# -*- test-case-name: twext.enterprise.dal.test.test_sqlsyntax -*-
##
# Copyright (c) 2010-2016 Apple Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##

"""
Syntax wrappers and generators for SQL.
"""

__all__ = [
    "DALError",
    "QueryPlaceholder",
    "FixedPlaceholder",
    "NumericPlaceholder",
    "defaultPlaceholder",
    "QueryGenerator",
    "TableMismatch",
    "NotEnoughValues",
    "Syntax",
    "comparison",
    "ExpressionSyntax",
    "FunctionInvocation",
    "Constant",
    "NamedValue",
    "Function",
    "SchemaSyntax",
    "SequenceSyntax",
    "TableSyntax",
    "TableAlias",
    "Join",
    "ColumnSyntax",
    "ResultAliasSyntax",
    "AliasReferenceSyntax",
    "AliasedColumnSyntax",
    "Comparison",
    "Not",
    "NullComparison",
    "CompoundComparison",
    "ColumnComparison",
    "Column",
    "Tuple",
    "SetExpression",
    "Union",
    "Intersect",
    "Except",
    "Select",
    "Insert",
    "Update",
    "Delete",
    "Lock",
    "DatabaseLock",
    "DatabaseUnlock",
    "RollbackToSavepoint",
    "ReleaseSavepoint",
    "SavepointAction",
    "NoOp",
    "SQLFragment",
    "Parameter",
]

from itertools import count, repeat
from functools import partial
from operator import eq, ne

from zope.interface import implements

from twisted.internet.defer import succeed

from twext.enterprise.dal.model import Schema, Table, Column, Sequence, SQLType
from twext.enterprise.ienterprise import (
    POSTGRES_DIALECT, ORACLE_DIALECT, SQLITE_DIALECT, DatabaseType, IDerivedParameter
)
from twext.enterprise.util import mapOracleOutputType

from twisted.internet.defer import inlineCallbacks, returnValue

try:
    import cx_Oracle
    cx_Oracle
except ImportError:
    cx_Oracle = None


class DALError(Exception):
    """
    Base class for exceptions raised by this module.  This can be raised
    directly for API violations.  This exception represents a serious
    programming error and should normally never be caught or ignored.
    """


class QueryPlaceholder(object):
    """
    Representation of the placeholders required to generate some SQL, for a
    single statement.  Contains information necessary to generate place holder
    strings based on the database dialect.
    """

    def placeholder(self):
        raise NotImplementedError("See subclasses.")


class FixedPlaceholder(QueryPlaceholder):
    """
    Fixed string used as the place holder.
    """

    def __init__(self, placeholder):
        self._placeholder = placeholder

    def placeholder(self):
        return self._placeholder


class NumericPlaceholder(QueryPlaceholder):
    """
    Numeric counter used as the place holder.
    """

    def __init__(self):
        self._next = count(1).next

    def placeholder(self):
        return ":" + str(self._next())


def defaultPlaceholder():
    """
    Generate a default L{QueryPlaceholder}
    """
    return FixedPlaceholder("?")


class QueryGenerator(object):
    """
    Maintains various pieces of transient information needed when building a
    query. This includes the SQL dialect, the format of the place holder and
    and automated id generator.
    """

    def __init__(self, dbtype=None, placeholder=None):
        self.dbtype = dbtype if dbtype else DatabaseType(POSTGRES_DIALECT, "qmark")
        if placeholder is None:
            placeholder = defaultPlaceholder()
        self.placeholder = placeholder

        self.generatedID = count(1).next

    def nextGeneratedID(self):
        return "genid_%d" % (self.generatedID(),)

    def shouldQuote(self, name):
        return (self.dbtype.dialect == ORACLE_DIALECT and name.lower() in _KEYWORDS)


class TableMismatch(Exception):
    """
    A table in a statement did not match with a column.
    """


class NotEnoughValues(DALError):
    """
    Not enough values were supplied for an L{Insert}.
    """


class _Statement(object):
    """
    An SQL statement that may be executed.  (An abstract base class, must
    implement several methods.)
    """

    _paramstyles = {
        "pyformat": partial(FixedPlaceholder, "%s"),
        "numeric": NumericPlaceholder,
        "qmark": defaultPlaceholder,
    }

    def toSQL(self, queryGenerator=None):
        if queryGenerator is None:
            queryGenerator = QueryGenerator()
        return self._toSQL(queryGenerator)

    def _extraVars(self, txn, queryGenerator):
        """
        A hook for subclasses to provide additional keyword arguments to the
        C{bind} call when L{_Statement.on} is executed.  Currently this is used
        only for "out" parameters to capture results when executing statements
        that do not normally have a result (L{Insert}, L{Delete}, L{Update}).
        """
        return {}

    def _extraResult(self, result, outvars, queryGenerator):
        """
        A hook for subclasses to manipulate the results of "on", after they've
        been retrieved by the database but before they've been given to
        application code.

