"""
========================================
Parsing times with sunpy.time.parse_time
========================================

This is an example to show some possible usage of ``parse_time``.
``parse_time`` is a function that can be useful to create `~astropy.time.Time`
objects from various other time objects and strings.
"""
##############################################################################
# Import the required modules.
import time
from datetime import date, datetime

import numpy as np
import pandas

from sunpy.time import parse_time

##############################################################################
# Suppose you want to parse some strings, ``parse_time`` can do that.

t1 = parse_time('1995-12-31 23:59:60')

##############################################################################
# Of course you could do the same with `~astropy.time.Time`.
# But sunpy ``parse_time`` can parse even more formats of time strings.
# And as you see from the examples, thanks to `~astropy.time.Time`, ``parse_time``
# can handle leap seconds too.

t2 = parse_time('1995-Dec-31 23:59:60')


##############################################################################
# You can mention the scale of the time as a keyword parameter if you need.
# Similar to scale you can pass in any astropy Time compatible keywords to
# ``parse_time``. See all arguments
# `here: <https://docs.astropy.org/en/stable/time/#creating-a-time-object>`__

t3 = parse_time('2012:124:21:08:12', scale='tai')

##############################################################################
# Now that you are done with strings, let's see other type ``parse_time`` handles,
# tuples. `~astropy.time.Time` does not handle tuples but ``parse_time`` does.

t4 = parse_time((1998, 11, 14))
t5 = parse_time((2001, 1, 1, 12, 12, 12, 8899))

##############################################################################
# This also means that you can parse a ``time.struct_time``.

t6 = parse_time(time.localtime())

##############################################################################
# ``parse_time`` also parses ``datetime`` and ``date`` objects.

t7 = parse_time(datetime.now())
t8 = parse_time(date.today())

##############################################################################
# ``parse_time`` can return ``astropy.time.Time`` objects for ``pandas.Timestamp``,
# ``pandas.Series`` and ``pandas.DatetimeIndex``.

t9 = parse_time(pandas.Timestamp(datetime(1966, 2, 3)))

t10 = parse_time(
    pandas.Series([[datetime(2012, 1, 1, 0, 0),
                    datetime(2012, 1, 2, 0, 0)],
                   [datetime(2012, 1, 3, 0, 0),
                    datetime(2012, 1, 4, 0, 0)]]))

t11 = parse_time(
    pandas.DatetimeIndex([
        datetime(2012, 1, 1, 0, 0),
        datetime(2012, 1, 2, 0, 0),
        datetime(2012, 1, 3, 0, 0),
        datetime(2012, 1, 4, 0, 0)
    ]))

##############################################################################
# ``parse_time`` can parse ``numpy.datetime64`` objects.

t12 = parse_time(np.datetime64('2014-02-07T16:47:51.008288123'))
t13 = parse_time(
    np.array(
        ['2014-02-07T16:47:51.008288123', '2014-02-07T18:47:51.008288123'],
        dtype='datetime64'))

##############################################################################
# Parse time returns `~astropy.time.Time` object for every parsable input that
# you give to it.
# ``parse_time`` can handle all formats that `~astropy.time.Time` can handle.
# That is,
# ['jd', 'mjd', 'decimalyear', 'unix', 'cxcsec', 'gps', 'plot_date', 'datetime',
# 'iso', 'isot', 'yday', 'fits', 'byear', 'jyear', 'byear_str', 'jyear_str']
# at the time of writing. This can be used by passing format keyword argument
# to ``parse_time``.

parse_time(1234.0, format='jd')
parse_time('B1950.0', format='byear_str')
