"""
Ridge regression
"""

# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
#         Fabian Pedregosa <fabian@fseoane.net>
#         Michael Eickenberg <michael.eickenberg@nsup.org>
# License: BSD 3 clause


from abc import ABCMeta, abstractmethod
import warnings

import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg

from .base import LinearClassifierMixin, LinearModel, _rescale_data
from .sag import sag_solver
from ..base import RegressorMixin
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import row_norms
from ..utils import check_X_y
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..preprocessing import LabelBinarizer
from ..model_selection import GridSearchCV
from ..externals import six
from ..metrics.scorer import check_scoring
from ..exceptions import ConvergenceWarning


def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0):
    n_samples, n_features = X.shape
    X1 = sp_linalg.aslinearoperator(X)
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)

    if n_features > n_samples:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
            return _mv
    else:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
            return _mv

    for i in range(y.shape[1]):
        y_column = y[:, i]

        mv = create_mv(alpha[i])
        if n_features > n_samples:
            # kernel ridge
            # w = X.T * inv(X X^t + alpha*Id) y
            C = sp_linalg.LinearOperator(
                (n_samples, n_samples), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coef, info = sp_linalg.cg(C, y_column, tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coef, info = sp_linalg.cg(C, y_column, tol=tol)
            coefs[i] = X1.rmatvec(coef)
        else:
            # linear ridge
            # w = inv(X^t X + alpha*Id) * X.T y
            y_column = X1.rmatvec(y_column)
            C = sp_linalg.LinearOperator(
                (n_features, n_features), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol)

        if info < 0:
            raise ValueError("Failed with error code %d" % info)

        if max_iter is None and info > 0 and verbose:
            warnings.warn("sparse_cg did not converge after %d iterations." %
                          info, ConvergenceWarning)

    return coefs


def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
    n_samples, n_features = X.shape
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
    n_iter = np.empty(y.shape[1], dtype=np.int32)

    # According to the lsqr documentation, alpha = damp^2.
    sqrt_alpha = np.sqrt(alpha)

    for i in range(y.shape[1]):
        y_column = y[:, i]
        info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i],
                              atol=tol, btol=tol, iter_lim=max_iter)
        coefs[i] = info[0]
        n_iter[i] = info[2]

    return coefs, n_iter


def _solve_cholesky(X, y, alpha):
    # w = inv(X^t X + alpha*Id) * X.T y
    n_samples, n_features = X.shape
    n_targets = y.shape[1]

    A = safe_sparse_dot(X.T, X, dense_output=True)
    Xy = safe_sparse_dot(X.T, y, dense_output=True)

    one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])

    if one_alpha:
        A.flat[::n_features + 1] += alpha[0]
        return linalg.solve(A, Xy, sym_pos=True,
                            overwrite_a=True).T
    else:
        coefs = np.empty([n_targets, n_features], dtype=X.dtype)
        for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
            A.flat[::n_features + 1] += current_alpha
            coef[:] = linalg.solve(A, target, sym_pos=True,
                                   overwrite_a=False).ravel()
            A.flat[::n_features + 1] -= current_alpha
        return coefs


def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
    # dual_coef = inv(X X^t + alpha*Id) y
    n_samples = K.shape[0]
    n_targets = y.shape[1]

    if copy:
        K = K.copy()

    alpha = np.atleast_1d(alpha)
    one_alpha = (alpha == alpha[0]).all()
    has_sw = isinstance(sample_weight, np.ndarray) \
        or sample_weight not in [1.0, None]

    if has_sw:
        # Unlike other solvers, we need to support sample_weight directly
        # because K might be a pre-computed kernel.
        sw = np.sqrt(np.atleast_1d(sample_weight))
        y = y * sw[:, np.newaxis]
        K *= np.outer(sw, sw)

    if one_alpha:
        # Only one penalty, we can solve multi-target problems in one time.
        K.flat[::n_samples + 1] += alpha[0]

        try:
            # Note: we must use overwrite_a=False in order to be able to
            #       use the fall-back solution below in case a LinAlgError
            #       is raised
            dual_coef = linalg.solve(K, y, sym_pos=True,
                                     overwrite_a=False)
        except np.linalg.LinAlgError:
            warnings.warn("Singular matrix in solving dual problem. Using "
                          "least-squares solution instead.")
            dual_coef = linalg.lstsq(K, y)[0]