        @param result: a L{Deferred} that will fire with the rows as returned
            by the database.
        @type result: C{list} of rows, which are C{list}s or C{tuple}s.

        @param outvars: a dictionary of extra variables returned by
            C{self._extraVars}.

        @param queryGenerator: information about the connection where the
            statement was executed.

        @type queryGenerator: L{QueryGenerator} (a subclass thereof)

        @return: the result to be returned from L{_Statement.on}.
        @rtype: L{Deferred} firing result rows
        """
        return result

    def on(self, txn, raiseOnZeroRowCount=None, **kw):
        """
        Execute this statement on a given L{IAsyncTransaction} and return the
        resulting L{Deferred}.

        @param txn: the L{IAsyncTransaction} to execute this on.

        @param raiseOnZeroRowCount: a 0-argument callable which returns an
            exception to raise if the executed SQL does not affect any rows.

        @param kw: keyword arguments, mapping names of L{Parameter} objects
            located somewhere in C{self}

        @return: results from the database.
        @rtype: a L{Deferred} firing a C{list} of records (C{tuple}s or
            C{list}s)
        """
        queryGenerator = QueryGenerator(
            txn.dbtype, self._paramstyles[txn.dbtype.paramstyle]()
        )
        outvars = self._extraVars(txn, queryGenerator)
        kw.update(outvars)
        fragment = self.toSQL(queryGenerator).bind(**kw)
        result = txn.execSQL(
            fragment.text, fragment.parameters, raiseOnZeroRowCount
        )
        result = self._extraResult(result, outvars, queryGenerator)
        if queryGenerator.dbtype.dialect == ORACLE_DIALECT and result:
            result.addCallback(self._fixOracleNulls)
        return result

    def _resultColumns(self):
        """
        Subclasses must implement this to return a description of the columns
        expected to be returned.  This is a list of L{ColumnSyntax} objects,
        and possibly other expression syntaxes which will be converted to
        C{None}.
        """
        raise NotImplementedError(
            "Each statement subclass must describe its result"
        )

    def _resultShape(self):
        """
        Process the result of the subclass's C{_resultColumns}, as described in
        the docstring above.
        """
        for expectation in self._resultColumns():
            if isinstance(expectation, ColumnSyntax):
                yield expectation.model
            else:
                yield None

    def _fixOracleNulls(self, rows):
        """
        Oracle treats empty strings as C{NULL}.  Fix this by looking at the
        columns we expect to have returned, and replacing any C{None}s with
        empty strings in the appropriate position.
        """
        if rows is None:
            return None

        newRows = []

        for row in rows:
            newRow = []

            for column, description in zip(row, self._resultShape()):
                if (
                    description is not None and
                    # FIXME: "is the python type str" is what I mean; this list
                    # should be more centrally maintained
                    description.type.name in ("varchar", "text", "char") and
                    column is None
                ):
                    column = ""
                newRow.append(column)

            newRows.append(newRow)

        return newRows


class Syntax(object):
    """
    Base class for syntactic convenience.

    This class will define dynamic attribute access to represent its underlying
    model as a Python namespace.

    You can access the underlying model as ".model".
    """

    modelType = None
    model = None

    def __init__(self, model):
        if not isinstance(model, self.modelType):
            # make sure we don't get a misleading repr()
            raise DALError("type mismatch: %r %r", type(self), model)
        self.model = model

    def __repr__(self):
        if self.model is not None:
            return "<Syntax for: %r>" % (self.model,)
        return super(Syntax, self).__repr__()


def comparison(comparator):
    def __(self, other):
        if other is None:
            return NullComparison(self, comparator)
        if isinstance(other, Select):
            return NotImplemented
        if isinstance(other, ColumnSyntax):
            return ColumnComparison(self, comparator, other)
        if isinstance(other, ExpressionSyntax):
            return CompoundComparison(self, comparator, other)
        else:
            return CompoundComparison(self, comparator, Constant(other))
    return __


class ExpressionSyntax(Syntax):
    __eq__ = comparison("=")
    __ne__ = comparison("!=")

