import datetime
import warnings
from collections.abc import Hashable, Iterable, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Protocol, overload

import hypothesis.extra.numpy as npst
import numpy as np
from hypothesis.errors import InvalidArgument

import xarray as xr
from xarray.core.types import T_DuckArray
from xarray.core.utils import attempt_import, module_available

if TYPE_CHECKING:
    from xarray.core.types import _DTypeLikeNested, _ShapeLike


if TYPE_CHECKING:
    import hypothesis.strategies as st
else:
    st = attempt_import("hypothesis.strategies")

__all__ = [
    "attrs",
    "cftime_datetimes",
    "datetimes",
    "dimension_names",
    "dimension_sizes",
    "names",
    "pandas_index_dtypes",
    "supported_dtypes",
    "unique_subset_of",
    "variables",
]


class ArrayStrategyFn(Protocol[T_DuckArray]):
    def __call__(
        self,
        *,
        shape: "_ShapeLike",
        dtype: "_DTypeLikeNested",
    ) -> st.SearchStrategy[T_DuckArray]: ...


def supported_dtypes() -> st.SearchStrategy[np.dtype]:
    """
    Generates only those numpy dtypes which xarray can handle.

    Use instead of hypothesis.extra.numpy.scalar_dtypes in order to exclude weirder dtypes such as unicode, byte_string, array, or nested dtypes.
    Also excludes datetimes, which dodges bugs with pandas non-nanosecond datetime overflows.  Checks only native endianness.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    # TODO should this be exposed publicly?
    # We should at least decide what the set of numpy dtypes that xarray officially supports is.
    return (
        npst.integer_dtypes(endianness="=")
        | npst.unsigned_integer_dtypes(endianness="=")
        | npst.floating_dtypes(endianness="=")
        | npst.complex_number_dtypes(endianness="=")
        # | npst.datetime64_dtypes()
        # | npst.timedelta64_dtypes()
        # | npst.unicode_string_dtypes()
    )


def pandas_index_dtypes() -> st.SearchStrategy[np.dtype]:
    """
    Dtypes supported by pandas indexes.
    Restrict datetime64 and timedelta64 to ns frequency till Xarray relaxes that.
    """
    return (
        npst.integer_dtypes(endianness="=", sizes=(32, 64))
        | npst.unsigned_integer_dtypes(endianness="=", sizes=(32, 64))
        | npst.floating_dtypes(endianness="=", sizes=(32, 64))
        # TODO: unset max_period
        | npst.datetime64_dtypes(endianness="=", max_period="ns")
        # TODO: set max_period="D"
        | npst.timedelta64_dtypes(endianness="=", max_period="ns")
        | npst.unicode_string_dtypes(endianness="=")
    )


def datetimes() -> st.SearchStrategy:
    """
    Generates datetime objects including both standard library datetimes and cftime datetimes.

    Returns standard library datetime.datetime objects, and if cftime is available,
    also includes cftime datetime objects from various calendars.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    strategy = st.datetimes()
    if module_available("cftime"):
        strategy = strategy | cftime_datetimes()
    return strategy


# TODO Generalize to all valid unicode characters once formatting bugs in xarray's reprs are fixed + docs can handle it.
_readable_characters = st.characters(
    categories=["L", "N"], max_codepoint=0x017F
)  # only use characters within the "Latin Extended-A" subset of unicode


def names() -> st.SearchStrategy[str]:
    """
    Generates arbitrary string names for dimensions / variables.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    return st.text(
        _readable_characters,
        min_size=1,
        max_size=5,
    )


def dimension_names(
    *,
    name_strategy=None,
    min_dims: int = 0,
    max_dims: int = 3,
) -> st.SearchStrategy[list[Hashable]]:
    """
    Generates an arbitrary list of valid dimension names.

