# ruff: noqa
"""
========================================
Release Highlights for scikit-learn 0.24
========================================

.. currentmodule:: sklearn

We are pleased to announce the release of scikit-learn 0.24! Many bug fixes
and improvements were added, as well as some new key features. We detail
below a few of the major features of this release. **For an exhaustive list of
all the changes**, please refer to the :ref:`release notes <release_notes_0_24>`.

To install the latest version (with pip)::

    pip install --upgrade scikit-learn

or with conda::

    conda install -c conda-forge scikit-learn

"""

##############################################################################
# Successive Halving estimators for tuning hyper-parameters
# ---------------------------------------------------------
# Successive Halving, a state of the art method, is now available to
# explore the space of the parameters and identify their best combination.
# :class:`~sklearn.model_selection.HalvingGridSearchCV` and
# :class:`~sklearn.model_selection.HalvingRandomSearchCV` can be
# used as drop-in replacement for
# :class:`~sklearn.model_selection.GridSearchCV` and
# :class:`~sklearn.model_selection.RandomizedSearchCV`.
# Successive Halving is an iterative selection process illustrated in the
# figure below. The first iteration is run with a small amount of resources,
# where the resource typically corresponds to the number of training samples,
# but can also be an arbitrary integer parameter such as `n_estimators` in a
# random forest. Only a subset of the parameter candidates are selected for the
# next iteration, which will be run with an increasing amount of allocated
# resources. Only a subset of candidates will last until the end of the
# iteration process, and the best parameter candidate is the one that has the
# highest score on the last iteration.
#
# Read more in the :ref:`User Guide <successive_halving_user_guide>` (note:
# the Successive Halving estimators are still :term:`experimental
# <experimental>`).
#
# .. figure:: ../model_selection/images/sphx_glr_plot_successive_halving_iterations_001.png
#   :target: ../model_selection/plot_successive_halving_iterations.html
#   :align: center

import numpy as np
from scipy.stats import randint
from sklearn.experimental import enable_halving_search_cv  # noqa
from sklearn.model_selection import HalvingRandomSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification

rng = np.random.RandomState(0)

X, y = make_classification(n_samples=700, random_state=rng)

clf = RandomForestClassifier(n_estimators=10, random_state=rng)

param_dist = {
    "max_depth": [3, None],
    "max_features": randint(1, 11),
    "min_samples_split": randint(2, 11),
    "bootstrap": [True, False],
    "criterion": ["gini", "entropy"],
}

rsh = HalvingRandomSearchCV(
    estimator=clf, param_distributions=param_dist, factor=2, random_state=rng
)
rsh.fit(X, y)
rsh.best_params_

##############################################################################
# Native support for categorical features in HistGradientBoosting estimators
# --------------------------------------------------------------------------
# :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
# :class:`~sklearn.ensemble.HistGradientBoostingRegressor` now have native
# support for categorical features: they can consider splits on non-ordered,
# categorical data. Read more in the :ref:`User Guide
# <categorical_support_gbdt>`.
#
# .. figure:: ../ensemble/images/sphx_glr_plot_gradient_boosting_categorical_001.png
#   :target: ../ensemble/plot_gradient_boosting_categorical.html
#   :align: center
#
# The plot shows that the new native support for categorical features leads to
# fitting times that are comparable to models where the categories are treated
# as ordered quantities, i.e. simply ordinal-encoded. Native support is also
# more expressive than both one-hot encoding and ordinal encoding. However, to
# use the new `categorical_features` parameter, it is still required to
# preprocess the data within a pipeline as demonstrated in this :ref:`example
# <sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py>`.

##############################################################################
# Improved performances of HistGradientBoosting estimators
# --------------------------------------------------------
# The memory footprint of :class:`ensemble.HistGradientBoostingRegressor` and
# :class:`ensemble.HistGradientBoostingClassifier` has been significantly
# improved during calls to `fit`. In addition, histogram initialization is now
# done in parallel which results in slight speed improvements.
# See more in the `Benchmark page
# <https://scikit-learn.org/scikit-learn-benchmarks/>`_.

