# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook statespace_local_linear_trend.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # State space modeling: Local Linear Trends

# This notebook describes how to extend the statsmodels statespace classes
# to create and estimate a custom model. Here we develop a local linear
# trend model.
#
# The Local Linear Trend model has the form (see Durbin and Koopman 2012,
# Chapter 3.2 for all notation and details):
#
# $$
# \begin{align}
# y_t & = \mu_t + \varepsilon_t \qquad & \varepsilon_t \sim
#     N(0, \sigma_\varepsilon^2) \\
# \mu_{t+1} & = \mu_t + \nu_t + \xi_t & \xi_t \sim N(0, \sigma_\xi^2) \\
# \nu_{t+1} & = \nu_t + \zeta_t & \zeta_t \sim N(0, \sigma_\zeta^2)
# \end{align}
# $$
#
# It is easy to see that this can be cast into state space form as:
#
# $$
# \begin{align}
# y_t & = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_t \\
# \nu_t \end{pmatrix} + \varepsilon_t \\
# \begin{pmatrix} \mu_{t+1} \\ \nu_{t+1} \end{pmatrix} & = \begin{bmatrix}
# 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \mu_t \\ \nu_t \end{pmatrix}
# + \begin{pmatrix} \xi_t \\ \zeta_t \end{pmatrix}
# \end{align}
# $$
#
# Notice that much of the state space representation is composed of known
# values; in fact the only parts in which parameters to be estimated appear
# are in the variance / covariance matrices:
#
# $$
# \begin{align}
# H_t & = \begin{bmatrix} \sigma_\varepsilon^2 \end{bmatrix} \\
# Q_t & = \begin{bmatrix} \sigma_\xi^2 & 0 \\ 0 & \sigma_\zeta^2
# \end{bmatrix}
# \end{align}
# $$

import numpy as np
import pandas as pd
from scipy.stats import norm
import statsmodels.api as sm
import matplotlib.pyplot as plt

# To take advantage of the existing infrastructure, including Kalman
# filtering and maximum likelihood estimation, we create a new class which
# extends from `statsmodels.tsa.statespace.MLEModel`. There are a number of
# things that must be specified:
#
# 1. **k_states**, **k_posdef**: These two parameters must be provided to
# the base classes in initialization. The inform the statespace model about
# the size of, respectively, the state vector, above $\begin{pmatrix} \mu_t
# & \nu_t \end{pmatrix}'$, and   the state error vector, above
# $\begin{pmatrix} \xi_t & \zeta_t \end{pmatrix}'$. Note that the dimension
# of the endogenous vector does not have to be specified, since it can be
# inferred from the `endog` array.
# 2. **update**: The method `update`, with argument `params`, must be
# specified (it is used when `fit()` is called to calculate the MLE). It
# takes the parameters and fills them into the appropriate state space
# matrices. For example, below, the `params` vector contains variance
# parameters $\begin{pmatrix} \sigma_\varepsilon^2 & \sigma_\xi^2 &
# \sigma_\zeta^2\end{pmatrix}$, and the `update` method must place them in
# the observation and state covariance matrices. More generally, the
# parameter vector might be mapped into many different places in all of the
# statespace matrices.
# 3. **statespace matrices**: by default, all state space matrices
# (`obs_intercept, design, obs_cov, state_intercept, transition, selection,
# state_cov`) are set to zeros. Values that are fixed (like the ones in the
# design and transition matrices here) can be set in initialization, whereas
# values that vary with the parameters should be set in the `update` method.
# Note that it is easy to forget to set the selection matrix, which is often
# just the identity matrix (as it is here), but not setting it will lead to
# a very different model (one where there is not a stochastic component to
# the transition equation).
# 4. **start params**: start parameters must be set, even if it is just a
# vector of zeros, although often good start parameters can be found from
# the data. Maximum likelihood estimation by gradient methods (as employed
# here) can be sensitive to the starting parameters, so it is important to
# select good ones if possible. Here it does not matter too much (although
# as variances, they should't be set zero).
# 5. **initialization**: in addition to defined state space matrices, all
# state space models must be initialized with the mean and variance for the
# initial distribution of the state vector. If the distribution is known,
# `initialize_known(initial_state, initial_state_cov)` can be called, or if
# the model is stationary (e.g. an ARMA model), `initialize_stationary` can
# be used. Otherwise, `initialize_approximate_diffuse` is a reasonable
# generic initialization (exact diffuse initialization is not yet
# available). Since the local linear trend model is not stationary (it is
# composed of random walks) and since the distribution is not generally
# known, we use `initialize_approximate_diffuse` below.
#
# The above are the minimum necessary for a successful model. There are
# also a number of things that do not have to be set, but which may be
# helpful or important for some applications:
#
# 1. **transform / untransform**: when `fit` is called, the optimizer in
# the background will use gradient methods to select the parameters that
# maximize the likelihood function. By default it uses unbounded
# optimization, which means that it may select any parameter value. In many
# cases, that is not the desired behavior; variances, for example, cannot be
# negative. To get around this, the `transform` method takes the
# unconstrained vector of parameters provided by the optimizer and returns a
# constrained vector of parameters used in likelihood evaluation.
# `untransform` provides the reverse operation.
# 2. **param_names**: this internal method can be used to set names for
# the estimated parameters so that e.g. the summary provides meaningful
# names. If not present, parameters are named `param0`, `param1`, etc.
"""
Univariate Local Linear Trend Model
"""


