"""
Randomized Lasso/Logistic: feature selection based on Lasso and
sparse Logistic Regression
"""

# Author: Gael Varoquaux, Alexandre Gramfort
#
# License: BSD Style.
import itertools

import numpy as np
from scipy.sparse import issparse
from scipy.interpolate import interp1d

from .base import center_data
from ..base import BaseEstimator, TransformerMixin
from ..utils import as_float_array, check_random_state, safe_asarray
from ..externals.joblib import Parallel, delayed
from .least_angle import lars_path, LassoLarsIC
from .logistic import LogisticRegression
from ..externals.joblib import Memory


###############################################################################
# Randomized linear model: feature selection

def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200,
                    n_jobs=1, verbose=False, pre_dispatch='3*n_jobs',
                    random_state=None, sample_fraction=.75, **params):
    random_state = check_random_state(random_state)
    # We are generating 1 - weights, and not weights
    n_samples, n_features = X.shape

    if not (0 < scaling < 1):
        raise ValueError(
             "'scaling' should be between 0 and 1. Got %r instead." % scaling)

    scaling = 1. - scaling
    scores_ = 0.0
    for active_set in Parallel(n_jobs=n_jobs, verbose=verbose,
                               pre_dispatch=pre_dispatch)(
                delayed(estimator_func)(X, y,
                        weights=scaling * random_state.random_integers(0,
                                                    1, size=(n_features,)),
                        mask=(random_state.rand(n_samples) < sample_fraction),
                        verbose=max(0, verbose - 1),
                        **params)
                for _ in range(n_resampling)):
        scores_ += active_set.astype(np.float)

    scores_ /= n_resampling
    return scores_


class BaseRandomizedLinearModel(BaseEstimator, TransformerMixin):
    """Base class to implement randomized linear models for feature selection

    This implements the strategy by Meinshausen and Buhlman:
    stability selection with randomized sampling, and random re-weighting of
    the penalty.
    """

    _center_data = staticmethod(center_data)

    def fit(self, X, y):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            training data.

        y : array-like, shape = [n_samples]
            target values.

        Returns
        -------
        self : object
            returns an instance of self.
        """
        X = np.atleast_2d(X)
        n_samples, n_features = X.shape
        y = np.atleast_1d(y)

        X = as_float_array(X, copy=False)

        X, y, X_mean, y_mean, X_std = self._center_data(X, y,
                                                        self.fit_intercept,
                                                        self.normalize)

        estimator_func, params = self._make_estimator_and_params(X, y)
        memory = self.memory
        if isinstance(memory, basestring):
            memory = Memory(cachedir=memory)

        scores_ = memory.cache(_resample_model,
                ignore=['verbose', 'n_jobs', 'pre_dispatch'])(
                                    estimator_func, X, y,
                                    scaling=self.scaling,
                                    n_resampling=self.n_resampling,
                                    n_jobs=self.n_jobs,
                                    verbose=self.verbose,
                                    pre_dispatch=self.pre_dispatch,
                                    random_state=self.random_state,
                                    sample_fraction=self.sample_fraction,
                                    **params)

        if scores_.ndim == 1:
            scores_ = scores_[:, np.newaxis]
        self.all_scores_ = scores_
        self.scores_ = np.max(self.all_scores_, axis=1)
        return self

    def _make_estimator_and_params(self, X, y):
        """Return the parameters passed to the estimator"""
        raise NotImplementedError

    def get_support(self, indices=False):
        """Return a mask, or list, of the features/indices selected."""
        mask = self.scores_ > self.selection_threshold
        return mask if not indices else np.where(mask)[0]

    # XXX: the two function below are copy/pasted from feature_selection,
    # Should we add an intermediate base class?
    def transform(self, X):
        """Transform a new matrix using the selected features"""
        return safe_asarray(X)[:, self.get_support(indices=issparse(X))]

    def inverse_transform(self, X):
        """Transform a new matrix using the selected features"""
        support = self.get_support()
        if X.ndim == 1:
            X = X[None, :]
        Xt = np.zeros((X.shape[0], support.size))
        Xt[:, support] = X
        return Xt


###############################################################################
# Randomized lasso: regression settings

def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False,
                      precompute=False, eps=np.finfo(np.float).eps,
                      max_iter=500):
    X = X[mask]
    y = y[mask]

