import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import torch._lazy
import torch._lazy.ts_backend
import torch._lazy.metrics
torch._lazy.ts_backend.init()


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(log_interval, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad(set_to_none=True)
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        torch._lazy.mark_step()

        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


if __name__ == '__main__':
    bsz = 64
    device = 'lazy'
    epochs = 14
    log_interval = 10
    lr = 1
    gamma = 0.7
    train_kwargs = {'batch_size': bsz}
    # if we want to use CUDA
    if "LTC_TS_CUDA" in os.environ:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True,
                       'batch_size': bsz}
        train_kwargs.update(cuda_kwargs)

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])
    dataset1 = datasets.MNIST('./data', train=True, download=True,
                              transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=lr)
    scheduler = StepLR(optimizer, step_size=1, gamma=gamma)
    for epoch in range(1, epochs + 1):
        train(log_interval, model, device, train_loader, optimizer, epoch)
        scheduler.step()