    # NB: these operators "cannot be used with lists" (see ORA-01796)
    __gt__ = comparison(">")
    __ge__ = comparison(">=")
    __lt__ = comparison("<")
    __le__ = comparison("<=")

    # TODO: operators aren't really comparisons; these should behave slightly
    # differently.  (For example; in Oracle, C{select 3 = 4 from dual} doesn't
    # work, but C{select 3 + 4 from dual} does; similarly, you can't do
    # C{select * from foo where 3 + 4}, but you can do C{select * from foo
    # where 3 + 4 > 0}.)
    __add__ = comparison("+")
    __sub__ = comparison("-")
    __div__ = comparison("/")
    __mul__ = comparison("*")

    def __nonzero__(self):
        raise DALError(
            "SQL expressions should not be tested for truth value in Python.")

    def In(self, other):
        """
        We support two forms of the SQL "IN" syntax: one where a list of values
        is supplied, the other where a sub-select is used to provide a set of
        values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """
        return self._commonIn('in', other)

    def NotIn(self, other):
        """
        We support two forms of the SQL "NOT IN" syntax: one where a list of values
        is supplied, the other where a sub-select is used to provide a set of
        values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """
        return self._commonIn('not in', other)

    def _commonIn(self, op, other):
        """
        We support two forms of the SQL "IN" and "NOT IN" syntax: one where a list
        of values is supplied, the other where a sub-select is used to provide a set
        of values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """

        if isinstance(other, Parameter):
            if other.count is None:
                raise DALError(
                    "{} expression needs an explicit count of parameters".format(op.upper())
                )
            return CompoundComparison(self, op, Constant(other))
        elif isinstance(other, set) or isinstance(other, frozenset) or isinstance(other, list) or isinstance(other, tuple):
            return CompoundComparison(self, op, Constant(other))
        else:
            # Can't be Select.__contains__ because __contains__ gets
            # __nonzero__ called on its result by the "in" syntax.
            return CompoundComparison(self, op, other)

    def StartsWith(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(Constant(other), "||", Constant("%"))
        )

    def NotStartsWith(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(Constant(other), "||", Constant("%"))
        )

    def EndsWith(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(Constant("%"), "||", Constant(other))
        )

    def NotEndsWith(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(Constant("%"), "||", Constant(other))
        )

    def Contains(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(
                Constant("%"), "||",
                CompoundComparison(Constant(other), "||", Constant("%"))
            )
        )

    def NotContains(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(
                Constant("%"), "||",
                CompoundComparison(Constant(other), "||", Constant("%"))
            )
        )


class FunctionInvocation(ExpressionSyntax):

    def __init__(self, function, *args):
        self.function = function
        self.args = args

    def allColumns(self):
        """
        All of the columns in all of the arguments' columns.
        """
        def ac():
            for arg in self.args:
                for column in arg.allColumns():
                    yield column
        return list(ac())

    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment(self.function.nameFor(queryGenerator))
        result.append(_inParens(
            _commaJoined(
                _convert(arg).subSQL(queryGenerator, allTables)
                for arg in self.args
            )
        ))
        return result


class Constant(ExpressionSyntax):
    """
    Generates an expression for a place holder where a value will be bound to
    the query. If the constant is a Parameter with count > 1 then a
    parenthesized, comma-separated list of place holders will be generated.
    """

    def __init__(self, value):
        self.value = value

    def allColumns(self):
        return []

    def subSQL(self, queryGenerator, allTables):
        if isinstance(self.value, Parameter) and self.value.count is not None:
            return _inParens(
                _CommaList([
                    SQLFragment(
                        queryGenerator.placeholder.placeholder(),
                        [self.value] if counter == 0 else []
                    )
                    for counter in range(self.value.count)
                ]).subSQL(queryGenerator, allTables)
            )
        elif isinstance(self.value, set) or isinstance(self.value, frozenset) or isinstance(self.value, list) or isinstance(self.value, tuple):
            return _inParens(
                _CommaList([
                    SQLFragment(queryGenerator.placeholder.placeholder(), [value])
                    for value in self.value
                ]).subSQL(queryGenerator, allTables)
            )
        else:
            return SQLFragment(
                queryGenerator.placeholder.placeholder(), [self.value]
            )


class NamedValue(ExpressionSyntax):
    """
    A constant within the database; something predefined, such as
    CURRENT_TIMESTAMP.
    """

    def __init__(self, name):
        self.name = name

    def subSQL(self, queryGenerator, allTables):
        return SQLFragment(self.name)


class Function(object):
    """
    An L{Function} is a representation of an SQL Function function.
    """

    def __init__(self, name, oracleName=None):
        self.name = name
        self.oracleName = oracleName

    def nameFor(self, queryGenerator):
        if (
            queryGenerator.dbtype.dialect == ORACLE_DIALECT and
            self.oracleName is not None
        ):
            return self.oracleName

        return self.name

    def __call__(self, *args):
        """
        Produce an L{FunctionInvocation}
        """
        return FunctionInvocation(self, *args)