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    name_strategy
        Strategy for making names. Useful if we need to share this.
    min_dims
        Minimum number of dimensions in generated list.
    max_dims
        Maximum number of dimensions in generated list.
    """
    if name_strategy is None:
        name_strategy = names()

    return st.lists(
        elements=name_strategy,
        min_size=min_dims,
        max_size=max_dims,
        unique=True,
    )


def dimension_sizes(
    *,
    dim_names: st.SearchStrategy[Hashable] = names(),  # noqa: B008
    min_dims: int = 0,
    max_dims: int = 3,
    min_side: int = 1,
    max_side: int | None = None,
) -> st.SearchStrategy[Mapping[Hashable, int]]:
    """
    Generates an arbitrary mapping from dimension names to lengths.

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    dim_names: strategy generating strings, optional
        Strategy for generating dimension names.
        Defaults to the `names` strategy.
    min_dims: int, optional
        Minimum number of dimensions in generated list.
        Default is 1.
    max_dims: int, optional
        Maximum number of dimensions in generated list.
        Default is 3.
    min_side: int, optional
        Minimum size of a dimension.
        Default is 1.
    max_side: int, optional
        Minimum size of a dimension.
        Default is `min_length` + 5.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """

    if max_side is None:
        max_side = min_side + 3

    return st.dictionaries(
        keys=dim_names,
        values=st.integers(min_value=min_side, max_value=max_side),
        min_size=min_dims,
        max_size=max_dims,
    )


_readable_strings = st.text(
    _readable_characters,
    max_size=5,
)
_attr_keys = _readable_strings
_small_arrays = npst.arrays(
    shape=npst.array_shapes(
        max_side=2,
        max_dims=2,
    ),
    dtype=npst.scalar_dtypes()
    | npst.byte_string_dtypes()
    | npst.unicode_string_dtypes(),
)
_attr_values = st.none() | st.booleans() | _readable_strings | _small_arrays

simple_attrs = st.dictionaries(_attr_keys, _attr_values)


def attrs() -> st.SearchStrategy[Mapping[Hashable, Any]]:
    """
    Generates arbitrary valid attributes dictionaries for xarray objects.

    The generated dictionaries can potentially be recursive.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    return st.recursive(
        st.dictionaries(_attr_keys, _attr_values),
        lambda children: st.dictionaries(_attr_keys, children),
        max_leaves=3,
    )


ATTRS = attrs()


@st.composite
def variables(
    draw: st.DrawFn,
    *,
    array_strategy_fn: ArrayStrategyFn | None = None,
    dims: st.SearchStrategy[Sequence[Hashable] | Mapping[Hashable, int]] | None = None,
    dtype: st.SearchStrategy[np.dtype] | None = None,
    attrs: st.SearchStrategy[Mapping] = ATTRS,
) -> xr.Variable:
    """
    Generates arbitrary xarray.Variable objects.

    Follows the basic signature of the xarray.Variable constructor, but allows passing alternative strategies to
    generate either numpy-like array data or dimensions. Also allows specifying the shape or dtype of the wrapped array
    up front.

    Passing nothing will generate a completely arbitrary Variable (containing a numpy array).

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    array_strategy_fn: Callable which returns a strategy generating array-likes, optional
        Callable must only accept shape and dtype kwargs, and must generate results consistent with its input.
        If not passed the default is to generate a small numpy array with one of the supported_dtypes.
    dims: Strategy for generating the dimensions, optional
        Can either be a strategy for generating a sequence of string dimension names,
        or a strategy for generating a mapping of string dimension names to integer lengths along each dimension.
        If provided as a mapping the array shape will be passed to array_strategy_fn.
        Default is to generate arbitrary dimension names for each axis in data.
    dtype: Strategy which generates np.dtype objects, optional
        Will be passed in to array_strategy_fn.
        Default is to generate any scalar dtype using supported_dtypes.
        Be aware that this default set of dtypes includes some not strictly allowed by the array API standard.
    attrs: Strategy which generates dicts, optional
        Default is to generate a nested attributes dictionary containing arbitrary strings, booleans, integers, Nones,
        and numpy arrays.

