"""Isomap for manifold learning"""

# Author: Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD, (C) 2011

import numpy as np
import warnings
from ..base import BaseEstimator
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..utils.graph import graph_shortest_path
from ..decomposition import KernelPCA
from ..preprocessing import KernelCenterer


class Isomap(BaseEstimator):
    """Isomap Embedding

    Non-linear dimensionality reduction through Isometric Mapping

    Parameters
    ----------
    n_neighbors : integer
        number of neighbors to consider for each point.

    n_components : integer
        number of coordinates for the manifold

    eigen_solver : ['auto'|'arpack'|'dense']
        'auto' : attempt to choose the most efficient solver
            for the given problem.
        'arpack' : use Arnoldi decomposition to find the eigenvalues
            and eigenvectors.  Note that arpack can handle both dense
            and sparse data efficiently
        'dense' : use a direct solver (i.e. LAPACK)
            for the eigenvalue decomposition.

    tol : float
        convergence tolerance passed to arpack or lobpcg.
        not used if eigen_solver == 'dense'

    max_iter : integer
        maximum number of iterations for the arpack solver.
        not used if eigen_solver == 'dense'

    path_method : string ['auto'|'FW'|'D']
        method to use in finding shortest path.
        'auto' : attempt to choose the best algorithm automatically
        'FW' : Floyd-Warshall algorithm
        'D' : Dijkstra algorithm with Fibonacci Heaps

    neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
        algorithm to use for nearest neighbors search,
        passed to neighbors.NearestNeighbors instance

    Attributes
    ----------
    `embedding_` : array-like, shape (n_samples, n_components)
        Stores the embedding vectors

    `kernel_pca_` : `KernelPCA` object used to implement the embedding

    `training_data_` : array-like, shape (n_samples, n_features)
        Stores the training data

    `nbrs_` : sklearn.neighbors.NearestNeighbors instance
        Stores nearest neighbors instance, including BallTree or KDtree
        if applicable.

    `dist_matrix_` : array-like, shape (n_samples, n_samples)
        Stores the geodesic distance matrix of training data

    References
    ----------

    [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
        framework for nonlinear dimensionality reduction. Science 290 (5500)
    """

    def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto',
            tol=0, max_iter=None, path_method='auto',
            neighbors_algorithm='auto', out_dim=None):

        if out_dim:
            warnings.warn("Parameter ``out_dim`` was renamed to "
                "``n_components`` and is now deprecated.", DeprecationWarning,
                stacklevel=2)
        self.out_dim = out_dim
        self.n_neighbors = n_neighbors
        self.n_components = n_components
        self.eigen_solver = eigen_solver
        self.tol = tol
        self.max_iter = max_iter
        self.path_method = path_method
        self.neighbors_algorithm = neighbors_algorithm
        self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors,
                                      algorithm=neighbors_algorithm)

    def _fit_transform(self, X):
        if self.out_dim:
            warnings.warn("Parameter ``out_dim`` was renamed to "
                "``n_components`` and is now deprecated.", DeprecationWarning,
                stacklevel=3)
            self.n_components = self.out_dim
            self.out_dim = None
        self.nbrs_.fit(X)
        self.training_data_ = self.nbrs_._fit_X
        self.kernel_pca_ = KernelPCA(n_components=self.n_components,
                                     kernel="precomputed",
                                     eigen_solver=self.eigen_solver,
                                     tol=self.tol, max_iter=self.max_iter)

        kng = kneighbors_graph(self.nbrs_, self.n_neighbors,
                               mode='distance')

        self.dist_matrix_ = graph_shortest_path(kng,
                                                method=self.path_method,
                                                directed=False)
        G = self.dist_matrix_ ** 2
        G *= -0.5

        self.embedding_ = self.kernel_pca_.fit_transform(G)

    def reconstruction_error(self):
        """Compute the reconstruction error for the embedding.

        Returns
        -------
        reconstruction_error : float

        Notes
        -------
        The cost function of an isomap embedding is

        ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples``

        Where D is the matrix of distances for the input data X,
        D_fit is the matrix of distances for the output embedding X_fit,
        and K is the isomap kernel:

        ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)``
        """
        G = -0.5 * self.dist_matrix_ ** 2
        G_center = KernelCenterer().fit_transform(G)
        evals = self.kernel_pca_.lambdas_
        return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0]

    def fit(self, X, y=None):
        """Compute the embedding vectors for data X

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, cKDTree, NearestNeighbors}
            Sample data, shape = (n_samples, n_features), in the form of a
            numpy array, sparse array, precomputed tree, or NearestNeighbors
            object.

        Returns
        -------
        self : returns an instance of self.
        """
        self._fit_transform(X)
        return self

    def fit_transform(self, X, y=None):
        """Fit the model from data in X and transform X.

        Parameters
        ----------
        X: {array-like, sparse matrix, BallTree, cKDTree}
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new: array-like, shape (n_samples, n_components)
        """
        self._fit_transform(X)
        return self.embedding_

    def transform(self, X):
        """Transform X.

        This is implemented by linking the points X into the graph of geodesic
        distances of the training data. First the `n_neighbors` nearest
        neighbors of X are found in the training data, and from these the
        shortest geodesic distances from each point in X to each point in
        the training data are computed in order to construct the kernel.
        The embedding of X is the projection of this kernel onto the
        embedding vectors of the training set.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)

        Returns
        -------
        X_new: array-like, shape (n_samples, n_components)
        """
        distances, indices = self.nbrs_.kneighbors(X, return_distance=True)

        #Create the graph of shortest distances from X to self.training_data_
        # via the nearest neighbors of X.
        #This can be done as a single array operation, but it potentially
        # takes a lot of memory.  To avoid that, use a loop:
        G_X = np.zeros((X.shape[0], self.training_data_.shape[0]))
        for i in range(X.shape[0]):
            G_X[i] = np.min((self.dist_matrix_[indices[i]]
                             + distances[i][:, None]), 0)

        G_X **= 2
        G_X *= -0.5

        return self.kernel_pca_.transform(G_X)