Count = Function("count")
Sum = Function("sum")
Max = Function("max")
Min = Function("min")
Len = Function("character_length", "length")
Upper = Function("upper")
Lower = Function("lower")
Coalesce = Function("coalesce")
NullIf = Function("nullif")

_sqliteLastInsertRowID = Function("last_insert_rowid")

# Use a specific value here for "the convention for case-insensitive values in
# the database" so we don't need to keep remembering whether it's upper or
# lowercase.
CaseFold = Lower


class SchemaSyntax(Syntax):
    """
    Syntactic convenience for L{Schema}.
    """

    modelType = Schema

    def __getattr__(self, attr):
        try:
            tableModel = self.model.tableNamed(attr)
        except KeyError:
            try:
                seqModel = self.model.sequenceNamed(attr)
            except KeyError:
                raise AttributeError(
                    "schema has no table or sequence %r" % (attr,)
                )
            else:
                return SequenceSyntax(seqModel)
        else:
            syntax = TableSyntax(tableModel)
            # Needs to be preserved here so that aliasing will work.
            setattr(self, attr, syntax)
            return syntax

    def __iter__(self):
        for table in self.model.tables:
            yield TableSyntax(table)


class SequenceSyntax(ExpressionSyntax):
    """
    Syntactic convenience for L{Sequence}.
    """

    modelType = Sequence

    def subSQL(self, queryGenerator, allTables):
        """
        Convert to an SQL fragment.
        """
        if queryGenerator.dbtype.dialect == ORACLE_DIALECT:
            fmt = "%s.nextval"
        else:
            fmt = "nextval('%s')"
        return SQLFragment(fmt % (self.model.name,))


def _nameForDialect(name, dialect):
    """
    If the given name is being computed in the oracle dialect, truncate it to
    30 characters.
    """
    if dialect == ORACLE_DIALECT:
        name = name[:30]
    return name


class TableSyntax(Syntax):
    """
    Syntactic convenience for L{Table}.
    """

    modelType = Table

    def alias(self):
        """
        Return an alias for this L{TableSyntax} so that it might be joined
        against itself.

        As in SQL, C{someTable.join(someTable)} is an error; you can't join a
        table against itself.  However, C{t = someTable.alias();
        someTable.join(t)} is usable as a C{from} clause.
        """
        return TableAlias(self.model)

    def join(self, otherTableSyntax, on=None, type=""):
        """
        Create a L{Join}, representing a join between two tables.
        """
        if on is None and not type:
            type = "cross"
        return Join(self, type, otherTableSyntax, on)

    def subSQL(self, queryGenerator, allTables):
        """
        Generate the L{SQLFragment} for this table's identification; this is
        for use in a C{from} clause.
        """
        # XXX maybe there should be a specific method which is only invoked
        # from the FROM clause, that only tables and joins would implement?
        return SQLFragment(
            _nameForDialect(self.model.name, queryGenerator.dbtype.dialect)
        )

    def __getattr__(self, attr):
        """
        Attributes named after columns on a L{TableSyntax} are returned by
        accessing their names as attributes.  For example, if there is a schema
        syntax object created from SQL equivalent to C{create table foo (bar
        integer, baz integer)}, C{schemaSyntax.foo.bar} and
        C{schemaSyntax.foo.baz}
        """
        try:
            column = self.model.columnNamed(attr)
        except KeyError:
            raise AttributeError(
                "table {0} has no column {1}".format(self.model.name, attr)
            )
        else:
            return ColumnSyntax(column)

    def __iter__(self):
        """
        Yield a L{ColumnSyntax} for each L{Column} in this L{TableSyntax}'s
        model's table.
        """
        for column in self.model.columns:
            yield ColumnSyntax(column)

    def tables(self):
        """
        Return a C{list} of tables involved in the query by this table.  (This
        method is expected by anything that can act as the C{From} clause: see
        L{Join.tables})
        """
        return [self]

    def columnAliases(self):
        """
        Inspect the Python aliases for this table in the given schema.  Python
        aliases for a table are created by setting an attribute on the schema.
        For example, in a schema which had "schema.MYTABLE.ID =
        schema.MYTABLE.MYTABLE_ID" applied to it,
        schema.MYTABLE.columnAliases() would return C{[("ID",
        schema.MYTABLE.MYTABLE_ID)]}.

