#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook generic_mle.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Maximum Likelihood Estimation (Generic models)

# This tutorial explains how to quickly implement new maximum likelihood
# models in `statsmodels`. We give two examples:
#
# 1. Probit model for binary dependent variables
# 2. Negative binomial model for count data
#
# The `GenericLikelihoodModel` class eases the process by providing tools
# such as automatic numeric differentiation and a unified interface to
# ``scipy`` optimization functions. Using ``statsmodels``, users can fit new
# MLE models simply by "plugging-in" a log-likelihood function.

# ## Example 1: Probit model

import numpy as np
from scipy import stats
import statsmodels.api as sm
from statsmodels.base.model import GenericLikelihoodModel

# The ``Spector`` dataset is distributed with ``statsmodels``. You can
# access a vector of values for the dependent variable (``endog``) and a
# matrix of regressors (``exog``) like this:

data = sm.datasets.spector.load_pandas()
exog = data.exog
endog = data.endog
print(sm.datasets.spector.NOTE)
print(data.exog.head())

# Them, we add a constant to the matrix of regressors:

exog = sm.add_constant(exog, prepend=True)

# To create your own Likelihood Model, you simply need to overwrite the
# loglike method.


class MyProbit(GenericLikelihoodModel):

    def loglike(self, params):
        exog = self.exog
        endog = self.endog
        q = 2 * endog - 1
        return stats.norm.logcdf(q * np.dot(exog, params)).sum()


# Estimate the model and print a summary:

sm_probit_manual = MyProbit(endog, exog).fit()
print(sm_probit_manual.summary())

# Compare your Probit implementation to ``statsmodels``' "canned"
# implementation:

sm_probit_canned = sm.Probit(endog, exog).fit()

print(sm_probit_canned.params)
print(sm_probit_manual.params)

print(sm_probit_canned.cov_params())
print(sm_probit_manual.cov_params())

# Notice that the ``GenericMaximumLikelihood`` class provides automatic
# differentiation, so we did not have to provide Hessian or Score functions
# in order to calculate the covariance estimates.

#
#
# ## Example 2: Negative Binomial Regression for Count Data
#
# Consider a negative binomial regression model for count data with
# log-likelihood (type NB-2) function expressed as:
#
# $$
#     \mathcal{L}(\beta_j; y, \alpha) = \sum_{i=1}^n y_i ln
#     \left ( \frac{\alpha exp(X_i'\beta)}{1+\alpha exp(X_i'\beta)} \right
# ) -
#     \frac{1}{\alpha} ln(1+\alpha exp(X_i'\beta)) + ln \Gamma (y_i +
# 1/\alpha) - ln \Gamma (y_i+1) - ln \Gamma (1/\alpha)
# $$
#
# with a matrix of regressors $X$, a vector of coefficients $\beta$,
# and the negative binomial heterogeneity parameter $\alpha$.
#
# Using the ``nbinom`` distribution from ``scipy``, we can write this
# likelihood
# simply as:
#

import numpy as np
from scipy.stats import nbinom


def _ll_nb2(y, X, beta, alph):
    mu = np.exp(np.dot(X, beta))
    size = 1 / alph
    prob = size / (size + mu)
    ll = nbinom.logpmf(y, size, prob)
    return ll


# ### New Model Class
#
# We create a new model class which inherits from
# ``GenericLikelihoodModel``:

from statsmodels.base.model import GenericLikelihoodModel


class NBin(GenericLikelihoodModel):

    def __init__(self, endog, exog, **kwds):
        super(NBin, self).__init__(endog, exog, **kwds)

    def nloglikeobs(self, params):
        alph = params[-1]
        beta = params[:-1]
        ll = _ll_nb2(self.endog, self.exog, beta, alph)
        return -ll

    def fit(self, start_params=None, maxiter=10000, maxfun=5000, **kwds):
        # we have one additional parameter and we need to add it for summary
        self.exog_names.append('alpha')
        if start_params == None:
            # Reasonable starting values
            start_params = np.append(np.zeros(self.exog.shape[1]), .5)
            # intercept
            start_params[-2] = np.log(self.endog.mean())
        return super(NBin, self).fit(start_params=start_params,
                                     maxiter=maxiter,
                                     maxfun=maxfun,
                                     **kwds)