    Returns
    -------
    variable_strategy
        Strategy for generating xarray.Variable objects.

    Raises
    ------
    ValueError
        If a custom array_strategy_fn returns a strategy which generates an example array inconsistent with the shape
        & dtype input passed to it.

    Examples
    --------
    Generate completely arbitrary Variable objects backed by a numpy array:

    >>> variables().example()  # doctest: +SKIP
    <xarray.Variable (żō: 3)>
    array([43506,   -16,  -151], dtype=int32)
    >>> variables().example()  # doctest: +SKIP
    <xarray.Variable (eD: 4, ğŻżÂĕ: 2, T: 2)>
    array([[[-10000000., -10000000.],
            [-10000000., -10000000.]],
           [[-10000000., -10000000.],
            [        0., -10000000.]],
           [[        0., -10000000.],
            [-10000000.,        inf]],
           [[       -0., -10000000.],
            [-10000000.,        -0.]]], dtype=float32)
    Attributes:
        śřĴ:      {'ĉ': {'iĥf': array([-30117,  -1740], dtype=int16)}}

    Generate only Variable objects with certain dimension names:

    >>> variables(dims=st.just(["a", "b"])).example()  # doctest: +SKIP
    <xarray.Variable (a: 5, b: 3)>
    array([[       248, 4294967295, 4294967295],
           [2412855555, 3514117556, 4294967295],
           [       111, 4294967295, 4294967295],
           [4294967295, 1084434988,      51688],
           [     47714,        252,      11207]], dtype=uint32)

    Generate only Variable objects with certain dimension names and lengths:

    >>> variables(dims=st.just({"a": 2, "b": 1})).example()  # doctest: +SKIP
    <xarray.Variable (a: 2, b: 1)>
    array([[-1.00000000e+007+3.40282347e+038j],
           [-2.75034266e-225+2.22507386e-311j]])

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    if dtype is None:
        dtype = supported_dtypes()

    if not isinstance(dims, st.SearchStrategy) and dims is not None:
        raise InvalidArgument(
            f"dims must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dims)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )
    if not isinstance(dtype, st.SearchStrategy) and dtype is not None:
        raise InvalidArgument(
            f"dtype must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dtype)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )
    if not isinstance(attrs, st.SearchStrategy) and attrs is not None:
        raise InvalidArgument(
            f"attrs must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(attrs)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )

    _array_strategy_fn: ArrayStrategyFn
    if array_strategy_fn is None:
        # For some reason if I move the default value to the function signature definition mypy incorrectly says the ignore is no longer necessary, making it impossible to satisfy mypy
        _array_strategy_fn = npst.arrays  # type: ignore[assignment]  # npst.arrays has extra kwargs that we aren't using later
    elif not callable(array_strategy_fn):
        raise InvalidArgument(
            "array_strategy_fn must be a Callable that accepts the kwargs dtype and shape and returns a hypothesis "
            "strategy which generates corresponding array-like objects."
        )
    else:
        _array_strategy_fn = (
            array_strategy_fn  # satisfy mypy that this new variable cannot be None
        )

    _dtype = draw(dtype)

    if dims is not None:
        # generate dims first then draw data to match
        _dims = draw(dims)
        if isinstance(_dims, Sequence):
            dim_names = list(_dims)
            valid_shapes = npst.array_shapes(min_dims=len(_dims), max_dims=len(_dims))
            _shape = draw(valid_shapes)
            array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        elif isinstance(_dims, Mapping | dict):
            # should be a mapping of form {dim_names: lengths}
            dim_names, _shape = list(_dims.keys()), tuple(_dims.values())
            array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        else:
            raise InvalidArgument(
                f"Invalid type returned by dims strategy - drew an object of type {type(dims)}"
            )
    else:
        # nothing provided, so generate everything consistently
        # We still generate the shape first here just so that we always pass shape to array_strategy_fn
        _shape = draw(npst.array_shapes())
        array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        dim_names = draw(dimension_names(min_dims=len(_shape), max_dims=len(_shape)))