        @return: a list of 2-tuples of (alias (C{str}), column
            (C{ColumnSyntax})), enumerating all of the Python aliases provided.
        """
        result = {}
        for k, v in self.__dict__.items():
            if isinstance(v, ColumnSyntax):
                result[k] = v
        return result

    def __contains__(self, columnSyntax):
        if isinstance(columnSyntax, FunctionInvocation):
            columnSyntax = columnSyntax.arg
        return (columnSyntax.model.table is self.model)


class TableAlias(TableSyntax):
    """
    An alias for a table, under a different name, for the purpose of doing a
    self-join.
    """

    def subSQL(self, queryGenerator, allTables):
        """
        Return an L{SQLFragment} with a string of the form C{"mytable myalias"}
        suitable for use in a FROM clause.
        """
        result = super(TableAlias, self).subSQL(queryGenerator, allTables)
        result.append(SQLFragment(" " + self._aliasName(allTables)))
        return result

    def _aliasName(self, allTables):
        """
        The alias under which this table will be known in the query.

        @param allTables: a C{list}, as passed to a C{subSQL} method during SQL
            generation.

        @return: a string naming this alias, a unique identifier, albeit one
            which is only stable within the query which populated C{allTables}.
        @rtype: C{str}
        """
        anum = [
            t for t in allTables
            if isinstance(t, TableAlias)
        ].index(self) + 1
        return "alias%d" % (anum,)

    def __getattr__(self, attr):
        return AliasedColumnSyntax(self, self.model.columnNamed(attr))


class Join(object):
    """
    A DAL object representing an SQL C{join} statement.

    @ivar leftSide: a L{Join} or L{TableSyntax} representing the left side of
        this join.

    @ivar rightSide: a L{TableSyntax} representing the right side of this join.

    @ivar type: the type of join this is.  For example, for a left outer join,
        this would be C{"left outer"}.
    @type type: C{str}

    @ivar on: the "on" clause of this table.
    @type on: L{ExpressionSyntax}
    """

    def __init__(self, leftSide, type, rightSide, on):
        self.leftSide = leftSide
        self.type = type
        self.rightSide = rightSide
        self.on = on

    def subSQL(self, queryGenerator, allTables):
        stmt = SQLFragment()
        stmt.append(self.leftSide.subSQL(queryGenerator, allTables))
        if self.type == ",":
            stmt.text += ", "
        else:
            stmt.text += " "
            if self.type:
                stmt.text += self.type
                stmt.text += " "
            stmt.text += "join "
        stmt.append(self.rightSide.subSQL(queryGenerator, allTables))
        if self.type not in ("cross", ","):
            stmt.text += " on "
            stmt.append(self.on.subSQL(queryGenerator, allTables))
        return stmt

    def tables(self):
        """
        Return a C{list} of tables which this L{Join} will involve in a query:
        all those present on the left side, as well as all those present on the
        right side.
        """
        return self.leftSide.tables() + self.rightSide.tables()

    def join(self, otherTable, on=None, type=None):
        if on is None:
            type = "cross"
        return Join(self, type, otherTable, on)


_KEYWORDS = frozenset([
    # SQL keyword, but we have a column with this name
    "access",

    # Not actually a standard keyword, but a function in oracle, and we have a
    # column with this name.
    "path",

    # not actually sure what this is; only experimentally determined that not
    # quoting it causes an issue.
    "size",

    # Oracle docs: UID returns an integer that uniquely identifies the session
    # user (the user who logged on).
    "uid",
])


class ColumnSyntax(ExpressionSyntax):
    """
    Syntactic convenience for L{Column}.

