"""
===========================================
Lagged features for time series forecasting
===========================================

This example demonstrates how Polars-engineered lagged features can be used
for time series forecasting with
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` on the Bike Sharing
Demand dataset.

See the example on
:ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`
for some data exploration on this dataset and a demo on periodic feature
engineering.

"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# %%
# Analyzing the Bike Sharing Demand dataset
# -----------------------------------------
#
# We start by loading the data from the OpenML repository as a raw parquet file
# to illustrate how to work with an arbitrary parquet file instead of hiding this
# step in a convenience tool such as `sklearn.datasets.fetch_openml`.
#
# The URL of the parquet file can be found in the JSON description of the
# Bike Sharing Demand dataset with id 44063 on openml.org
# (https://openml.org/search?type=data&status=active&id=44063).
#
# The `sha256` hash of the file is also provided to ensure the integrity of the
# downloaded file.
import numpy as np
import polars as pl

from sklearn.datasets import fetch_file

pl.Config.set_fmt_str_lengths(20)

bike_sharing_data_file = fetch_file(
    "https://data.openml.org/datasets/0004/44063/dataset_44063.pq",
    sha256="d120af76829af0d256338dc6dd4be5df4fd1f35bf3a283cab66a51c1c6abd06a",
)
bike_sharing_data_file

# %%
# We load the parquet file with Polars for feature engineering. Polars
# automatically caches common subexpressions which are reused in multiple
# expressions (like `pl.col("count").shift(1)` below). See
# https://docs.pola.rs/user-guide/lazy/optimizations/ for more information.

df = pl.read_parquet(bike_sharing_data_file)

# %%
# Next, we take a look at the statistical summary of the dataset
# so that we can better understand the data that we are working with.
import polars.selectors as cs

summary = df.select(cs.numeric()).describe()
summary

# %%
# Let us look at the count of the seasons `"fall"`, `"spring"`, `"summer"`
# and `"winter"` present in the dataset to confirm they are balanced.

import matplotlib.pyplot as plt

df["season"].value_counts()


# %%
# Generating Polars-engineered lagged features
# --------------------------------------------
# Let's consider the problem of predicting the demand at the
# next hour given past demands. Since the demand is a continuous
# variable, one could intuitively use any regression model. However, we do
# not have the usual `(X_train, y_train)` dataset. Instead, we just have
# the `y_train` demand data sequentially organized by time.
lagged_df = df.select(
    "count",
    *[pl.col("count").shift(i).alias(f"lagged_count_{i}h") for i in [1, 2, 3]],
    lagged_count_1d=pl.col("count").shift(24),
    lagged_count_1d_1h=pl.col("count").shift(24 + 1),
    lagged_count_7d=pl.col("count").shift(7 * 24),
    lagged_count_7d_1h=pl.col("count").shift(7 * 24 + 1),
    lagged_mean_24h=pl.col("count").shift(1).rolling_mean(24),
    lagged_max_24h=pl.col("count").shift(1).rolling_max(24),
    lagged_min_24h=pl.col("count").shift(1).rolling_min(24),
    lagged_mean_7d=pl.col("count").shift(1).rolling_mean(7 * 24),
    lagged_max_7d=pl.col("count").shift(1).rolling_max(7 * 24),
    lagged_min_7d=pl.col("count").shift(1).rolling_min(7 * 24),
)
lagged_df.tail(10)

# %%
# Watch out however, the first lines have undefined values because their own
# past is unknown. This depends on how much lag we used:
lagged_df.head(10)

# %%
# We can now separate the lagged features in a matrix `X` and the target variable
# (the counts to predict) in an array of the same first dimension `y`.
lagged_df = lagged_df.drop_nulls()
X = lagged_df.drop("count")
y = lagged_df["count"]
print("X shape: {}\ny shape: {}".format(X.shape, y.shape))

# %%
# Naive evaluation of the next hour bike demand regression
# --------------------------------------------------------
# Let's randomly split our tabularized dataset to train a gradient
# boosting regression tree (GBRT) model and evaluate it using Mean
# Absolute Percentage Error (MAPE). If our model is aimed at forecasting
# (i.e., predicting future data from past data), we should not use training
# data that are ulterior to the testing data. In time series machine learning
# the "i.i.d" (independent and identically distributed) assumption does not
# hold true as the data points are not independent and have a temporal
# relationship.
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

model = HistGradientBoostingRegressor().fit(X_train, y_train)

# %%
# Taking a look at the performance of the model.
from sklearn.metrics import mean_absolute_percentage_error

y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)

# %%
# Proper next hour forecasting evaluation
# ---------------------------------------
# Let's use a proper evaluation splitting strategies that takes into account
# the temporal structure of the dataset to evaluate our model's ability to
# predict data points in the future (to avoid cheating by reading values from
# the lagged features in the training set).
from sklearn.model_selection import TimeSeriesSplit

ts_cv = TimeSeriesSplit(
    n_splits=3,  # to keep the notebook fast enough on common laptops
    gap=48,  # 2 days data gap between train and test
    max_train_size=10000,  # keep train sets of comparable sizes
    test_size=3000,  # for 2 or 3 digits of precision in scores
)
all_splits = list(ts_cv.split(X, y))