    # Center X and y to avoid fit the intercept
    X -= X.mean(axis=0)
    y -= y.mean()

    alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float))

    X = (1 - weights) * X
    alphas_, _, coef_ = lars_path(X, y,
                Gram=precompute, copy_X=False,
                copy_Gram=False, alpha_min=np.min(alpha),
                method='lasso', verbose=verbose,
                max_iter=max_iter, eps=eps)

    if len(alpha) > 1:
        if len(alphas_) > 1:  # np.min(alpha) < alpha_min
            interpolator = interp1d(alphas_[::-1], coef_[:, ::-1],
                                    bounds_error=False, fill_value=0.)
            scores = (interpolator(alpha) != 0.0)
        else:
            scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool)
    else:
        scores = coef_[:, -1] != 0.0
    return scores


class RandomizedLasso(BaseRandomizedLinearModel):
    """Randomized Lasso

    Randomized Lasso works by resampling the train data and computing
    a Lasso on each resampling. In short, the features selected more
    often are good features. It is also known as stability selection.

    Parameters
    ----------
    alpha : float, 'aic', or 'bic'
        The regularization parameter alpha parameter in the Lasso.
        Warning: this is not the alpha parameter in the stability selection
        article which is scaling.

    scaling : float
        The alpha parameter in the stability selection article used to
        randomly scale the features. Should be between 0 and 1.

    sample_fraction : float
        The fraction of samples to be used in each randomized design.
        Should be between 0 and 1. If 1, all samples are used.

    fit_intercept : boolean
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    verbose : boolean or integer, optional
        Sets the verbosity amount

    normalize : boolean, optional
        If True, the regressors X are normalized

    precompute : True | False | 'auto'
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    max_iter : integer, optional
        Maximum number of iterations to perform in the Lars algorithm.

    eps : float, optional
        The machine-precision regularization in the computation of the
        Cholesky diagonal factors. Increase this for very ill-conditioned
        systems. Unlike the 'tol' parameter in some iterative
        optimization-based algorithms, this parameter does not control
        the tolerance of the optimization.

    n_jobs : integer, optional
        Number of CPUs to use during the resampling. If '-1', use
        all the CPUs

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediatly
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    memory : Instance of joblib.Memory or string
        Used for internal caching. By default, no caching is done.
        If a string is given, it is thepath to the caching directory.

    Attributes
    ----------
    `scores_` : array, shape = [n_features]
        Feature scores between 0 and 1.

    `all_scores_` : array, shape = [n_features, n_reg_parameter]
        Feature scores between 0 and 1 for all values of the regularization \
        parameter. The reference article suggests ``scores_`` is the max of \
        ``all_scores_``.

    Examples
    --------
    >>> from sklearn.linear_model import RandomizedLasso
    >>> randomized_lasso = RandomizedLasso()

    Notes
    -----
    See examples/linear_model/plot_sparse_recovery.py for an example.

    References
    ----------
    Stability selection
    Nicolai Meinshausen, Peter Buhlmann
    Journal of the Royal Statistical Society: Series B
    Volume 72, Issue 4, pages 417-473, September 2010
    DOI: 10.1111/j.1467-9868.2010.00740.x

    See also
    --------
    RandomizedLogisticRegression, LogisticRegression
    """
    def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75,
                 n_resampling=200, selection_threshold=.25,
                 fit_intercept=True, verbose=False,
                 normalize=True, precompute='auto',
                 max_iter=500,
                 eps=np.finfo(np.float).eps, random_state=None,
                 n_jobs=1, pre_dispatch='3*n_jobs',
                 memory=Memory(cachedir=None, verbose=0)):
        self.alpha = alpha
        self.scaling = scaling
        self.sample_fraction = sample_fraction
        self.n_resampling = n_resampling
        self.fit_intercept = fit_intercept
        self.max_iter = max_iter
        self.verbose = verbose
        self.normalize = normalize
        self.precompute = precompute
        self.eps = eps
        self.random_state = random_state
        self.n_jobs = n_jobs
        self.selection_threshold = selection_threshold
        self.pre_dispatch = pre_dispatch
        self.memory = memory

    def _make_estimator_and_params(self, X, y):
        assert self.precompute in (True, False, None, 'auto')
        alpha = self.alpha
        if alpha in ('aic', 'bic'):
            model = LassoLarsIC(precompute=self.precompute,
                                criterion=self.alpha,
                                max_iter=self.max_iter,
                                eps=self.eps)
            model.fit(X, y)
            self.alpha_ = alpha = model.alpha_
        return _randomized_lasso, dict(alpha=alpha,
                    max_iter=self.max_iter, eps=self.eps,
                    precompute=self.precompute)