    @ivar _alwaysQualified: a boolean indicating whether to always qualify the
        column name in generated SQL, regardless of whether the column name is
        specific enough even when unqualified.
    @type _alwaysQualified: C{bool}
    """

    modelType = Column

    _alwaysQualified = False

    def allColumns(self):
        return [self]

    def subSQL(self, queryGenerator, allTables):
        # XXX This, and "model", could in principle conflict with column names.
        # Maybe do something about that.
        name = self.model.name
        if queryGenerator.shouldQuote(name):
            name = '"%s"' % (name,)

        if self._alwaysQualified:
            qualified = True
        else:
            qualified = False
            for tableSyntax in allTables:
                if self.model.table is not tableSyntax.model:
                    if (
                        self.model.name in (
                            c.name for c in
                            tableSyntax.model.columns
                        )
                    ):
                        qualified = True
                        break
        if qualified:
            return SQLFragment(self._qualify(name, allTables))
        else:
            return SQLFragment(name)

    def __hash__(self):
        return hash(self.model) + 10

    def _qualify(self, name, allTables):
        return self.model.table.name + "." + name


class ResultAliasSyntax(ExpressionSyntax):

    def __init__(self, expression, alias=None):
        self.expression = expression
        self.alias = alias

    def aliasName(self, queryGenerator):
        if self.alias is None:
            self.alias = queryGenerator.nextGeneratedID()
        return self.alias

    def columnReference(self):
        return AliasReferenceSyntax(self)

    def allColumns(self):
        return self.expression.allColumns()

    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment()
        result.append(self.expression.subSQL(queryGenerator, allTables))
        result.append(SQLFragment(" %s" % (self.aliasName(queryGenerator),)))
        return result


class AliasReferenceSyntax(ExpressionSyntax):

    def __init__(self, resultAlias):
        self.resultAlias = resultAlias

    def allColumns(self):
        return self.resultAlias.allColumns()

    def subSQL(self, queryGenerator, allTables):
        return SQLFragment(self.resultAlias.aliasName(queryGenerator))


class AliasedColumnSyntax(ColumnSyntax):
    """
    An L{AliasedColumnSyntax} is like a L{ColumnSyntax}, but it generates SQL
    for a column of a table under an alias, rather than directly.  i.e. this is
    used for C{"something.col"} in C{"select something.col from tablename
    something"} rather than the "col" in C{"select col from tablename"}.

    @see: L{TableSyntax.alias}
    """

    _alwaysQualified = True

    def __init__(self, tableAlias, model):
        super(AliasedColumnSyntax, self).__init__(model)
        self._tableAlias = tableAlias

    def _qualify(self, name, allTables):
        return self._tableAlias._aliasName(allTables) + "." + name


class Comparison(ExpressionSyntax):

    def __init__(self, a, op, b):
        self.a = a
        self.op = op
        self.b = b

    def _subexpression(self, expr, queryGenerator, allTables):
        result = expr.subSQL(queryGenerator, allTables)
        if self.op not in ("and", "or") and isinstance(expr, Comparison):
            result = _inParens(result)
        return result

    def booleanOp(self, operand, other):
        return CompoundComparison(self, operand, other)

    def And(self, other):
        return self.booleanOp("and", other)

    def Or(self, other):
        return self.booleanOp("or", other)


class Not(Comparison):
    """
    A L{NotColumn} is a logical NOT of an expression.
    """

    def __init__(self, a):
        # "op" and "b" are always None for this comparison type
        super(Not, self).__init__(a, None, None)

    def subSQL(self, queryGenerator, allTables):
        sqls = SQLFragment()
        sqls.text += "not "
        result = self.a.subSQL(queryGenerator, allTables)
        if isinstance(self.a, CompoundComparison) and self.a.op in ("or", "and"):
            result = _inParens(result)
        sqls.append(result)
        return sqls


class NullComparison(Comparison):
    """
    A L{NullComparison} is a comparison of a column or expression with None.
    """

    def __init__(self, a, op):
        # "b" is always None for this comparison type
        super(NullComparison, self).__init__(a, op, None)

    def allColumns(self):
        return self.a.allColumns()

    def subSQL(self, queryGenerator, allTables):
        sqls = SQLFragment()
        sqls.append(self.a.subSQL(queryGenerator, allTables))
        sqls.text += " is "
        if self.op != "=":
            sqls.text += "not "
        sqls.text += "null"
        return sqls


class CompoundComparison(Comparison):
    """
    A compound comparison; two or more constraints, joined by an operation
    (currently only AND or OR).
    """

    def allColumns(self):
        return self.a.allColumns() + self.b.allColumns()

    def subSQL(self, queryGenerator, allTables):
        if (
            queryGenerator.dbtype.dialect == ORACLE_DIALECT and
            isinstance(self.b, Constant) and
            self.b.value == "" and self.op in ("=", "!=")
        ):
            return NullComparison(self.a, self.op).subSQL(
                queryGenerator, allTables
            )

        stmt = SQLFragment()
        result = self._subexpression(self.a, queryGenerator, allTables)
        if (
            isinstance(self.a, CompoundComparison) and
            self.a.op == "or" and self.op == "and"
        ):
            result = _inParens(result)
        stmt.append(result)