        # K is expensive to compute and store in memory so change it back in
        # case it was user-given.
        K.flat[::n_samples + 1] -= alpha[0]

        if has_sw:
            dual_coef *= sw[:, np.newaxis]

        return dual_coef
    else:
        # One penalty per target. We need to solve each target separately.
        dual_coefs = np.empty([n_targets, n_samples], K.dtype)

        for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
            K.flat[::n_samples + 1] += current_alpha

            dual_coef[:] = linalg.solve(K, target, sym_pos=True,
                                        overwrite_a=False).ravel()

            K.flat[::n_samples + 1] -= current_alpha

        if has_sw:
            dual_coefs *= sw[np.newaxis, :]

        return dual_coefs.T


def _solve_svd(X, y, alpha):
    U, s, Vt = linalg.svd(X, full_matrices=False)
    idx = s > 1e-15  # same default value as scipy.linalg.pinv
    s_nnz = s[idx][:, np.newaxis]
    UTy = np.dot(U.T, y)
    d = np.zeros((s.size, alpha.size), dtype=X.dtype)
    d[idx] = s_nnz / (s_nnz ** 2 + alpha)
    d_UT_y = d * UTy
    return np.dot(Vt.T, d_UT_y).T


def ridge_regression(X, y, alpha, sample_weight=None, solver='auto',
                     max_iter=None, tol=1e-3, verbose=0, random_state=None,
                     return_n_iter=False, return_intercept=False):
    """Solve the ridge equation by the method of normal equations.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    X : {array-like, sparse matrix, LinearOperator},
        shape = [n_samples, n_features]
        Training data

    y : array-like, shape = [n_samples] or [n_samples, n_targets]
        Target values

    alpha : {float, array-like},
        shape = [n_targets] if array-like
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    sample_weight : float or numpy array of shape [n_samples]
        Individual weights for each sample. If sample_weight is not None and
        solver='auto', the solver will be set to 'cholesky'.

        .. versionadded:: 0.17

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution via a Cholesky decomposition of
          dot(X.T, X)

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.


        All last five solvers support both dense and sparse data. However, only
        'sag' and 'saga' supports sparse input when`fit_intercept` is True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
        1000.

    tol : float
        Precision of the solution.

    verbose : int
        Verbosity level. Setting verbose > 0 will display additional
        information depending on the solver used.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

    return_n_iter : boolean, default False
        If True, the method also returns `n_iter`, the actual number of
        iteration performed by the solver.

        .. versionadded:: 0.17

    return_intercept : boolean, default False
        If True and if X is sparse, the method also returns the intercept,
        and the solver is automatically changed to 'sag'. This is only a
        temporary fix for fitting the intercept with sparse data. For dense
        data, use sklearn.linear_model._preprocess_data before your regression.

        .. versionadded:: 0.17

    Returns
    -------
    coef : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    n_iter : int, optional
        The actual number of iteration performed by the solver.
        Only returned if `return_n_iter` is True.

    intercept : float or array, shape = [n_targets]
        The intercept of the model. Only returned if `return_intercept`
        is True and if X is a scipy sparse array.

    Notes
    -----
    This function won't compute the intercept.
    """
    if return_intercept and sparse.issparse(X) and solver != 'sag':
        if solver != 'auto':
            warnings.warn("In Ridge, only 'sag' solver can currently fit the "
                          "intercept when X is sparse. Solver has been "
                          "automatically changed into 'sag'.")
        solver = 'sag'

    _dtype = [np.float64, np.float32]

    # SAG needs X and y columns to be C-contiguous and np.float64
    if solver in ['sag', 'saga']:
        X = check_array(X, accept_sparse=['csr'],
                        dtype=np.float64, order='C')
        y = check_array(y, dtype=np.float64, ensure_2d=False, order='F')
    else:
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
                        dtype=_dtype)
        y = check_array(y, dtype=X.dtype, ensure_2d=False)
    check_consistent_length(X, y)

    n_samples, n_features = X.shape

    if y.ndim > 2:
        raise ValueError("Target y has the wrong shape %s" % str(y.shape))

    ravel = False
    if y.ndim == 1:
        y = y.reshape(-1, 1)
        ravel = True

    n_samples_, n_targets = y.shape

    if n_samples != n_samples_:
        raise ValueError("Number of samples in X and y does not correspond:"
                         " %d != %d" % (n_samples, n_samples_))

    has_sw = sample_weight is not None

    if solver == 'auto':
        # cholesky if it's a dense array and cg in any other case
        if not sparse.issparse(X) or has_sw:
            solver = 'cholesky'
        else:
            solver = 'sparse_cg'

    if has_sw:
        if np.atleast_1d(sample_weight).ndim > 1:
            raise ValueError("Sample weights must be 1D array or scalar")

        if solver not in ['sag', 'saga']:
            # SAG supports sample_weight directly. For other solvers,
            # we implement sample_weight via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

