#!/usr/bin/python3

############################################################################
# Copyright (c) 2015 Saint Petersburg State University
# Copyright (c) 2011-2014 Saint Petersburg Academic University
# All Rights Reserved
# See file LICENSE for details.
############################################################################


import sys
import os
import shutil
import re
import getopt
import datetime
import subprocess

###################################################################

sys.path.append(os.path.join(os.path.abspath(sys.path[0]), 'conversion'))
sys.path.append(os.path.join(os.path.abspath(sys.path[0]), 'stat'))
sys.path.append(os.path.join(os.path.abspath(sys.path[0]), '../../../ext/src/python_libs'))
if sys.version.startswith('2.'):
    import pyyaml2 as pyyaml
elif sys.version.startswith('3.'):
    import pyyaml3 as pyyaml
sys.path.append(os.path.join(os.path.abspath(sys.path[0]), '../../spades_pipeline'))
import support

bowtie_build = "bowtie2-build"
bowtie       = "bowtie2"

tmp_folder = "tmp"
output_dir = "results_" + datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
thread_num = 16
bin_size = 1
kmer = 1
make_latest_symlink = True
reference = ""
skip_trimming = False
paired_mode=False
max_is = 1000000000

###################################################################

long_options = "output-dir= reference= thread-num= bin-size= kmer-size= max-is= skip-trimming paired-mode".split()
short_options = "o:r:t:b:k:x:sp"

def usage():
    print 'Estimation reads quality'
    print 'Usage:', sys.argv[0], ' [options described below] <datasets YAML description-file(s)>'
    print ""
    print "Options:"
    print "-p\t--paired-mode\tStarts ReadsQuality in PAIRED mode (former paired_reads_quality)"
    print "-r\t--reference\tFile with reference genome (Mandatory parameter)"
    print "-o\t--output-dir\tDirectory to store all result files"
    print "-t\t--thread-num\tMax number of threads (default is " + str(thread_num) + ")"
    print "-k\t--kmer-size\tK-mer size for which coverage is counted (default is " + str(kmer) + ")"
    print "-b\t--bin-size\tSize of bins for counting coverage (default is " + str(bin_size) + ")"
    print "-x\t--max-is\tMaximal inser size (default is none)"
    print "-s\t--skip-trimming\tSkip N-trimming for speed-up"
    
try:
    options, datasets = getopt.gnu_getopt(sys.argv[1:], short_options, long_options)
except getopt.GetoptError, err:
    print str(err)
    print ""
    usage()
    sys.exit(1)

for opt, arg in options:
    if opt in ('-o', "--output-dir"):
        output_dir = arg
        make_latest_symlink = False  
    elif opt in ('-r', "--reference"):
        support.check_file_existence(arg, "reference")
        reference = arg
    elif opt in ('-t', "--thread-num"):
        thread_num = int(arg)
        if thread_num < 1:
            thread_num = 1 
    elif opt in ('-b', "--bin-size"):        
        if int(arg) > 0:
            bin_size = int(arg)
    elif opt in ('-k', "--kmer-size"):        
        if int(arg) > 0:
            kmer = int(arg)
    elif opt in ('-x', "--max-is"):        
        if int(arg) > 0:
            max_is = int(arg)
    elif opt in ('-s', "--skip-trimming"):
        skip_trimming = True 
    elif opt in ('-p', "--paired-mode"):
        paired_mode = True
    else:
        raise ValueError

for d in datasets:
    support.check_file_existence(d)    

if not datasets:
    print >> sys.stderr, "no datasets"
    usage()
    sys.exit(1)   

if not reference:
    print >> sys.stderr, 'no reference'
    usage()
    sys.exit(1)   

###################################################################

def get_full_path(dataset, rel_path):
    return os.path.abspath(os.path.join(os.path.dirname(dataset), rel_path))

def ungzip_if_needed(filename, output_folder, force_copy = False):
    file_basename, file_extension = os.path.splitext(filename)
    if file_extension == ".gz":
        if not os.path.exists(output_folder):
            os.makedirs(output_folder)
        ungzipped_filename = os.path.join(output_folder, os.path.basename(file_basename))
        ungzipped_file = open(ungzipped_filename, 'w')
        subprocess.call(['gunzip', filename, '-c'], stdout=ungzipped_file)
        ungzipped_file.close()
        filename = ungzipped_filename    
    elif force_copy:
        if not os.path.exists(output_folder):
            os.makedirs(output_folder)
        shutil.copy(filename, output_folder)
        filename = os.path.join(output_folder, os.path.basename(filename))
    return filename

