"""
==========================================================
Adjustment for chance in clustering performance evaluation
==========================================================
This notebook explores the impact of uniformly-distributed random labeling on
the behavior of some clustering evaluation metrics. For such purpose, the
metrics are computed with a fixed number of samples and as a function of the number
of clusters assigned by the estimator. The example is divided into two
experiments:

- a first experiment with fixed "ground truth labels" (and therefore fixed
  number of classes) and randomly "predicted labels";
- a second experiment with varying "ground truth labels", randomly "predicted
  labels". The "predicted labels" have the same number of classes and clusters
  as the "ground truth labels".
"""

# Author: Olivier Grisel <olivier.grisel@ensta.org>
#         Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause

# %%
# Defining the list of metrics to evaluate
# ----------------------------------------
#
# Clustering algorithms are fundamentally unsupervised learning methods.
# However, since we assign class labels for the synthetic clusters in this
# example, it is possible to use evaluation metrics that leverage this
# "supervised" ground truth information to quantify the quality of the resulting
# clusters. Examples of such metrics are the following:
#
# - V-measure, the harmonic mean of completeness and homogeneity;
#
# - Rand index, which measures how frequently pairs of data points are grouped
#   consistently according to the result of the clustering algorithm and the
#   ground truth class assignment;
#
# - Adjusted Rand index (ARI), a chance-adjusted Rand index such that a random
#   cluster assignment has an ARI of 0.0 in expectation;
#
# - Mutual Information (MI) is an information theoretic measure that quantifies
#   how dependent are the two labelings. Note that the maximum value of MI for
#   perfect labelings depends on the number of clusters and samples;
#
# - Normalized Mutual Information (NMI), a Mutual Information defined between 0
#   (no mutual information) in the limit of large number of data points and 1
#   (perfectly matching label assignments, up to a permutation of the labels).
#   It is not adjusted for chance: then the number of clustered data points is
#   not large enough, the expected values of MI or NMI for random labelings can
#   be significantly non-zero;
#
# - Adjusted Mutual Information (AMI), a chance-adjusted Mutual Information.
#   Similarly to ARI, random cluster assignment has an AMI of 0.0 in
#   expectation.
#
# For more information, see the :ref:`clustering_evaluation` module.

from sklearn import metrics

score_funcs = [
    ("V-measure", metrics.v_measure_score),
    ("Rand index", metrics.rand_score),
    ("ARI", metrics.adjusted_rand_score),
    ("MI", metrics.mutual_info_score),
    ("NMI", metrics.normalized_mutual_info_score),
    ("AMI", metrics.adjusted_mutual_info_score),
]

# %%
# First experiment: fixed ground truth labels and growing number of clusters
# --------------------------------------------------------------------------
#
# We first define a function that creates uniformly-distributed random labeling.

import numpy as np

rng = np.random.RandomState(0)


def random_labels(n_samples, n_classes):
    return rng.randint(low=0, high=n_classes, size=n_samples)


# %%
# Another function will use the `random_labels` function to create a fixed set
# of ground truth labels (`labels_a`) distributed in `n_classes` and then score
# several sets of randomly "predicted" labels (`labels_b`) to assess the
# variability of a given metric at a given `n_clusters`.


def fixed_classes_uniform_labelings_scores(
    score_func, n_samples, n_clusters_range, n_classes, n_runs=5
):
    scores = np.zeros((len(n_clusters_range), n_runs))
    labels_a = random_labels(n_samples=n_samples, n_classes=n_classes)

    for i, n_clusters in enumerate(n_clusters_range):
        for j in range(n_runs):
            labels_b = random_labels(n_samples=n_samples, n_classes=n_clusters)
            scores[i, j] = score_func(labels_a, labels_b)
    return scores


# %%
# In this first example we set the number of classes (true number of clusters) to
# `n_classes=10`. The number of clusters varies over the values provided by
# `n_clusters_range`.