    # There should be either 1 or n_targets penalties
    alpha = np.asarray(alpha, dtype=X.dtype).ravel()
    if alpha.size not in [1, n_targets]:
        raise ValueError("Number of targets and number of penalties "
                         "do not correspond: %d != %d"
                         % (alpha.size, n_targets))

    if alpha.size == 1 and n_targets > 1:
        alpha = np.repeat(alpha, n_targets)

    if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag', 'saga'):
        raise ValueError('Solver %s not understood' % solver)

    n_iter = None
    if solver == 'sparse_cg':
        coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose)

    elif solver == 'lsqr':
        coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)

    elif solver == 'cholesky':
        if n_features > n_samples:
            K = safe_sparse_dot(X, X.T, dense_output=True)
            try:
                dual_coef = _solve_cholesky_kernel(K, y, alpha)

                coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'

        else:
            try:
                coef = _solve_cholesky(X, y, alpha)
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'

    elif solver in ['sag', 'saga']:
        # precompute max_squared_sum for all targets
        max_squared_sum = row_norms(X, squared=True).max()

        coef = np.empty((y.shape[1], n_features))
        n_iter = np.empty(y.shape[1], dtype=np.int32)
        intercept = np.zeros((y.shape[1], ))
        for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
            init = {'coef': np.zeros((n_features + int(return_intercept), 1))}
            coef_, n_iter_, _ = sag_solver(
                X, target.ravel(), sample_weight, 'squared', alpha_i, 0,
                max_iter, tol, verbose, random_state, False, max_squared_sum,
                init,
                is_saga=solver == 'saga')
            if return_intercept:
                coef[i] = coef_[:-1]
                intercept[i] = coef_[-1]
            else:
                coef[i] = coef_
            n_iter[i] = n_iter_

        if intercept.shape[0] == 1:
            intercept = intercept[0]
        coef = np.asarray(coef)

    if solver == 'svd':
        if sparse.issparse(X):
            raise TypeError('SVD solver does not support sparse'
                            ' inputs currently')
        coef = _solve_svd(X, y, alpha)

    if ravel:
        # When y was passed as a 1d-array, we flatten the coefficients.
        coef = coef.ravel()

    if return_n_iter and return_intercept:
        return coef, n_iter, intercept
    elif return_intercept:
        return coef, intercept
    elif return_n_iter:
        return coef, n_iter
    else:
        return coef


class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)):

    @abstractmethod
    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.max_iter = max_iter
        self.tol = tol
        self.solver = solver
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):

        if self.solver in ('sag', 'saga'):
            _dtype = np.float64
        else:
            # all other solvers work at both float precision levels
            _dtype = [np.float64, np.float32]

        X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=_dtype,
                         multi_output=True, y_numeric=True)

        if ((sample_weight is not None) and
                np.atleast_1d(sample_weight).ndim > 1):
            raise ValueError("Sample weights must be 1D array or scalar")

        X, y, X_offset, y_offset, X_scale = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        # temporary fix for fitting the intercept with sparse data using 'sag'
        if sparse.issparse(X) and self.fit_intercept:
            self.coef_, self.n_iter_, self.intercept_ = ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver=self.solver,
                random_state=self.random_state, return_n_iter=True,
                return_intercept=True)
            self.intercept_ += y_offset
        else:
            self.coef_, self.n_iter_ = ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver=self.solver,
                random_state=self.random_state, return_n_iter=True,
                return_intercept=False)
            self._set_intercept(X_offset, y_offset, X_scale)

        return self


class Ridge(_BaseRidge, RegressorMixin):
    """Linear least squares with l2 regularization.