###################################################################

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

if make_latest_symlink:
    latest_symlink = 'latest'
    if os.path.islink(latest_symlink):
        os.remove(latest_symlink)
    os.symlink(output_dir, latest_symlink)

datasets_dict = dict()

print("Analyzing datasets")
for dataset in datasets:

    try:
        dataset_data = pyyaml.load(file(dataset, 'r'), Loader=pyyaml.FullLoader)
    except pyyaml.YAMLError, exc:
        support.warning('skipping ' + dataset + ': exception caught while parsing YAML file (' + options_storage.dataset_yaml_filename + '):\n' + str(exc))
        continue

    dataset_data = support.correct_dataset(dataset_data)
    for id, library in enumerate(dataset_data):
        print ("processing lib#" + str(id) + " of " + dataset)
        basename = os.path.splitext(os.path.basename(dataset))[0]
        cur_key = basename
        i = 1
        while datasets_dict.has_key(cur_key):
            cur_key = basename + "_" + str(i)

        cur_reads = []
        for key, value in library.items():
            if key.endswith('reads'):
                for reads_file in value:
                    cur_reads.append(get_full_path(dataset, reads_file))
        
        datasets_dict[cur_key] = cur_reads   
        print("lib#" + str(id) + " of " + dataset + " ==> " + cur_key)

if len(datasets_dict.keys()) == 0:
    support.error("can't continue estimation - all datasets were skipped")
    sys.exit(1)

###################################################################

report_dict = {"header" : ["Dataset"]}
for dataset in datasets_dict.iterkeys():
    report_dict[dataset] = [dataset]

tmp_folder = os.path.join(output_dir, tmp_folder)
if not os.path.exists(tmp_folder):
    os.makedirs(tmp_folder)

if not skip_trimming:
    print("Unpacking data (if needed) to temporary folder (" + tmp_folder + ") and N-trimming")
else:
    print("Unpacking data (if needed) to temporary folder (" + tmp_folder + ")")

print("  reference...")
reference = ungzip_if_needed(reference, tmp_folder)

# TODO fastA analysis (we should convert all in fasta if there is at least one file in fasta)
for dataset in datasets_dict.iterkeys():
    print("  " + dataset + "...")
    ungzipped_reads = []
    for read in datasets_dict[dataset]:    
        copied_read = ungzip_if_needed(read, os.path.join(tmp_folder, dataset), True)
        if not skip_trimming:
            import trim_ns
            trim_ns.trim_file(copied_read, copied_read)
        ungzipped_reads.append(copied_read)
    datasets_dict[dataset] = ungzipped_reads

# creating index
index_folder = os.path.join(tmp_folder, "index")
if not os.path.exists(index_folder):
    os.makedirs(index_folder)
index_name   = os.path.splitext(os.path.basename(reference))[0]
index        = os.path.join(index_folder, index_name)
print("Creating index " + index)
index_log = open(os.path.join(output_dir, "index.log"),'w')
index_err = open(os.path.join(output_dir, "index.err"),'w')
subprocess.call([bowtie_build, reference, index], stdout=index_log, stderr=index_err)
index_log.close()
index_err.close()

# bowtie-ing
report_dict["header"] += ["Total reads"]
print("Aligning")
report_dict["header"] += ["Unaligned reads", "Uniquely aligned reads", "Non-niquely aligned reads"]
total_reads = {}

for dataset in datasets_dict.iterkeys():
    print("  " + dataset + "...")
    align_log = open(os.path.join(output_dir, dataset + ".log"),'w')
    align_err = open(os.path.join(output_dir, dataset + ".err"),'w') 
    reads_string = reduce(lambda x, y: x + (',' + y if os.path.getsize(y) > 0 else ""), datasets_dict[dataset], "")

    if (len(reads_string) > 0):
        if paired_mode:
            subprocess.call([bowtie, '-q', '-k', '1', '-x', index, '-p', str(thread_num), reads_string], stdout=align_log, stderr=align_err)
        else:
            subprocess.call([bowtie, '-q', '-x', index, '-p', str(thread_num), reads_string], stdout=align_log, stderr=align_err)
    else:
        print("No files to feed into bowtie, or all of them are empty")
    align_log.close()
    align_err.close() 

    align_err = open(os.path.join(output_dir, dataset + ".err"),'r') 
    suppressed_added = False
    for line in align_err:
        if line.find("reads; of these") != -1:
            report_dict[dataset].append( (line.split()[0]).strip() )
            if paired_mode:
                total_reads[dataset] = int( (line.split()[0]).strip() )
        elif line.find("aligned 0 times") != -1:
            report_dict[dataset].append( (line.split(')')[0]).strip() + ')' )
        elif line.find("aligned exactly 1 time") != -1:
            report_dict[dataset].append( (line.split(')')[0]).strip() + ')' )
        elif line.find("aligned >1 times") != -1:
            report_dict[dataset].append( (line.split(')')[0]).strip() + ')' )

    align_err.close() 