# %%
# Training the model and evaluating its performance based on MAPE.
train_idx, test_idx = all_splits[0]
X_train, X_test = X[train_idx, :], X[test_idx, :]
y_train, y_test = y[train_idx], y[test_idx]

model = HistGradientBoostingRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)

# %%
# The generalization error measured via a shuffled trained test split
# is too optimistic. The generalization via a time-based split is likely to
# be more representative of the true performance of the regression model.
# Let's assess this variability of our error evaluation with proper
# cross-validation:
from sklearn.model_selection import cross_val_score

cv_mape_scores = -cross_val_score(
    model, X, y, cv=ts_cv, scoring="neg_mean_absolute_percentage_error"
)
cv_mape_scores

# %%
# The variability across splits is quite large! In a real life setting
# it would be advised to use more splits to better assess the variability.
# Let's report the mean CV scores and their standard deviation from now on.
print(f"CV MAPE: {cv_mape_scores.mean():.3f} ± {cv_mape_scores.std():.3f}")

# %%
# We can compute several combinations of evaluation metrics and loss functions,
# which are reported a bit below.
from collections import defaultdict

from sklearn.metrics import (
    make_scorer,
    mean_absolute_error,
    mean_pinball_loss,
    root_mean_squared_error,
)
from sklearn.model_selection import cross_validate


def consolidate_scores(cv_results, scores, metric):
    if metric == "MAPE":
        scores[metric].append(f"{value.mean():.2f} ± {value.std():.2f}")
    else:
        scores[metric].append(f"{value.mean():.1f} ± {value.std():.1f}")

    return scores


scoring = {
    "MAPE": make_scorer(mean_absolute_percentage_error),
    "RMSE": make_scorer(root_mean_squared_error),
    "MAE": make_scorer(mean_absolute_error),
    "pinball_loss_05": make_scorer(mean_pinball_loss, alpha=0.05),
    "pinball_loss_50": make_scorer(mean_pinball_loss, alpha=0.50),
    "pinball_loss_95": make_scorer(mean_pinball_loss, alpha=0.95),
}
loss_functions = ["squared_error", "poisson", "absolute_error"]
scores = defaultdict(list)
for loss_func in loss_functions:
    model = HistGradientBoostingRegressor(loss=loss_func)
    cv_results = cross_validate(
        model,
        X,
        y,
        cv=ts_cv,
        scoring=scoring,
        n_jobs=2,
    )
    time = cv_results["fit_time"]
    scores["loss"].append(loss_func)
    scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")

    for key, value in cv_results.items():
        if key.startswith("test_"):
            metric = key.split("test_")[1]
            scores = consolidate_scores(cv_results, scores, metric)


# %%
# Modeling predictive uncertainty via quantile regression
# -------------------------------------------------------
# Instead of modeling the expected value of the distribution of
# :math:`Y|X` like the least squares and Poisson losses do, one could try to
# estimate quantiles of the conditional distribution.
#
# :math:`Y|X=x_i` is expected to be a random variable for a given data point
# :math:`x_i` because we expect that the number of rentals cannot be 100%
# accurately predicted from the features. It can be influenced by other
# variables not properly captured by the existing lagged features. For
# instance whether or not it will rain in the next hour cannot be fully
# anticipated from the past hours bike rental data. This is what we
# call aleatoric uncertainty.
#
# Quantile regression makes it possible to give a finer description of that
# distribution without making strong assumptions on its shape.
quantile_list = [0.05, 0.5, 0.95]

for quantile in quantile_list:
    model = HistGradientBoostingRegressor(loss="quantile", quantile=quantile)
    cv_results = cross_validate(
        model,
        X,
        y,
        cv=ts_cv,
        scoring=scoring,
        n_jobs=2,
    )
    time = cv_results["fit_time"]
    scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")

    scores["loss"].append(f"quantile {int(quantile * 100)}")
    for key, value in cv_results.items():
        if key.startswith("test_"):
            metric = key.split("test_")[1]
            scores = consolidate_scores(cv_results, scores, metric)

scores_df = pl.DataFrame(scores)
scores_df


# %%
# Let us take a look at the losses that minimise each metric.
def min_arg(col):
    col_split = pl.col(col).str.split(" ")
    return pl.arg_sort_by(
        col_split.list.get(0).cast(pl.Float64),
        col_split.list.get(2).cast(pl.Float64),
    ).first()


scores_df.select(
    pl.col("loss").get(min_arg(col_name)).alias(col_name)
    for col_name in scores_df.columns
    if col_name != "loss"
)

# %%
# Even if the score distributions overlap due to the variance in the dataset,
# it is true that the average RMSE is lower when `loss="squared_error"`, whereas
# the average MAPE is lower when `loss="absolute_error"` as expected. That is
# also the case for the Mean Pinball Loss with the quantiles 5 and 95. The score
# corresponding to the 50 quantile loss is overlapping with the score obtained
# by minimizing other loss functions, which is also the case for the MAE.
#
# A qualitative look at the predictions
# -------------------------------------
# We can now visualize the performance of the model with regards
# to the 5th percentile, median and the 95th percentile:
all_splits = list(ts_cv.split(X, y))
train_idx, test_idx = all_splits[0]