        stmt.text += " %s " % (self.op,)

        result = self._subexpression(self.b, queryGenerator, allTables)
        if (
            isinstance(self.b, CompoundComparison) and
            self.b.op == "or" and self.op == "and"
        ):
            result = _inParens(result)

        if isinstance(self.b, Tuple):
            # If the right-hand side of the comparison is a Tuple, it needs to
            # be double-parenthesized in Oracle, as per
            # http://docs.oracle.com/cd/B28359_01/server.111/b28286/expressions015.htm#i1033664
            # because it is an expression list.
            result = _inParens(result)

        stmt.append(result)

        return stmt


_operators = {"=": eq, "!=": ne}


class ColumnComparison(CompoundComparison):
    """
    Comparing two columns is the same as comparing any other two expressions,
    except that Python can retrieve a truth value, so that columns may be
    compared for value equality in scripts that want to interrogate schemas.
    """

    def __nonzero__(self):
        thunk = _operators.get(self.op)
        if thunk is None:
            return super(ColumnComparison, self).__nonzero__()
        return thunk(self.a.model, self.b.model)


class _AllColumns(NamedValue):

    def __init__(self):
        self.name = "*"

    def allColumns(self):
        return []


ALL_COLUMNS = _AllColumns()


class _SomeColumns(object):

    def __init__(self, columns):
        self.columns = columns

    def subSQL(self, queryGenerator, allTables):
        first = True
        cstatement = SQLFragment()
        for column in self.columns:
            if first:
                first = False
            else:
                cstatement.append(SQLFragment(", "))
            cstatement.append(column.subSQL(queryGenerator, allTables))
        return cstatement


def _checkColumnsMatchTables(columns, tables):
    """
    Verify that the given C{columns} match the given C{tables}; that is, that
    every L{TableSyntax} referenced by every L{ColumnSyntax} referenced by
    every L{ExpressionSyntax} in the given C{columns} list is present in the
    given C{tables} list.

    @param columns: a L{list} of L{ExpressionSyntax}, each of which references
        some set of L{ColumnSyntax}es via its C{allColumns} method.

    @param tables: a L{list} of L{TableSyntax}

    @return: L{None}
    @rtype: L{NoneType}

    @raise TableMismatch: if any table referenced by a column is I{not} found
        in C{tables}
    """
    for expression in columns:
        for column in expression.allColumns():
            for table in tables:
                if column in table:
                    break
            else:
                raise TableMismatch(
                    "{} not found in {}".format(column, tables)
                )
    return None


class Case(ExpressionSyntax):
    """
    Implementation of a simple CASE statement:

    CASE ... WHEN ... THEN ... ELSE ... END

    Note that SQL actually allows multiple WHEN ... THEN ... clauses, but
    this implementation only supports one.
    """

    def __init__(self, when, true_result, false_result):
        """
        @param when: WHEN clause - typically a L{Comparison}
        @type when: L{Expression}
        @param true_result: result when WHEN clause is true
        @type true_result: L{Constant} or L{None}
        @param false_result: result when WHEN clause is false
        @type false_result: L{Constant} or L{None}
        """
        self.when = when
        self.true_result = true_result
        self.false_result = false_result

    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment("case when ")
        result.append(self.when.subSQL(queryGenerator, allTables))
        result.append(SQLFragment(" then "))
        if self.true_result is None:
            result.append(SQLFragment("null"))
        else:
            result.append(self.true_result.subSQL(queryGenerator, allTables))
        result.append(SQLFragment(" else "))
        if self.false_result is None:
            result.append(SQLFragment("null"))
        else:
            result.append(self.false_result.subSQL(queryGenerator, allTables))
        result.append(SQLFragment(" end"))

        return result

    def allColumns(self):
        """
        Return all columns referenced by any sub-clauses.
        """
        return self.when.allColumns() + \
            (self.true_result.allColumns() if self.true_result is not None else []) + \
            (self.false_result.allColumns() if self.false_result is not None else [])


class Tuple(ExpressionSyntax):

    def __init__(self, columns):
        self.columns = columns

    def __iter__(self):
        return iter(self.columns)

    def subSQL(self, queryGenerator, allTables):
        return _inParens(_commaJoined(
            c.subSQL(queryGenerator, allTables)
            for c in self.columns
        ))

    def allColumns(self):
        return self.columns


class SetExpression(object):
    """
    A UNION, INTERSECT, or EXCEPT construct used inside a SELECT.
    """