###############################################################################
# Randomized logistic: classification settings

def _randomized_logistic(X, y, weights, mask, C=1., verbose=False,
                         fit_intercept=True, tol=1e-3):
    X = X[mask]
    y = y[mask]
    X = (1 - weights) * X

    C = np.atleast_1d(np.asarray(C, dtype=np.float))
    scores = np.zeros((X.shape[1], len(C)), dtype=np.bool)

    for this_C, this_scores in zip(C, scores.T):
        # XXX : would be great to do it with a warm_start ...
        clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False,
                fit_intercept=fit_intercept)
        clf.fit(X, y)
        this_scores[:] = np.any(
                    np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0)
    return scores


class RandomizedLogisticRegression(BaseRandomizedLinearModel):
    """Randomized Logistic Regression

    Randomized Regression works by resampling the train data and computing
    a LogisticRegression on each resampling. In short, the features selected
    more often are good features. It is also known as stability selection.

    Parameters
    ----------
    C : float
        The regularization parameter C in the LogisticRegression.

    scaling : float
        The alpha parameter in the stability selection article used to
        randomly scale the features. Should be between 0 and 1.

    sample_fraction : float
        The fraction of samples to be used in each randomized design.
        Should be between 0 and 1. If 1, all samples are used.

    fit_intercept : boolean
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    verbose : boolean or integer, optional
        Sets the verbosity amount

    normalize : boolean, optional
        If True, the regressors X are normalized

    tol : float, optional
         tolerance for stopping criteria of LogisticRegression

    n_jobs : integer, optional
        Number of CPUs to use during the resampling. If '-1', use
        all the CPUs

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediatly
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    memory : Instance of joblib.Memory or string
        Used for internal caching. By default, no caching is done.
        If a string is given, it is thepath to the caching directory.

    Attributes
    ----------
    `scores_` : array, shape = [n_features]
        Feature scores between 0 and 1.

    `all_scores_` : array, shape = [n_features, n_reg_parameter]
        Feature scores between 0 and 1 for all values of the regularization \
        parameter. The reference article suggests ``scores_`` is the max \
        of ``all_scores_``.

    Examples
    --------
    >>> from sklearn.linear_model import RandomizedLogisticRegression
    >>> randomized_logistic = RandomizedLogisticRegression()

    Notes
    -----
    See examples/linear_model/plot_randomized_lasso.py for an example.

    References
    ----------
    Stability selection
    Nicolai Meinshausen, Peter Buhlmann
    Journal of the Royal Statistical Society: Series B
    Volume 72, Issue 4, pages 417-473, September 2010
    DOI: 10.1111/j.1467-9868.2010.00740.x

    See also
    --------
    RandomizedLasso, Lasso, ElasticNet
    """
    def __init__(self, C=1, scaling=.5, sample_fraction=.75,
                 n_resampling=200,
                 selection_threshold=.25, tol=1e-3,
                 fit_intercept=True, verbose=False,
                 normalize=True,
                 random_state=None,
                 n_jobs=1, pre_dispatch='3*n_jobs',
                 memory=Memory(cachedir=None, verbose=0)):
        self.C = C
        self.scaling = scaling
        self.sample_fraction = sample_fraction
        self.n_resampling = n_resampling
        self.fit_intercept = fit_intercept
        self.verbose = verbose
        self.normalize = normalize
        self.tol = tol
        self.random_state = random_state
        self.n_jobs = n_jobs
        self.selection_threshold = selection_threshold
        self.pre_dispatch = pre_dispatch
        self.memory = memory

    def _make_estimator_and_params(self, X, y):
        params = dict(C=self.C, tol=self.tol,
                      fit_intercept=self.fit_intercept)
        return _randomized_logistic, params

    def _center_data(self, X, y, fit_intercept, normalize=False):
        """Center the data in X but not in y"""
        X, _, Xmean, _, X_std = center_data(X, y, fit_intercept,
                                                 normalize=normalize)
        return X, y, Xmean, y, X_std