    Minimizes the objective function::

    ||y - Xw||^2_2 + alpha * ||w||^2_2

    This model solves a regression model where the loss function is
    the linear least squares function and regularization is given by
    the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : {float, array-like}, shape (n_targets)
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        For 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.

    tol : float
        Precision of the solution.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

        All last five solvers support both dense and sparse data. However,
        only 'sag' and 'saga' supports sparse input when `fit_intercept` is
        True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

        .. versionadded:: 0.17
           *random_state* to support Stochastic Average Gradient.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : array or None, shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

        .. versionadded:: 0.17

    See also
    --------
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation
    :class:`sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
        combines ridge regression with the kernel trick

    Examples
    --------
    >>> from sklearn.linear_model import Ridge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> np.random.seed(0)
    >>> y = np.random.randn(n_samples)
    >>> X = np.random.randn(n_samples, n_features)
    >>> clf = Ridge(alpha=1.0)
    >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE
    Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
          normalize=False, random_state=None, solver='auto', tol=0.001)

    """
    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept,
                                    normalize=normalize, copy_X=copy_X,
                                    max_iter=max_iter, tol=tol, solver=solver,
                                    random_state=random_state)

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values

        sample_weight : float or numpy array of shape [n_samples]
            Individual weights for each sample

        Returns
        -------
        self : returns an instance of self.
        """
        return super(Ridge, self).fit(X, y, sample_weight=sample_weight)


class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
    """Classifier using Ridge regression.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : float
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set to false, no
        intercept will be used in calculations (e.g. data is expected to be
        already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        The default value is determined by scipy.sparse.linalg.

    tol : float
        Precision of the solution.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its unbiased and more flexible version named SAGA. Both methods
          use an iterative procedure, and are often faster than other solvers
          when both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

          .. versionadded:: 0.17
             Stochastic Average Gradient descent solver.
          .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_classes, n_features)
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : array or None, shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifier
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifier().fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.9595...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifierCV :  Ridge classifier with built-in cross validation

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.
    """

    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, class_weight=None,
                 solver="auto", random_state=None):
        super(RidgeClassifier, self).__init__(
            alpha=alpha, fit_intercept=fit_intercept, normalize=normalize,
            copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver,
            random_state=random_state)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples,n_features]
            Training data

        y : array-like, shape = [n_samples]
            Target values

        sample_weight : float or numpy array of shape (n_samples,)
            Sample weight.

            .. versionadded:: 0.17
               *sample_weight* support to Classifier.

        Returns
        -------
        self : returns an instance of self.
        """
        check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
                  multi_output=True)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)
        else:
            # we don't (yet) support multi-label classification in Ridge
            raise ValueError(
                "%s doesn't support multi-label classification" % (
                    self.__class__.__name__))

        if self.class_weight:
            if sample_weight is None:
                sample_weight = 1.
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_


class _RidgeGCV(LinearModel):
    """Ridge regression with built-in Generalized Cross-Validation

    It allows efficient Leave-One-Out cross-validation.

    This class is not intended to be used directly. Use RidgeCV instead.

    Notes
    -----

    We want to solve (K + alpha*Id)c = y,
    where K = X X^T is the kernel matrix.

    Let G = (K + alpha*Id)^-1.

    Dual solution: c = Gy
    Primal solution: w = X^T c

    Compute eigendecomposition K = Q V Q^T.
    Then G = Q (V + alpha*Id)^-1 Q^T,
    where (V + alpha*Id) is diagonal.
    It is thus inexpensive to inverse for many alphas.

    Let loov be the vector of prediction values for each example
    when the model was fitted with all examples but this example.

    loov = (KGY - diag(KG)Y) / diag(I-KG)

    Let looe be the vector of prediction errors for each example
    when the model was fitted with all examples but this example.

    looe = y - loov = c / diag(G)

    References
    ----------
    http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
    https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
    """

    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False,
                 scoring=None, copy_X=True,
                 gcv_mode=None, store_cv_values=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.copy_X = copy_X
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values

    def _pre_compute(self, X, y, centered_kernel=True):
        # even if X is very sparse, K is usually very dense
        K = safe_sparse_dot(X, X.T, dense_output=True)
        # the following emulates an additional constant regressor
        # corresponding to fit_intercept=True
        # but this is done only when the features have been centered
        if centered_kernel:
            K += np.ones_like(K)
        v, Q = linalg.eigh(K)
        QT_y = np.dot(Q.T, y)
        return v, Q, QT_y

    def _decomp_diag(self, v_prime, Q):
        # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
        return (v_prime * Q ** 2).sum(axis=-1)

    def _diag_dot(self, D, B):
        # compute dot(diag(D), B)
        if len(B.shape) > 1:
            # handle case where B is > 1-d
            D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
        return D * B

    def _errors_and_values_helper(self, alpha, y, v, Q, QT_y):
        """Helper function to avoid code duplication between self._errors and
        self._values.

