import operator_benchmark as op_bench
import torch
import torch.nn as nn

"""
Microbenchmarks for MaxPool1d and AvgPool1d operators.
"""

# Configs for pool-1d ops
pool_1d_configs_short = op_bench.config_list(
    attr_names=[
        'kernel', 'stride', 'N', 'C', 'L'
    ],
    attrs=[
        [3, 1, 8, 256, 256],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=['short']
)

pool_1d_configs_long = op_bench.cross_product_configs(
    kernel=[3],
    stride=[1, 2],
    N=[8, 16],
    C=[3],
    L=[128, 256],
    device=['cpu', 'cuda'],
    tags=['long']
)

pool_1d_ops_list = op_bench.op_list(
    attr_names=['op_name', 'op_func'],
    attrs=[
        ['MaxPool1d', nn.MaxPool1d],
        ['AvgPool1d', nn.AvgPool1d],
    ],
)


class Pool1dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, kernel, stride, N, C, L, device, op_func):
        self.inputs = {
            "input": torch.rand(N, C, L, device=device)
        }
        self.op_func = op_func(kernel, stride=stride)

    def forward(self, input):
        return self.op_func(input)


op_bench.generate_pt_tests_from_op_list(pool_1d_ops_list,
                                        pool_1d_configs_short + pool_1d_configs_long,
                                        Pool1dBenchmark)


"""
Microbenchmarks for MaxPool2d and AvgPool2d operators.
"""


# Configs for pool-2d ops
pool_2d_configs_short = op_bench.config_list(
    attr_names=[
        'kernel', 'stride', 'N', 'C', 'H', 'W'
    ],
    attrs=[
        [[3, 1], [2, 1], 1, 16, 32, 32],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=['short']
)

pool_2d_configs_long = op_bench.cross_product_configs(
    kernel=[[3, 2], [3, 3]],
    stride=[[2, 2]],
    N=[8, 16],
    C=[32],
    H=[32, 64],
    W=[32, 64],
    device=['cpu', 'cuda'],
    tags=['long']
)

pool_2d_ops_list = op_bench.op_list(
    attr_names=['op_name', 'op_func'],
    attrs=[
        ['MaxPool2d', nn.MaxPool2d],
        ['AvgPool2d', nn.AvgPool2d],
        ['AdaptiveMaxPool2d', lambda kernel, stride: nn.AdaptiveMaxPool2d(kernel)],
        ['FractionalMaxPool2d', lambda kernel, stride: nn.FractionalMaxPool2d(kernel, output_size=2)],
    ],
)


class Pool2dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, kernel, stride, N, C, H, W, device, op_func):
        self.inputs = {
            "input": torch.rand(N, C, H, W, device=device)
        }
        self.op_func = op_func(kernel, stride=stride)


    def forward(self, input):
        return self.op_func(input)


op_bench.generate_pt_tests_from_op_list(pool_2d_ops_list,
                                        pool_2d_configs_short + pool_2d_configs_long,
                                        Pool2dBenchmark)


"""
Microbenchmarks for MaxPool3d and AvgPool3d operators.
"""


# Configs for pool-3d ops
pool_3d_configs_short = op_bench.config_list(
    attr_names=[
        'kernel', 'stride', 'N', 'C', 'D', 'H', 'W'
    ],
    attrs=[
        [[3, 1, 3], [2, 1, 2], 1, 16, 16, 32, 32],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=['short']
)

pool_3d_configs_long = op_bench.cross_product_configs(
    kernel=[[3, 2, 3], [3, 3, 3]],
    stride=[[2, 2, 2]],
    N=[8, 16],
    C=[32],
    D=[32],
    H=[32, 64],
    W=[32, 64],
    device=['cpu', 'cuda'],
    tags=['long']
)


pool_3d_ops_list = op_bench.op_list(
    attr_names=['op_name', 'op_func'],
    attrs=[
        ['MaxPool3d', nn.MaxPool3d],
        ['AvgPool3d', nn.AvgPool3d],
        ['AdaptiveMaxPool3d', lambda kernel, stride: nn.AdaptiveMaxPool3d(kernel)],
        ['FractionalMaxPool3d', lambda kernel, stride: nn.FractionalMaxPool3d(kernel, output_size=2)],
    ],
)


class Pool3dBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, kernel, stride, N, C, D, H, W, device, op_func):
        self.inputs = {
            "input": torch.rand(N, C, D, H, W, device=device)
        }
        self.op_func = op_func(kernel, stride=stride)

    def forward(self, input):
        return self.op_func(input)


op_bench.generate_pt_tests_from_op_list(pool_3d_ops_list,
                                        pool_3d_configs_short + pool_3d_configs_long,
                                        Pool3dBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()