###############################################################################
# Stability paths
def _lasso_stability_path(X, y, mask, weights, eps):
    "Inner loop of lasso_stability_path"
    X = X * weights[np.newaxis, :]
    X = X[mask, :]
    y = y[mask]

    alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0]
    alpha_min = eps * alpha_max  # set for early stopping in path
    alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False,
                                    alpha_min=alpha_min)
    # Scale alpha by alpha_max
    alphas /= alphas[0]
    # Sort alphas in assending order
    alphas = alphas[::-1]
    coefs = coefs[:, ::-1]
    # Get rid of the alphas that are too small
    mask = alphas >= eps
    # We also want to keep the first one: it should be close to the OLS
    # solution
    mask[0] = True
    alphas = alphas[mask]
    coefs = coefs[:, mask]
    return alphas, coefs


def lasso_stability_path(X, y, scaling=0.5, random_state=None,
                         n_resampling=200, n_grid=100,
                         sample_fraction=0.75,
                         eps=4 * np.finfo(np.float).eps, n_jobs=1,
                         verbose=False):
    """Stabiliy path based on randomized Lasso estimates

    Parameters
    ----------
    X : array-like, shape = [n_samples, n_features]
        training data.

    y : array-like, shape = [n_samples]
        target values.

    scaling : float
        The alpha parameter in the stability selection article used to
        randomly scale the features. Should be between 0 and 1.

    random_state : integer or numpy.RandomState, optional
        The generator used to randomize the design.

    n_resampling : int
        Number of randomized models.

    n_grid : int
        Number of grid points. The path is linearly reinterpolated
        on a grid between 0 and 1 before computing the scores.

    sample_fraction : float
        The fraction of samples to be used in each randomized design.
        Should be between 0 and 1. If 1, all samples are used.

    eps : float
        Smallest value of alpha / alpha_max considered

    n_jobs : integer, optional
        Number of CPUs to use during the resampling. If '-1', use
        all the CPUs

    verbose : boolean or integer, optional
        Sets the verbosity amount

    Returns
    -------
    alphas_grid : array, shape ~ [n_grid]
        The grid points between 0 and 1: alpha/alpha_max

    scores_path : array, shape = [n_features, n_grid]
        The scores for each feature along the path.

    Notes
    -----
    See examples/linear_model/plot_randomized_lasso.py for an example.
    """
    rng = check_random_state(random_state)

    if not (0 < scaling < 1):
        raise ValueError("Parameter 'scaling' should be between 0 and 1."
                         " Got %r instead." % scaling)

    n_samples, n_features = X.shape

    paths = Parallel(n_jobs=n_jobs, verbose=verbose)(
            delayed(_lasso_stability_path)(X, y,
                    mask=rng.rand(n_samples) < sample_fraction,
                    weights=1. - scaling * rng.random_integers(0,
                                    1, size=(n_features,)),
                    eps=eps)
            for k in xrange(n_resampling))

    all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths]))))
    # Take approximately n_grid values
    stride = int(max(1, int(len(all_alphas) / float(n_grid))))
    all_alphas = all_alphas[::stride]
    if not all_alphas[-1] == 1:
        all_alphas.append(1.)
    all_alphas = np.array(all_alphas)
    scores_path = np.zeros((n_features, len(all_alphas)))

    for alphas, coefs in paths:
        if alphas[0] != 0:
            alphas = np.r_[0, alphas]
            coefs = np.c_[np.ones((n_features, 1)), coefs]
        if alphas[-1] != all_alphas[-1]:
            alphas = np.r_[alphas, all_alphas[-1]]
            coefs = np.c_[coefs, np.zeros((n_features, 1))]
        scores_path += (interp1d(alphas, coefs,
                        kind='nearest', bounds_error=False,
                        fill_value=0, axis=-1)(all_alphas) != 0)

    scores_path /= n_resampling
    return all_alphas, scores_path
