        dims : dict
            A dictionary of all dimensions shared by an index.

        """
        from xarray.core.variable import calculate_dimensions

        return calculate_dimensions(self.get_all_coords(key, errors=errors))

    def group_by_index(
        self,
    ) -> list[tuple[T_PandasOrXarrayIndex, dict[Hashable, Variable]]]:
        """Returns a list of unique indexes and their corresponding coordinates."""

        index_coords = []
        for i, index in self._id_index.items():
            coords = {k: self._variables[k] for k in self._id_coord_names[i]}
            index_coords.append((index, coords))

        return index_coords

    def to_pandas_indexes(self) -> Indexes[pd.Index]:
        """Returns an immutable proxy for Dataset or DataArray pandas indexes.

        Raises an error if this proxy contains indexes that cannot be coerced to
        pandas.Index objects.

        """
        indexes: dict[Hashable, pd.Index] = {}

        for k, idx in self._indexes.items():
            if isinstance(idx, pd.Index):
                indexes[k] = idx
            elif isinstance(idx, Index):
                indexes[k] = idx.to_pandas_index()

        return Indexes(indexes, self._variables, index_type=pd.Index)

    def copy_indexes(
        self, deep: bool = True, memo: dict[int, T_PandasOrXarrayIndex] | None = None
    ) -> tuple[dict[Hashable, T_PandasOrXarrayIndex], dict[Hashable, Variable]]:
        """Return a new dictionary with copies of indexes, preserving
        unique indexes.

        Parameters
        ----------
        deep : bool, default: True
            Whether the indexes are deep or shallow copied onto the new object.
        memo : dict if object id to copied objects or None, optional
            To prevent infinite recursion deepcopy stores all copied elements
            in this dict.

        """
        new_indexes: dict[Hashable, T_PandasOrXarrayIndex] = {}
        new_index_vars: dict[Hashable, Variable] = {}

        xr_idx: Index
        new_idx: T_PandasOrXarrayIndex
        for idx, coords in self.group_by_index():
            if isinstance(idx, pd.Index):
                convert_new_idx = True
                dim = next(iter(coords.values())).dims[0]
                if isinstance(idx, pd.MultiIndex):
                    xr_idx = PandasMultiIndex(idx, dim)
                else:
                    xr_idx = PandasIndex(idx, dim)
            else:
                convert_new_idx = False
                xr_idx = idx

            new_idx = xr_idx._copy(deep=deep, memo=memo)  # type: ignore[assignment]
            idx_vars = xr_idx.create_variables(coords)

            if convert_new_idx:
                new_idx = new_idx.index  # type: ignore[attr-defined]

            new_indexes.update(dict.fromkeys(coords, new_idx))
            new_index_vars.update(idx_vars)

        return new_indexes, new_index_vars

    def __iter__(self) -> Iterator[T_PandasOrXarrayIndex]:
        return iter(self._indexes)

    def __len__(self) -> int:
        return len(self._indexes)

    def __contains__(self, key) -> bool:
        return key in self._indexes

    def __getitem__(self, key) -> T_PandasOrXarrayIndex:
        return self._indexes[key]

    def __repr__(self):
        indexes = formatting._get_indexes_dict(self)
        return formatting.indexes_repr(indexes)


def default_indexes(
    coords: Mapping[Any, Variable], dims: Iterable
) -> dict[Hashable, Index]:
    """Default indexes for a Dataset/DataArray.

    Parameters
    ----------
    coords : Mapping[Any, xarray.Variable]
        Coordinate variables from which to draw default indexes.
    dims : iterable
        Iterable of dimension names.

    Returns
    -------
    Mapping from indexing keys (levels/dimension names) to indexes used for
    indexing along that dimension.
    """
    indexes: dict[Hashable, Index] = {}
    coord_names = set(coords)

    for name, var in coords.items():
        if name in dims and var.ndim == 1:
            index, index_vars = create_default_index_implicit(var, coords)
            if set(index_vars) <= coord_names:
                indexes.update(dict.fromkeys(index_vars, index))

    return indexes


def _wrap_index_equals(
    index: Index,
) -> Callable[[Index, frozenset[Hashable]], bool]:
    # TODO: remove this Index.equals() wrapper (backward compatibility)

    sig = inspect.signature(index.equals)

    if len(sig.parameters) == 1:
        index_cls_name = type(index).__module__ + "." + type(index).__qualname__
        emit_user_level_warning(
            f"the signature ``{index_cls_name}.equals(self, other)`` is deprecated. "
            f"Please update it to "
            f"``{index_cls_name}.equals(self, other, *, exclude=None)`` "
            f"or kindly ask the maintainers of ``{index_cls_name}`` to do it. "
            "See documentation of xarray.Index.equals() for more info.",
            FutureWarning,
        )
        exclude_kwarg = False
    else:
        exclude_kwarg = True

    def equals_wrapper(other: Index, exclude: frozenset[Hashable]) -> bool:
        if exclude_kwarg:
            return index.equals(other, exclude=exclude)
        else:
            return index.equals(other)

    return equals_wrapper


def indexes_equal(
    index: Index,
    other_index: Index,
    variable: Variable,
    other_variable: Variable,
    cache: dict[tuple[int, int], bool | None] | None = None,
) -> bool:
    """Check if two indexes are equal, possibly with cached results.

    If the two indexes are not of the same type or they do not implement
    equality, fallback to coordinate labels equality check.