X_train, X_test = X[train_idx, :], X[test_idx, :]
y_train, y_test = y[train_idx], y[test_idx]

max_iter = 50
gbrt_mean_poisson = HistGradientBoostingRegressor(loss="poisson", max_iter=max_iter)
gbrt_mean_poisson.fit(X_train, y_train)
mean_predictions = gbrt_mean_poisson.predict(X_test)

gbrt_median = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.5, max_iter=max_iter
)
gbrt_median.fit(X_train, y_train)
median_predictions = gbrt_median.predict(X_test)

gbrt_percentile_5 = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.05, max_iter=max_iter
)
gbrt_percentile_5.fit(X_train, y_train)
percentile_5_predictions = gbrt_percentile_5.predict(X_test)

gbrt_percentile_95 = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.95, max_iter=max_iter
)
gbrt_percentile_95.fit(X_train, y_train)
percentile_95_predictions = gbrt_percentile_95.predict(X_test)

# %%
# We can now take a look at the predictions made by the regression models:
last_hours = slice(-96, None)
fig, ax = plt.subplots(figsize=(15, 7))
plt.title("Predictions by regression models")
ax.plot(
    y_test[last_hours],
    "x-",
    alpha=0.2,
    label="Actual demand",
    color="black",
)
ax.plot(
    median_predictions[last_hours],
    "^-",
    label="GBRT median",
)
ax.plot(
    mean_predictions[last_hours],
    "x-",
    label="GBRT mean (Poisson)",
)
ax.fill_between(
    np.arange(96),
    percentile_5_predictions[last_hours],
    percentile_95_predictions[last_hours],
    alpha=0.3,
    label="GBRT 90% interval",
)
_ = ax.legend()

# %%
# Here it's interesting to notice that the blue area between the 5% and 95%
# percentile estimators has a width that varies with the time of the day:
#
# - At night, the blue band is much narrower: the pair of models is quite
#   certain that there will be a small number of bike rentals. And furthermore
#   these seem correct in the sense that the actual demand stays in that blue
#   band.
# - During the day, the blue band is much wider: the uncertainty grows, probably
#   because of the variability of the weather that can have a very large impact,
#   especially on week-ends.
# - We can also see that during week-days, the commute pattern is still visible in
#   the 5% and 95% estimations.
# - Finally, it is expected that 10% of the time, the actual demand does not lie
#   between the 5% and 95% percentile estimates. On this test span, the actual
#   demand seems to be higher, especially during the rush hours. It might reveal that
#   our 95% percentile estimator underestimates the demand peaks. This could be be
#   quantitatively confirmed by computing empirical coverage numbers as done in
#   the :ref:`calibration of confidence intervals <calibration-section>`.
#
# Looking at the performance of non-linear regression models vs
# the best models:
from sklearn.metrics import PredictionErrorDisplay

fig, axes = plt.subplots(ncols=3, figsize=(15, 6), sharey=True)
fig.suptitle("Non-linear regression models")
predictions = [
    median_predictions,
    percentile_5_predictions,
    percentile_95_predictions,
]
labels = [
    "Median",
    "5th percentile",
    "95th percentile",
]
for ax, pred, label in zip(axes, predictions, labels):
    PredictionErrorDisplay.from_predictions(
        y_true=y_test,
        y_pred=pred,
        kind="residual_vs_predicted",
        scatter_kwargs={"alpha": 0.3},
        ax=ax,
    )
    ax.set(xlabel="Predicted demand", ylabel="True demand")
    ax.legend(["Best model", label])

plt.show()

# %%
# Conclusion
# ----------
# Through this example we explored time series forecasting using lagged
# features. We compared a naive regression (using the standardized
# :class:`~sklearn.model_selection.train_test_split`) with a proper time
# series evaluation strategy using
# :class:`~sklearn.model_selection.TimeSeriesSplit`. We observed that the
# model trained using :class:`~sklearn.model_selection.train_test_split`,
# having a default value of `shuffle` set to `True` produced an overly
# optimistic Mean Average Percentage Error (MAPE). The results
# produced from the time-based split better represent the performance
# of our time-series regression model. We also analyzed the predictive uncertainty
# of our model via Quantile Regression. Predictions based on the 5th and
# 95th percentile using `loss="quantile"` provide us with a quantitative estimate
# of the uncertainty of the forecasts made by our time series regression model.
# Uncertainty estimation can also be performed
# using `MAPIE <https://mapie.readthedocs.io/en/latest/index.html>`_,
# that provides an implementation based on recent work on conformal prediction
# methods and estimates both aleatoric and epistemic uncertainty at the same time.
# Furthermore, functionalities provided
# by `sktime <https://www.sktime.net/en/latest/users.html>`_
# can be used to extend scikit-learn estimators by making use of recursive time
# series forecasting, that enables dynamic predictions of future values.