import matplotlib.pyplot as plt
import seaborn as sns

n_samples = 1000
n_classes = 10
n_clusters_range = np.linspace(2, 100, 10).astype(int)
plots = []
names = []

sns.color_palette("colorblind")
plt.figure(1)

for marker, (score_name, score_func) in zip("d^vx.,", score_funcs):
    scores = fixed_classes_uniform_labelings_scores(
        score_func, n_samples, n_clusters_range, n_classes=n_classes
    )
    plots.append(
        plt.errorbar(
            n_clusters_range,
            scores.mean(axis=1),
            scores.std(axis=1),
            alpha=0.8,
            linewidth=1,
            marker=marker,
        )[0]
    )
    names.append(score_name)

plt.title(
    "Clustering measures for random uniform labeling\n"
    f"against reference assignment with {n_classes} classes"
)
plt.xlabel(f"Number of clusters (Number of samples is fixed to {n_samples})")
plt.ylabel("Score value")
plt.ylim(bottom=-0.05, top=1.05)
plt.legend(plots, names, bbox_to_anchor=(0.5, 0.5))
plt.show()

# %%
# The Rand index saturates for `n_clusters` > `n_classes`. Other non-adjusted
# measures such as the V-Measure show a linear dependency between the number of
# clusters and the number of samples.
#
# Adjusted for chance measure, such as ARI and AMI, display some random
# variations centered around a mean score of 0.0, independently of the number of
# samples and clusters.
#
# Second experiment: varying number of classes and clusters
# ---------------------------------------------------------
#
# In this section we define a similar function that uses several metrics to
# score 2 uniformly-distributed random labelings. In this case, the number of
# classes and assigned number of clusters are matched for each possible value in
# `n_clusters_range`.


def uniform_labelings_scores(score_func, n_samples, n_clusters_range, n_runs=5):
    scores = np.zeros((len(n_clusters_range), n_runs))

    for i, n_clusters in enumerate(n_clusters_range):
        for j in range(n_runs):
            labels_a = random_labels(n_samples=n_samples, n_classes=n_clusters)
            labels_b = random_labels(n_samples=n_samples, n_classes=n_clusters)
            scores[i, j] = score_func(labels_a, labels_b)
    return scores


# %%
# In this case, we use `n_samples=100` to show the effect of having a number of
# clusters similar or equal to the number of samples.

n_samples = 100
n_clusters_range = np.linspace(2, n_samples, 10).astype(int)

plt.figure(2)

plots = []
names = []

for marker, (score_name, score_func) in zip("d^vx.,", score_funcs):
    scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range)
    plots.append(
        plt.errorbar(
            n_clusters_range,
            np.median(scores, axis=1),
            scores.std(axis=1),
            alpha=0.8,
            linewidth=2,
            marker=marker,
        )[0]
    )
    names.append(score_name)

plt.title(
    "Clustering measures for 2 random uniform labelings\nwith equal number of clusters"
)
plt.xlabel(f"Number of clusters (Number of samples is fixed to {n_samples})")
plt.ylabel("Score value")
plt.legend(plots, names)
plt.ylim(bottom=-0.05, top=1.05)
plt.show()

# %%
# We observe similar results as for the first experiment: adjusted for chance
# metrics stay constantly near zero while other metrics tend to get larger with
# finer-grained labelings. The mean V-measure of random labeling increases
# significantly as the number of clusters is closer to the total number of
# samples used to compute the measure. Furthermore, raw Mutual Information is
# unbounded from above and its scale depends on the dimensions of the clustering
# problem and the cardinality of the ground truth classes. This is why the
# curve goes off the chart.
#
# Only adjusted measures can hence be safely used as a consensus index to
# evaluate the average stability of clustering algorithms for a given value of k
# on various overlapping sub-samples of the dataset.
#
# Non-adjusted clustering evaluation metric can therefore be misleading as they
# output large values for fine-grained labelings, one could be lead to think
# that the labeling has captured meaningful groups while they can be totally
# random. In particular, such non-adjusted metrics should not be used to compare
# the results of different clustering algorithms that output a different number
# of clusters.