        Notes
        -----
        We don't construct matrix G, instead compute action on y & diagonal.
        """
        w = 1. / (v + alpha)
        constant_column = np.var(Q, 0) < 1.e-12
        # detect constant columns
        w[constant_column] = 0  # cancel the regularization for the intercept

        c = np.dot(Q, self._diag_dot(w, QT_y))
        G_diag = self._decomp_diag(w, Q)
        # handle case where y is 2-d
        if len(y.shape) != 1:
            G_diag = G_diag[:, np.newaxis]
        return G_diag, c

    def _errors(self, alpha, y, v, Q, QT_y):
        G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y)
        return (c / G_diag) ** 2, c

    def _values(self, alpha, y, v, Q, QT_y):
        G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y)
        return y - (c / G_diag), c

    def _pre_compute_svd(self, X, y, centered_kernel=True):
        if sparse.issparse(X):
            raise TypeError("SVD not supported for sparse matrices")
        if centered_kernel:
            X = np.hstack((X, np.ones((X.shape[0], 1))))
        # to emulate fit_intercept=True situation, add a column on ones
        # Note that by centering, the other columns are orthogonal to that one
        U, s, _ = linalg.svd(X, full_matrices=0)
        v = s ** 2
        UT_y = np.dot(U.T, y)
        return v, U, UT_y

    def _errors_and_values_svd_helper(self, alpha, y, v, U, UT_y):
        """Helper function to avoid code duplication between self._errors_svd
        and self._values_svd.
        """
        constant_column = np.var(U, 0) < 1.e-12
        # detect columns colinear to ones
        w = ((v + alpha) ** -1) - (alpha ** -1)
        w[constant_column] = - (alpha ** -1)
        # cancel the regularization for the intercept
        c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
        G_diag = self._decomp_diag(w, U) + (alpha ** -1)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            G_diag = G_diag[:, np.newaxis]
        return G_diag, c

    def _errors_svd(self, alpha, y, v, U, UT_y):
        G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y)
        return (c / G_diag) ** 2, c

    def _values_svd(self, alpha, y, v, U, UT_y):
        G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y)
        return y - (c / G_diag), c

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or array-like of shape [n_samples]
            Sample weight

        Returns
        -------
        self : object
        """
        X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64,
                         multi_output=True, y_numeric=True)
        if sample_weight is not None and not isinstance(sample_weight, float):
            sample_weight = check_array(sample_weight, ensure_2d=False)
        n_samples, n_features = X.shape

        X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        gcv_mode = self.gcv_mode
        with_sw = len(np.shape(sample_weight))

        if gcv_mode is None or gcv_mode == 'auto':
            if sparse.issparse(X) or n_features > n_samples or with_sw:
                gcv_mode = 'eigen'
            else:
                gcv_mode = 'svd'
        elif gcv_mode == "svd" and with_sw:
            # FIXME non-uniform sample weights not yet supported
            warnings.warn("non-uniform sample weights unsupported for svd, "
                          "forcing usage of eigen")
            gcv_mode = 'eigen'

        if gcv_mode == 'eigen':
            _pre_compute = self._pre_compute
            _errors = self._errors
            _values = self._values
        elif gcv_mode == 'svd':
            # assert n_samples >= n_features
            _pre_compute = self._pre_compute_svd
            _errors = self._errors_svd
            _values = self._values_svd
        else:
            raise ValueError('bad gcv_mode "%s"' % gcv_mode)

        if sample_weight is not None:
            X, y = _rescale_data(X, y, sample_weight)

        centered_kernel = not sparse.issparse(X) and self.fit_intercept

        v, Q, QT_y = _pre_compute(X, y, centered_kernel)
        n_y = 1 if len(y.shape) == 1 else y.shape[1]
        cv_values = np.zeros((n_samples * n_y, len(self.alphas)))
        C = []

        scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
        error = scorer is None

        if np.any(self.alphas < 0):
            raise ValueError("alphas cannot be negative. "
                             "Got {} containing some "
                             "negative value instead.".format(self.alphas))

        for i, alpha in enumerate(self.alphas):
            if error:
                out, c = _errors(float(alpha), y, v, Q, QT_y)
            else:
                out, c = _values(float(alpha), y, v, Q, QT_y)
            cv_values[:, i] = out.ravel()
            C.append(c)

        if error:
            best = cv_values.mean(axis=0).argmin()
        else:
            # The scorer want an object that will make the predictions but
            # they are already computed efficiently by _RidgeGCV. This
            # identity_estimator will just return them
            def identity_estimator():
                pass
            identity_estimator.decision_function = lambda y_predict: y_predict
            identity_estimator.predict = lambda y_predict: y_predict