##############################################################################
# New self-training meta-estimator
# --------------------------------
# A new self-training implementation, based on `Yarowski's algorithm
# <https://doi.org/10.3115/981658.981684>`_ can now be used with any
# classifier that implements :term:`predict_proba`. The sub-classifier
# will behave as a
# semi-supervised classifier, allowing it to learn from unlabeled data.
# Read more in the :ref:`User guide <self_training>`.

import numpy as np
from sklearn import datasets
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.svm import SVC

rng = np.random.RandomState(42)
iris = datasets.load_iris()
random_unlabeled_points = rng.rand(iris.target.shape[0]) < 0.3
iris.target[random_unlabeled_points] = -1
svc = SVC(probability=True, gamma="auto")
self_training_model = SelfTrainingClassifier(svc)
self_training_model.fit(iris.data, iris.target)

##############################################################################
# New SequentialFeatureSelector transformer
# -----------------------------------------
# A new iterative transformer to select features is available:
# :class:`~sklearn.feature_selection.SequentialFeatureSelector`.
# Sequential Feature Selection can add features one at a time (forward
# selection) or remove features from the list of the available features
# (backward selection), based on a cross-validated score maximization.
# See the :ref:`User Guide <sequential_feature_selection>`.

from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True, as_frame=True)
feature_names = X.columns
knn = KNeighborsClassifier(n_neighbors=3)
sfs = SequentialFeatureSelector(knn, n_features_to_select=2)
sfs.fit(X, y)
print(
    "Features selected by forward sequential selection: "
    f"{feature_names[sfs.get_support()].tolist()}"
)

##############################################################################
# New PolynomialCountSketch kernel approximation function
# -------------------------------------------------------
# The new :class:`~sklearn.kernel_approximation.PolynomialCountSketch`
# approximates a polynomial expansion of a feature space when used with linear
# models, but uses much less memory than
# :class:`~sklearn.preprocessing.PolynomialFeatures`.

from sklearn.datasets import fetch_covtype
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.kernel_approximation import PolynomialCountSketch
from sklearn.linear_model import LogisticRegression

X, y = fetch_covtype(return_X_y=True)
pipe = make_pipeline(
    MinMaxScaler(),
    PolynomialCountSketch(degree=2, n_components=300),
    LogisticRegression(max_iter=1000),
)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=5000, test_size=10000, random_state=42
)
pipe.fit(X_train, y_train).score(X_test, y_test)

##############################################################################
# For comparison, here is the score of a linear baseline for the same data:

linear_baseline = make_pipeline(MinMaxScaler(), LogisticRegression(max_iter=1000))
linear_baseline.fit(X_train, y_train).score(X_test, y_test)

##############################################################################
# Individual Conditional Expectation plots
# ----------------------------------------
# A new kind of partial dependence plot is available: the Individual
# Conditional Expectation (ICE) plot. ICE plots visualize the dependence of the
# prediction on a feature for each sample separately, with one line per sample.
# See the :ref:`User Guide <individual_conditional>`

from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import fetch_california_housing

# from sklearn.inspection import plot_partial_dependence
from sklearn.inspection import PartialDependenceDisplay

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
features = ["MedInc", "AveOccup", "HouseAge", "AveRooms"]
est = RandomForestRegressor(n_estimators=10)
est.fit(X, y)

# plot_partial_dependence has been removed in version 1.2. From 1.2, use
# PartialDependenceDisplay instead.
# display = plot_partial_dependence(
display = PartialDependenceDisplay.from_estimator(
    est,
    X,
    features,
    kind="individual",
    subsample=50,
    n_jobs=3,
    grid_resolution=20,
    random_state=0,
)
display.figure_.suptitle(
    "Partial dependence of house value on non-location features\n"
    "for the California housing dataset, with BayesianRidge"
)
display.figure_.subplots_adjust(hspace=0.3)

##############################################################################
# New Poisson splitting criterion for DecisionTreeRegressor
# ---------------------------------------------------------
# The integration of Poisson regression estimation continues from version 0.23.
# :class:`~sklearn.tree.DecisionTreeRegressor` now supports a new `'poisson'`
# splitting criterion. Setting `criterion="poisson"` might be a good choice
# if your target is a count or a frequency.

from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
import numpy as np

n_samples, n_features = 1000, 20
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
# positive integer target correlated with X[:, 5] with many zeros:
y = rng.poisson(lam=np.exp(X[:, 5]) / 2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
regressor = DecisionTreeRegressor(criterion="poisson", random_state=0)
regressor.fit(X_train, y_train)

##############################################################################
# New documentation improvements
# ------------------------------
#
# New examples and documentation pages have been added, in a continuous effort
# to improve the understanding of machine learning practices:
#
# - a new section about :ref:`common pitfalls and recommended
#   practices <common_pitfalls>`,
# - an example illustrating how to :ref:`statistically compare the performance of
#   models <sphx_glr_auto_examples_model_selection_plot_grid_search_stats.py>`
#   evaluated using :class:`~sklearn.model_selection.GridSearchCV`,
# - an example on how to :ref:`interpret coefficients of linear models
#   <sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py>`,
# - an :ref:`example
#   <sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py>`
#   comparing Principal Component Regression and Partial Least Squares.