    _data = draw(array_strategy)

    if _data.shape != _shape:
        raise ValueError(
            "array_strategy_fn returned an array object with a different shape than it was passed."
            f"Passed {_shape}, but returned {_data.shape}."
            "Please either specify a consistent shape via the dims kwarg or ensure the array_strategy_fn callable "
            "obeys the shape argument passed to it."
        )
    if _data.dtype != _dtype:
        raise ValueError(
            "array_strategy_fn returned an array object with a different dtype than it was passed."
            f"Passed {_dtype}, but returned {_data.dtype}"
            "Please either specify a consistent dtype via the dtype kwarg or ensure the array_strategy_fn callable "
            "obeys the dtype argument passed to it."
        )

    return xr.Variable(dims=dim_names, data=_data, attrs=draw(attrs))


@overload
def unique_subset_of(
    objs: Sequence[Hashable],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> st.SearchStrategy[Sequence[Hashable]]: ...


@overload
def unique_subset_of(
    objs: Mapping[Hashable, Any],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> st.SearchStrategy[Mapping[Hashable, Any]]: ...


@st.composite
def unique_subset_of(
    draw: st.DrawFn,
    objs: Sequence[Hashable] | Mapping[Hashable, Any],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> Sequence[Hashable] | Mapping[Hashable, Any]:
    """
    Return a strategy which generates a unique subset of the given objects.

    Each entry in the output subset will be unique (if input was a sequence) or have a unique key (if it was a mapping).

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    objs: Union[Sequence[Hashable], Mapping[Hashable, Any]]
        Objects from which to sample to produce the subset.
    min_size: int, optional
        Minimum size of the returned subset. Default is 0.
    max_size: int, optional
        Maximum size of the returned subset. Default is the full length of the input.
        If set to 0 the result will be an empty mapping.

    Returns
    -------
    unique_subset_strategy
        Strategy generating subset of the input.

    Examples
    --------
    >>> unique_subset_of({"x": 2, "y": 3}).example()  # doctest: +SKIP
    {'y': 3}
    >>> unique_subset_of(["x", "y"]).example()  # doctest: +SKIP
    ['x']

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    if not isinstance(objs, Iterable):
        raise TypeError(
            f"Object to sample from must be an Iterable or a Mapping, but received type {type(objs)}"
        )

    if len(objs) == 0:
        raise ValueError("Can't sample from a length-zero object.")

    keys = list(objs.keys()) if isinstance(objs, Mapping) else objs

    subset_keys = draw(
        st.lists(
            st.sampled_from(keys),
            unique=True,
            min_size=min_size,
            max_size=max_size,
        )
    )

    return (
        {k: objs[k] for k in subset_keys} if isinstance(objs, Mapping) else subset_keys
    )


@st.composite
def cftime_datetimes(draw: st.DrawFn):
    """
    Generates cftime datetime objects across various calendars.

    This strategy generates cftime datetime objects from all available
    cftime calendars with dates ranging from year -99999 to 99999.

    Requires both the hypothesis and cftime packages to be installed.

    Returns
    -------
    cftime_datetime_strategy
        Strategy for generating cftime datetime objects.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    from xarray.tests import _all_cftime_date_types

    date_types = _all_cftime_date_types()
    calendars = list(date_types)

    calendar = draw(st.sampled_from(calendars))
    date_type = date_types[calendar]

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", message=".*date/calendar/year zero.*")
        daysinmonth = date_type(99999, 12, 1).daysinmonth
        min_value = date_type(-99999, 1, 1)
        max_value = date_type(99999, 12, daysinmonth, 23, 59, 59, 999999)

        unit_microsecond = datetime.timedelta(microseconds=1)
        timespan_microseconds = (max_value - min_value) // unit_microsecond
        microseconds_offset = draw(st.integers(0, timespan_microseconds))

        return min_value + datetime.timedelta(microseconds=microseconds_offset)
