'''
Generalized Least Squares with AR Errors

6 examples for GLSAR with artificial data
'''

#.. note: These examples were written mostly to cross-check results.  It is still being
#    written, and GLSAR is still being worked on.


import numpy as np
import numpy.testing as npt
from scipy import signal
import statsmodels.api as sm
from statsmodels.regression.linear_model import GLSAR, yule_walker

examples_all = range(10) + ['test_copy']

examples = examples_all #[5]

if 0 in examples:
    print '\n Example 0'
    X = np.arange(1,8)
    X = sm.add_constant(X)
    Y = np.array((1, 3, 4, 5, 8, 10, 9))
    rho = 2
    model = GLSAR(Y, X, 2)
    for i in range(6):
        results = model.fit()
        print "AR coefficients:", model.rho
        rho, sigma = yule_walker(results.resid, order = model.order)
        model = GLSAR(Y, X, rho)

    par0 = results.params
    print 'params fit', par0
    model0if = GLSAR(Y, X, 2)
    res = model0if.iterative_fit(6)
    print 'iterativefit beta', res.params
    results.tvalues # is this correct? it does equal params/bse
    # but isn't the same as the AR example (which was wrong in the first place..)
    print results.t_test([0,1])  # are sd and t correct? vs
    print results.f_test(np.eye(2))


rhotrue = [0.5, 0.2]
rhotrue = np.asarray(rhotrue)
nlags = np.size(rhotrue)
beta = np.array([0.1, 2])
noiseratio = 0.5
nsample = 2000
x = np.arange(nsample)
X1 = sm.add_constant(x)

wnoise = noiseratio * np.random.randn(nsample+nlags)
#.. noise = noise[1:] + rhotrue*noise[:-1] # wrong this is not AR

#.. find my drafts for univariate ARMA functions
# generate AR(p)
if np.size(rhotrue) == 1:
    # replace with scipy.signal.lfilter, keep for testing
    arnoise = np.zeros(nsample+1)
    for i in range(1,nsample+1):
        arnoise[i] = rhotrue*arnoise[i-1] + wnoise[i]
    noise = arnoise[1:]
    an = signal.lfilter([1], np.hstack((1,-rhotrue)), wnoise[1:])
    print 'simulate AR(1) difference', np.max(np.abs(noise-an))
else:
    noise = signal.lfilter([1], np.hstack((1,-rhotrue)), wnoise)[nlags:]

# generate GLS model with AR noise
y1 = np.dot(X1,beta) + noise

if 1 in examples:
    print '\nExample 1: iterative_fit and repeated calls'
    mod1 = GLSAR(y1, X1, 1)
    res = mod1.iterative_fit()
    print res.params
    print mod1.rho
    mod1 = GLSAR(y1, X1, 2)
    for i in range(5):
        res1 = mod1.iterative_fit(2)
#        mod1.fit()
        print mod1.rho
        print res1.params

if 2 in examples:
    print '\nExample 2: iterative fitting of first model'
    print 'with AR(0)', par0
    parold = par0
    mod0 = GLSAR(Y, X, 1)
    for i in range(5):
        #print mod0.wexog.sum()
        #print mod0.pinv_wexog.sum()
        res0 = mod0.iterative_fit(1)
        print 'rho', mod0.rho,
        parnew = res0.params
        print 'params', parnew,
        print 'params change in iteration', parnew - parold
        parold = parnew

# generate pure AR(p) process
Y = noise

#example with no regressor,
#results now have same estimated rho as yule-walker directly

if 3 in examples:
    print '\nExample 3: pure AR(2), GLSAR versus Yule_Walker'
    model3 = GLSAR(Y, rho=2)
    for i in range(5):
        results = model3.fit()
        print "AR coefficients:", model3.rho, results.params
        rho, sigma = yule_walker(results.resid, order = model3.order)
        model3 = GLSAR(Y, rho=rho)

if 'test_copy' in examples:
    xx = X.copy()
    rhoyw, sigmayw = yule_walker(xx[:,0], order = 2)
    print rhoyw, sigmayw
    print (xx == X).all()  # test for unchanged array (fixed)

    yy = Y.copy()
    rhoyw, sigmayw = yule_walker(yy, order = 2)
    print rhoyw, sigmayw
    print (yy == Y).all()  # test for unchanged array (fixed)


if 4 in examples:
    print '\nExample 4: demeaned pure AR(2), GLSAR versus Yule_Walker'
    Ydemeaned = Y - Y.mean()
    model4 = GLSAR(Ydemeaned, rho=2)
    for i in range(5):
        results = model4.fit()
        print "AR coefficients:", model3.rho, results.params
        rho, sigma = yule_walker(results.resid, order = model4.order)
        model4 = GLSAR(Ydemeaned, rho=rho)

if 5 in examples:
    print '\nExample 5: pure AR(2), GLSAR iterative_fit versus Yule_Walker'
    model3a = GLSAR(Y, rho=1)
    res3a = model3a.iterative_fit(5)
    print res3a.params
    print model3a.rho
    rhoyw, sigmayw = yule_walker(Y, order = 1)
    print rhoyw, sigmayw
    npt.assert_array_almost_equal(model3a.rho, rhoyw, 15)
    for i in range(6):
        model3b = GLSAR(Y, rho=0.1)
        print i, model3b.iterative_fit(i).params, model3b.rho

    model3b = GLSAR(Y, rho=0.1)
    for i in range(6):
        print i, model3b.iterative_fit(2).params, model3b.rho