class LocalLinearTrend(sm.tsa.statespace.MLEModel):
    def __init__(self, endog):
        # Model order
        k_states = k_posdef = 2

        # Initialize the statespace
        super(LocalLinearTrend, self).__init__(
            endog,
            k_states=k_states,
            k_posdef=k_posdef,
            initialization='approximate_diffuse',
            loglikelihood_burn=k_states)

        # Initialize the matrices
        self.ssm['design'] = np.array([1, 0])
        self.ssm['transition'] = np.array([[1, 1], [0, 1]])
        self.ssm['selection'] = np.eye(k_states)

        # Cache some indices
        self._state_cov_idx = ('state_cov', ) + np.diag_indices(k_posdef)

    @property
    def param_names(self):
        return ['sigma2.measurement', 'sigma2.level', 'sigma2.trend']

    @property
    def start_params(self):
        return [np.std(self.endog)] * 3

    def transform_params(self, unconstrained):
        return unconstrained**2

    def untransform_params(self, constrained):
        return constrained**0.5

    def update(self, params, *args, **kwargs):
        params = super(LocalLinearTrend, self).update(params, *args, **kwargs)

        # Observation covariance
        self.ssm['obs_cov', 0, 0] = params[0]

        # State covariance
        self.ssm[self._state_cov_idx] = params[1:]


# Using this simple model, we can estimate the parameters from a local
# linear trend model. The following example is from Commandeur and Koopman
# (2007), section 3.4., modeling motor vehicle fatalities in Finland.

import requests
from io import BytesIO
from zipfile import ZipFile

# Download the dataset
ck = requests.get(
    'http://staff.feweb.vu.nl/koopman/projects/ckbook/OxCodeAll.zip').content
zipped = ZipFile(BytesIO(ck))
df = pd.read_table(
    BytesIO(
        zipped.read('OxCodeIntroStateSpaceBook/Chapter_2/NorwayFinland.txt')),
    skiprows=1,
    header=None,
    sep='\s+',
    engine='python',
    names=['date', 'nf', 'ff'])

# Since we defined the local linear trend model as extending from
# `MLEModel`, the `fit()` method is immediately available, just as in other
# statsmodels maximum likelihood classes. Similarly, the returned results
# class supports many of the same post-estimation results, like the
# `summary` method.
#

# Load Dataset
df.index = pd.date_range(
    start='%d-01-01' % df.date[0], end='%d-01-01' % df.iloc[-1, 0], freq='AS')

# Log transform
df['lff'] = np.log(df['ff'])

# Setup the model
mod = LocalLinearTrend(df['lff'])

# Fit it using MLE (recall that we are fitting the three variance
# parameters)
res = mod.fit(disp=False)
print(res.summary())

# Finally, we can do post-estimation prediction and forecasting. Notice
# that the end period can be specified as a date.

# Perform prediction and forecasting
predict = res.get_prediction()
forecast = res.get_forecast('2014')

fig, ax = plt.subplots(figsize=(10, 4))

# Plot the results
df['lff'].plot(ax=ax, style='k.', label='Observations')
predict.predicted_mean.plot(ax=ax, label='One-step-ahead Prediction')
predict_ci = predict.conf_int(alpha=0.05)
predict_index = np.arange(len(predict_ci))
ax.fill_between(
    predict_index[2:],
    predict_ci.iloc[2:, 0],
    predict_ci.iloc[2:, 1],
    alpha=0.1)

forecast.predicted_mean.plot(ax=ax, style='r', label='Forecast')
forecast_ci = forecast.conf_int()
forecast_index = np.arange(len(predict_ci), len(predict_ci) + len(forecast_ci))
ax.fill_between(
    forecast_index, forecast_ci.iloc[:, 0], forecast_ci.iloc[:, 1], alpha=0.1)

# Cleanup the image
ax.set_ylim((4, 8))
legend = ax.legend(loc='lower left')

# ### References
#
#     Commandeur, Jacques J. F., and Siem Jan Koopman. 2007.
#     An Introduction to State Space Time Series Analysis.
#     Oxford ; New York: Oxford University Press.
#
#     Durbin, James, and Siem Jan Koopman. 2012.
#     Time Series Analysis by State Space Methods: Second Edition.
#     Oxford University Press.