# raw-single    
print("Parsing Bowtie log")
import raw_single
for dataset in datasets_dict.iterkeys():
    print("  " + dataset + "...")
    align_log = os.path.join(output_dir, dataset + ".log")
    raw_file  = os.path.join(output_dir, dataset + ".raw")
    raw_single.raw_single(align_log, raw_file)

# get length of reference
ref_len = 0
for line in open(reference):
    if line[0] != '>':       
        ref_len += len(line.strip())

# coverage # python reads_utils/stat/coverage.py ec.raw ec.cov 4639675 1000
print("Analyzing coverage")
report_dict["header"] += ["Genome mapped (%)"]
gaps_dict = {}  # TODO: use it somewhere!
import coverage
for dataset in datasets_dict.iterkeys():
    print("  " + dataset + "...")
    raw_file  = os.path.join(output_dir, dataset + ".raw")
    cov_file  = os.path.join(output_dir, dataset + ".cov")
    cov = coverage.coverage(raw_file, cov_file, ref_len, bin_size, kmer)
    
    gaps_file  = os.path.join(output_dir, dataset + ".gaps")
    chunks_file  = os.path.join(output_dir, os.path.splitext(os.path.basename(reference))[0] + "gaps_" + dataset + ".fasta")
    gaps_dict[dataset] = coverage.analyze_gaps(cov_file, gaps_file, reference, chunks_file, kmer)

    report_dict[dataset].append( str(cov * 100) )

# IS form logs    
if paired_mode:
    print("Retaining insert size")
    report_dict["header"] += ["Read length", "FR read pairs", "Insert size (deviation)", "RF read pairs", "Insert size (deviation)", "FF read pairs", "Insert size (deviation)", "One uniquely aligned read in pair", "Both reads unaligned", "Both aligned to same position", "Suppressed due to insert size limit"]
    import is_from_single_log
    for dataset in datasets_dict.iterkeys():
        print("  " + dataset + "...")
        align_log = os.path.join(output_dir, dataset + ".log")
        stat = is_from_single_log.stat_from_log(align_log, max_is)
        stat[1]["FR"].write_hist(os.path.join(output_dir, dataset + "_FR.is"))
        stat[1]["RF"].write_hist(os.path.join(output_dir, dataset + "_RF.is"))
        stat[1]["FF"].write_hist(os.path.join(output_dir, dataset + "_FF.is"))

        read_pairs = total_reads[dataset] / 2

        report_dict[dataset].append( str(stat[0]) )

        report_dict[dataset].append( str(stat[1]["FR"].count) + " (" + str(round( 100.0 * float(stat[1]["FR"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(round(stat[1]["FR"].mean, 2)) + " (" + str(round(stat[1]["FR"].dev, 2)) + ")"  )

        report_dict[dataset].append( str(stat[1]["RF"].count) + " (" + str(round( 100.0 * float(stat[1]["RF"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(round(stat[1]["RF"].mean, 2)) + " (" + str(round(stat[1]["RF"].dev, 2)) + ")"  )

        report_dict[dataset].append( str(stat[1]["FF"].count) + " (" + str(round( 100.0 * float(stat[1]["FF"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(round(stat[1]["FF"].mean, 2)) + " (" + str(round(stat[1]["FF"].dev, 2)) + ")"  )

        report_dict[dataset].append( str(stat[1]["AU"].count) + " (" + str(round( 100.0 * float(stat[1]["AU"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(stat[1]["UU"].count) + " (" + str(round( 100.0 * float(stat[1]["UU"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(stat[1]["RL"].count) + " (" + str(round( 100.0 * float(stat[1]["RL"].count) / float(read_pairs), 2) ) + "%)" )
        report_dict[dataset].append( str(stat[1]["SP"].count) + " (" + str(round( 100.0 * float(stat[1]["SP"].count) / float(read_pairs), 2) ) + "%)" )

# total report
import report_maker
report_maker.do(report_dict, os.path.join(output_dir, 'report.horizontal'), os.path.join(output_dir, 'report'))

# clearing temp folder
shutil.rmtree(tmp_folder)

print("Done.")

