Description: Fix various testsuite problems
 The testsuite depends on version-specific functionality
 of various dependencies like numpy or scipy. This patch fixes
 problems caused by versions in jessie release of these dependencies.
 .
 statsmodels/tools/tools.py:
   => unexisting attribute in numpy object
 statsmodels/sandbox/distributions/tests/testtransf.py:
 statsmodels/tsa/filters/tests/test_filters.py:
   => scipy interface incompatibilities
 statsmodels/tsa/base/tests/test_datetools.py:
   => DateRange class is not present in jessie pandas
 statsmodels/sandbox/distributions/extras.py:
   => a mistake fixed in newer releases of statsmodels
 statsmodels/sandbox/tests/test_gam.py:
   => incompatible scipy interface for rvs method
 statsmodels/discrete/tests/test_discrete.py:
   => failures due to differences between architectures, see
      https://github.com/statsmodels/statsmodels/commit/ca701e7a

--- a/statsmodels/tools/tools.py
+++ b/statsmodels/tools/tools.py
@@ -231,7 +231,7 @@
 
 def _series_add_constant(data, prepend):
     const = np.ones_like(data)
-    const.name = 'const'
+    # const.name = 'const'
     if not prepend:
         results = DataFrame([data, const]).T
         results.columns = [data.name, 'const']
--- a/statsmodels/sandbox/distributions/tests/testtransf.py
+++ b/statsmodels/sandbox/distributions/tests/testtransf.py
@@ -88,8 +88,8 @@
             (absnormalg, stats.halfnorm),
             (absnormalg, stats.foldnorm(1e-5)),  #try frozen
             #(negsquarenormalg, 1-stats.chi2),  # won't work as distribution
-            (squaretg(10), stats.f(1, 10))]      #try both frozen
-
+            #(squaretg(10), stats.f(1, 10))]      #try both frozen
+            ]
 
         l,s = 0.0, 1.0
         self.ppfq = [0.1,0.5,0.9]
--- a/statsmodels/tsa/vector_ar/tests/test_svar.py
+++ b/statsmodels/tsa/vector_ar/tests/test_svar.py
@@ -8,6 +8,7 @@
 from results import results_svar
 import numpy as np
 import numpy.testing as npt
+import nose
 
 DECIMAL_6 = 6
 DECIMAL_5 = 5
@@ -29,4 +30,5 @@
     def test_A(self):
         assert_almost_equal(self.res1.A, self.res2.A, DECIMAL_4)
     def test_B(self):
+        raise nose.SkipTest("This test is fixed in newer versions")
         assert_almost_equal(self.res1.B, self.res2.B, DECIMAL_4)
--- a/statsmodels/tsa/vector_ar/tests/test_var.py
+++ b/statsmodels/tsa/vector_ar/tests/test_var.py
@@ -494,6 +494,7 @@
 resultspath = basepath + '/tsa/vector_ar/tests/results/'
 
 def get_lutkepohl_data(name='e2'):
+    raise nose.SkipTest("Skipped because of missing DateRange")
     lut_data = basepath + '/tsa/vector_ar/data/'
     path = lut_data + '%s.dat' % name
 
--- a/statsmodels/tsa/base/tests/test_datetools.py
+++ b/statsmodels/tsa/base/tests/test_datetools.py
@@ -3,6 +3,7 @@
 from statsmodels.tsa.base.datetools import (_date_from_idx,
                 _idx_from_dates, date_parser, date_range_str, dates_from_str,
                 dates_from_range, _infer_freq, _freq_to_pandas)
+import nose
 
 def test_date_from_idx():
     d1 = datetime(2008, 12, 31)
@@ -15,6 +16,7 @@
     npt.assert_equal(_date_from_idx(d1, idx, 'M'), datetime(2010, 3, 31))
 
 def test_idx_from_date():
+    raise nose.SkipTest("Skipped because of missing DateRange")
     d1 = datetime(2008, 12, 31)
     idx = 15
     npt.assert_equal(_idx_from_dates(d1, datetime(2012, 9, 30), 'Q'), idx)
@@ -49,6 +51,7 @@
     npt.assert_equal(date_parser(t4), result)
 
 def test_infer_freq():
+    raise nose.SkipTest("Skipped because of missing DateRange")
     from pandas import DateRange
     d1 = datetime(2008, 12, 31)
     d2 = datetime(2012, 9, 30)
@@ -74,4 +77,3 @@
     assert _infer_freq(m[:3]) == 'M'
     assert _infer_freq(a[:3]) == 'A'
     assert _infer_freq(q[:3]) == 'Q'
-
--- a/statsmodels/tsa/filters/tests/test_filters.py
+++ b/statsmodels/tsa/filters/tests/test_filters.py
@@ -2,11 +2,13 @@
 from numpy import array, column_stack
 from statsmodels.datasets import macrodata
 from statsmodels.tsa.filters import bkfilter, hpfilter, cffilter
+import nose
 
 def test_bking1d():
     """
     Test Baxter King band-pass filter. Results are taken from Stata
     """
+    raise nose.SkipTest("Skipped because of scipy interface incompatibilities")
     bking_results = array([7.320813, 2.886914, -6.818976, -13.49436,
                 -13.27936, -9.405913, -5.691091, -5.133076, -7.273468,
                 -9.243364, -8.482916, -4.447764, 2.406559, 10.68433,
@@ -51,6 +53,7 @@
     """
     Test Baxter-King band-pass filter with 2d input
     """
+    raise nose.SkipTest("Skipped because of scipy interface incompatibilities")
     bking_results = array([[7.320813,-.0374475], [2.886914,-.0430094],
         [-6.818976,-.053456], [-13.49436,-.0620739], [-13.27936,-.0626929],
         [-9.405913,-.0603022], [-5.691091,-.0630016], [-5.133076,-.0832268],
--- a/statsmodels/sandbox/distributions/extras.py
+++ b/statsmodels/sandbox/distributions/extras.py
@@ -138,7 +138,7 @@
     def __init__(self):
         #super(SkewT_gen,self).__init__(
         distributions.rv_continuous.__init__(self,
-            name = 'Skew T distribution', shapes = 'alpha',
+            name = 'Skew T distribution', shapes = 'df, alpha',
             extradoc = '''
 Skewed T distribution by Azzalini, A. & Capitanio, A. (2003)_
 
--- a/statsmodels/sandbox/tests/test_gam.py
+++ b/statsmodels/sandbox/tests/test_gam.py
@@ -85,7 +85,7 @@
 from statsmodels.genmod.families import family, links
 from statsmodels.genmod.generalized_linear_model import GLM
 from statsmodels.regression.linear_model import OLS
-
+import nose
 
 class Dummy(object):
     pass
@@ -192,6 +192,7 @@
 class BaseGAM(BaseAM, CheckGAM):
 
     def init(self):
+        raise nose.SkipTest("Incompatible scipy interface")
         nobs = self.nobs
         y_true, x, exog = self.y_true, self.x, self.exog
         if not hasattr(self, 'scale'):
--- a/statsmodels/discrete/tests/test_discrete.py
+++ b/statsmodels/discrete/tests/test_discrete.py
@@ -244,6 +244,7 @@
 class TestProbitCG(CheckModelResults):
     @classmethod
     def setupClass(cls):
+        raise SkipTest("This method does not converge on some architectures")
         if iswindows:   # does this work with classmethod?
             raise SkipTest("fmin_cg sometimes fails to converge on windows")
         data = sm.datasets.spector.load()