    """
    if cache is None:
        # dummy cache
        cache = {}

    key = (id(index), id(other_index))
    equal: bool | None = None

    if key not in cache:
        if type(index) is type(other_index):
            try:
                equal = index.equals(other_index)
            except NotImplementedError:
                equal = None
            else:
                cache[key] = equal
        else:
            equal = None
    else:
        equal = cache[key]

    if equal is None:
        equal = variable.equals(other_variable)

    return cast(bool, equal)


def indexes_all_equal(
    elements: Sequence[tuple[Index, dict[Hashable, Variable]]],
    exclude_dims: frozenset[Hashable],
) -> bool:
    """Check if indexes are all equal.

    If they are not of the same type or they do not implement this check, check
    if their coordinate variables are all equal instead.

    """

    def check_variables():
        variables = [e[1] for e in elements]
        return any(
            not variables[0][k].equals(other_vars[k])
            for other_vars in variables[1:]
            for k in variables[0]
        )

    indexes = [e[0] for e in elements]

    same_objects = all(indexes[0] is other_idx for other_idx in indexes[1:])
    if same_objects:
        return True

    same_type = all(type(indexes[0]) is type(other_idx) for other_idx in indexes[1:])
    if same_type:
        index_equals_func = _wrap_index_equals(indexes[0])
        try:
            not_equal = any(
                not index_equals_func(other_idx, exclude_dims)
                for other_idx in indexes[1:]
            )
        except NotImplementedError:
            not_equal = check_variables()
    else:
        not_equal = check_variables()

    return not not_equal


def _apply_indexes_fast(indexes: Indexes[Index], args: Mapping[Any, Any], func: str):
    # This function avoids the call to indexes.group_by_index
    # which is really slow when repeatedly iterating through
    # an array. However, it fails to return the correct ID for
    # multi-index arrays
    indexes_fast, coords = indexes._indexes, indexes._variables

    new_indexes: dict[Hashable, Index] = dict(indexes_fast.items())
    new_index_variables: dict[Hashable, Variable] = {}
    for name, index in indexes_fast.items():
        coord = coords[name]
        if hasattr(coord, "_indexes"):
            index_vars = {n: coords[n] for n in coord._indexes}
        else:
            index_vars = {name: coord}
        index_dims = {d for var in index_vars.values() for d in var.dims}
        index_args = {k: v for k, v in args.items() if k in index_dims}

        if index_args:
            new_index = getattr(index, func)(index_args)
            if new_index is not None:
                new_indexes.update(dict.fromkeys(index_vars, new_index))
                new_index_vars = new_index.create_variables(index_vars)
                new_index_variables.update(new_index_vars)
            else:
                for k in index_vars:
                    new_indexes.pop(k, None)
    return new_indexes, new_index_variables


def _apply_indexes(
    indexes: Indexes[Index],
    args: Mapping[Any, Any],
    func: str,
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    new_indexes: dict[Hashable, Index] = dict(indexes.items())
    new_index_variables: dict[Hashable, Variable] = {}

    for index, index_vars in indexes.group_by_index():
        index_dims = {d for var in index_vars.values() for d in var.dims}
        index_args = {k: v for k, v in args.items() if k in index_dims}
        if index_args:
            new_index = getattr(index, func)(index_args)
            if new_index is not None:
                new_indexes.update(dict.fromkeys(index_vars, new_index))
                new_index_vars = new_index.create_variables(index_vars)
                new_index_variables.update(new_index_vars)
            else:
                for k in index_vars:
                    new_indexes.pop(k, None)

    return new_indexes, new_index_variables


def isel_indexes(
    indexes: Indexes[Index],
    indexers: Mapping[Any, Any],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    # Fast path function _apply_indexes_fast does not work with multi-coordinate
    # Xarray indexes (see https://github.com/pydata/xarray/issues/10063).
    # -> call it only in the most common case where all indexes are default
    # PandasIndex each associated to a single 1-dimensional coordinate.
    if any(type(idx) is not PandasIndex for idx in indexes._indexes.values()):
        return _apply_indexes(indexes, indexers, "isel")
    else:
        return _apply_indexes_fast(indexes, indexers, "isel")


def roll_indexes(
    indexes: Indexes[Index],
    shifts: Mapping[Any, int],
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
    return _apply_indexes(indexes, shifts, "roll")


def filter_indexes_from_coords(
    indexes: Mapping[Any, Index],
    filtered_coord_names: set,
) -> dict[Hashable, Index]:
    """Filter index items given a (sub)set of coordinate names.

    Drop all multi-coordinate related index items for any key missing in the set
    of coordinate names.

    """
    filtered_indexes: dict[Any, Index] = dict(indexes)

    index_coord_names: dict[Hashable, set[Hashable]] = defaultdict(set)
    for name, idx in indexes.items():
        index_coord_names[id(idx)].add(name)

    for idx_coord_names in index_coord_names.values():
        if not idx_coord_names <= filtered_coord_names:
            for k in idx_coord_names:
                del filtered_indexes[k]

    return filtered_indexes


def assert_no_index_corrupted(
    indexes: Indexes[Index],
    coord_names: set[Hashable],
    action: str = "remove coordinate(s)",
) -> None:
    """Assert removing coordinates or indexes will not corrupt indexes."""

    # An index may be corrupted when the set of its corresponding coordinate name(s)
    # partially overlaps the set of coordinate names to remove
    for index, index_coords in indexes.group_by_index():
        common_names = set(index_coords) & coord_names
        if common_names and len(common_names) != len(index_coords):
            common_names_str = ", ".join(f"{k!r}" for k in common_names)
            index_names_str = ", ".join(f"{k!r}" for k in index_coords)
            raise ValueError(
                f"cannot {action} {common_names_str}, which would corrupt "
                f"the following index built from coordinates {index_names_str}:\n"
                f"{index}"
            )