# Two important things to notice:
#
# + ``nloglikeobs``: This function should return one evaluation of the
# negative log-likelihood function per observation in your dataset (i.e.
# rows of the endog/X matrix).
# + ``start_params``: A one-dimensional array of starting values needs to
# be provided. The size of this array determines the number of parameters
# that will be used in optimization.
#
# That's it! You're done!
#
# ### Usage Example
#
# The [Medpar](https://raw.githubusercontent.com/vincentarelbundock/Rdatas
# ets/doc/COUNT/medpar.html)
# dataset is hosted in CSV format at the [Rdatasets repository](https://ra
# w.githubusercontent.com/vincentarelbundock/Rdatasets). We use the
# ``read_csv``
# function from the [Pandas library](https://pandas.pydata.org) to load
# the data
# in memory. We then print the first few columns:
#

import statsmodels.api as sm

medpar = sm.datasets.get_rdataset("medpar", "COUNT", cache=True).data

medpar.head()

# The model we are interested in has a vector of non-negative integers as
# dependent variable (``los``), and 5 regressors: ``Intercept``,
# ``type2``,
# ``type3``, ``hmo``, ``white``.
#
# For estimation, we need to create two variables to hold our regressors
# and the outcome variable. These can be ndarrays or pandas objects.

y = medpar.los
X = medpar[["type2", "type3", "hmo", "white"]].copy()
X["constant"] = 1

# Then, we fit the model and extract some information:

mod = NBin(y, X)
res = mod.fit()

#  Extract parameter estimates, standard errors, p-values, AIC, etc.:

print('Parameters: ', res.params)
print('Standard errors: ', res.bse)
print('P-values: ', res.pvalues)
print('AIC: ', res.aic)

# As usual, you can obtain a full list of available information by typing
# ``dir(res)``.
# We can also look at the summary of the estimation results.

print(res.summary())

# ### Testing

# We can check the results by using the statsmodels implementation of the
# Negative Binomial model, which uses the analytic score function and
# Hessian.

res_nbin = sm.NegativeBinomial(y, X).fit(disp=0)
print(res_nbin.summary())

print(res_nbin.params)

print(res_nbin.bse)

# Or we could compare them to results obtained using the MASS
# implementation for R:
#
#     url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdataset
# s/csv/COUNT/medpar.csv'
#     medpar = read.csv(url)
#     f = los~factor(type)+hmo+white
#
#     library(MASS)
#     mod = glm.nb(f, medpar)
#     coef(summary(mod))
#                      Estimate Std. Error   z value      Pr(>|z|)
#     (Intercept)    2.31027893 0.06744676 34.253370 3.885556e-257
#     factor(type)2  0.22124898 0.05045746  4.384861  1.160597e-05
#     factor(type)3  0.70615882 0.07599849  9.291748  1.517751e-20
#     hmo           -0.06795522 0.05321375 -1.277024  2.015939e-01
#     white         -0.12906544 0.06836272 -1.887951  5.903257e-02
#
# ### Numerical precision
#
# The ``statsmodels`` generic MLE and ``R`` parameter estimates agree up
# to the fourth decimal. The standard errors, however, agree only up to the
# second decimal. This discrepancy is the result of imprecision in our
# Hessian numerical estimates. In the current context, the difference
# between ``MASS`` and ``statsmodels`` standard error estimates is
# substantively irrelevant, but it highlights the fact that users who need
# very precise estimates may not always want to rely on default settings
# when using numerical derivatives. In such cases, it is better to use
# analytical derivatives with the ``LikelihoodModel`` class.