            out = [scorer(identity_estimator, y.ravel(), cv_values[:, i])
                   for i in range(len(self.alphas))]
            best = np.argmax(out)

        self.alpha_ = self.alphas[best]
        self.dual_coef_ = C[best]
        self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)

        self._set_intercept(X_offset, y_offset, X_scale)

        if self.store_cv_values:
            if len(y.shape) == 1:
                cv_values_shape = n_samples, len(self.alphas)
            else:
                cv_values_shape = n_samples, n_y, len(self.alphas)
            self.cv_values_ = cv_values.reshape(cv_values_shape)

        return self


class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False, scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.cv = cv
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or array-like of shape [n_samples]
            Sample weight

        Returns
        -------
        self : object
        """
        if self.cv is None:
            estimator = _RidgeGCV(self.alphas,
                                  fit_intercept=self.fit_intercept,
                                  normalize=self.normalize,
                                  scoring=self.scoring,
                                  gcv_mode=self.gcv_mode,
                                  store_cv_values=self.store_cv_values)
            estimator.fit(X, y, sample_weight=sample_weight)
            self.alpha_ = estimator.alpha_
            if self.store_cv_values:
                self.cv_values_ = estimator.cv_values_
        else:
            if self.store_cv_values:
                raise ValueError("cv!=None and store_cv_values=True "
                                 " are incompatible")
            parameters = {'alpha': self.alphas}
            gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept,
                                    normalize=self.normalize),
                              parameters, cv=self.cv, scoring=self.scoring)
            gs.fit(X, y, sample_weight=sample_weight)
            estimator = gs.best_estimator_
            self.alpha_ = gs.best_estimator_.alpha

        self.coef_ = estimator.coef_
        self.intercept_ = estimator.intercept_

        return self


class RidgeCV(_BaseRidgeCV, RegressorMixin):
    """Ridge regression with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : numpy array of shape [n_alphas]
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if ``y`` is binary or multiclass,
        :class:`sklearn.model_selection.StratifiedKFold` is used, else,
        :class:`sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    gcv_mode : {None, 'auto', 'svd', eigen'}, optional
        Flag indicating which strategy to use when performing
        Generalized Cross-Validation. Options are::

            'auto' : use svd if n_samples > n_features or when X is a sparse
                     matrix, otherwise use eigen
            'svd' : force computation via singular value decomposition of X
                    (does not work for sparse matrices)
            'eigen' : force computation via eigendecomposition of X^T X

        The 'auto' mode is the default and is intended to pick the cheaper
        option of the two depending upon the shape and format of the training
        data.

    store_cv_values : boolean, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : array, shape = [n_samples, n_alphas] or \
        shape = [n_samples, n_targets, n_alphas], optional
        Cross-validation values for each alpha (if ``store_cv_values=True``\
        and ``cv=None``). After ``fit()`` has been called, this attribute \
        will contain the mean squared errors (by default) or the values \
        of the ``{loss,score}_func`` function (if provided in the constructor).

    coef_ : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import RidgeCV
    >>> X, y = load_diabetes(return_X_y=True)
    >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.5166...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeClassifierCV : Ridge classifier with built-in cross validation
    """
    pass


class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
    """Ridge classifier with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation. Currently, only the n_features >
    n_samples case is handled efficiently.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : numpy array of shape [n_alphas]
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    store_cv_values : boolean, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : array, shape = [n_samples, n_targets, n_alphas], optional
        Cross-validation values for each alpha (if ``store_cv_values=True`` and
        ``cv=None``). After ``fit()`` has been called, this attribute will
        contain the mean squared errors (by default) or the values of the
        ``{loss,score}_func`` function (if provided in the constructor).

    coef_ : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifierCV
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.9630...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.
    """

    def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True,
                 normalize=False, scoring=None, cv=None, class_weight=None,
                 store_cv_values=False):
        super(RidgeClassifierCV, self).__init__(
            alphas=alphas, fit_intercept=fit_intercept, normalize=normalize,
            scoring=scoring, cv=cv, store_cv_values=store_cv_values)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit the ridge classifier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or numpy array of shape (n_samples,)
            Sample weight.

        Returns
        -------
        self : object
        """
        check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
                  multi_output=True)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)

        if self.class_weight:
            if sample_weight is None:
                sample_weight = 1.
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_