    OPTYPE_ALL = "all"
    OPTYPE_DISTINCT = "distinct"

    def __init__(self, selects, optype=None):
        """
        @param selects: a single Select or a list of Selects
        @type selects: C{list} or L{Select}

        @param optype: whether to use the ALL, DISTINCT constructs: C{None} use
            neither, OPTYPE_ALL, or OPTYPE_DISTINCT
        @type optype: C{str}
        """

        if isinstance(selects, Select):
            selects = (selects,)
        self.selects = selects
        self.optype = optype

        for select in self.selects:
            if not isinstance(select, Select):
                raise DALError(
                    "Must have SELECT statements in a set expression"
                )
        if self.optype not in (
            None, SetExpression.OPTYPE_ALL, SetExpression.OPTYPE_DISTINCT,
        ):
            raise DALError(
                "Must have either 'all' or 'distinct' in a set expression"
            )

    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment()
        for select in self.selects:
            result.append(self.setOpSQL(queryGenerator))
            if self.optype == SetExpression.OPTYPE_ALL:
                result.append(SQLFragment("ALL "))
            elif self.optype == SetExpression.OPTYPE_DISTINCT:
                result.append(SQLFragment("DISTINCT "))
            result.append(select.subSQL(queryGenerator, allTables))
        return result

    def allColumns(self):
        return []


class Union(SetExpression):
    """
    A UNION construct used inside a SELECT.
    """

    def setOpSQL(self, queryGenerator):
        return SQLFragment(" UNION ")


class Intersect(SetExpression):
    """
    An INTERSECT construct used inside a SELECT.
    """

    def setOpSQL(self, queryGenerator):
        return SQLFragment(" INTERSECT ")


class Except(SetExpression):
    """
    An EXCEPT construct used inside a SELECT.
    """

    def setOpSQL(self, queryGenerator):
        if queryGenerator.dbtype.dialect == POSTGRES_DIALECT:
            return SQLFragment(" EXCEPT ")
        elif queryGenerator.dbtype.dialect == ORACLE_DIALECT:
            return SQLFragment(" MINUS ")
        else:
            raise NotImplementedError("Unsupported dialect")


class Select(_Statement):
    """
    C{select} statement.
    """

    def __init__(
        self,
        columns=None, Where=None, From=None,
        OrderBy=None, GroupBy=None,
        Limit=None, ForUpdate=False, NoWait=False, SkipLocked=False, Ascending=None,
        Having=None, Distinct=False, As=None, SetExpression=None
    ):
        self.From = From
        self.Where = Where
        self.Distinct = Distinct
        if not isinstance(OrderBy, (Tuple, list, tuple, type(None))):
            OrderBy = [OrderBy]
        self.OrderBy = OrderBy
        if not isinstance(GroupBy, (list, tuple, type(None))):
            GroupBy = [GroupBy]
        self.GroupBy = GroupBy
        self.Limit = Limit
        self.Having = Having
        self.SetExpression = SetExpression

        if columns is None:
            columns = ALL_COLUMNS
        else:
            _checkColumnsMatchTables(columns, From.tables())
            columns = _SomeColumns(columns)
        self.columns = columns

        self.ForUpdate = ForUpdate
        self.NoWait = NoWait
        self.SkipLocked = SkipLocked
        self.Ascending = Ascending
        self.As = As

        # A FROM that uses a sub-select will need the AS alias name
        if isinstance(self.From, Select):
            if self.From.As is None:
                self.From.As = ""

    def __eq__(self, other):
        """
        Create a comparison.
        """
        if isinstance(other, (list, tuple)):
            other = Tuple(other)
        return CompoundComparison(other, "=", self)

    def _toSQL(self, queryGenerator):
        """
        @return: a C{select} statement with placeholders and arguments
        @rtype: L{SQLFragment}
        """
        if self.SetExpression is not None:
            stmt = SQLFragment("(")
        else:
            stmt = SQLFragment()

        stmt.append(SQLFragment("select "))
        if self.Distinct:
            stmt.text += "distinct "

        allTables = self.From.tables()
        stmt.append(self.columns.subSQL(queryGenerator, allTables))
        stmt.text += " from "
        stmt.append(self.From.subSQL(queryGenerator, allTables))

        if self.Where is not None:
            wherestmt = self.Where.subSQL(queryGenerator, allTables)
            stmt.text += " where "
            stmt.append(wherestmt)

        if self.GroupBy is not None:
            stmt.text += " group by "
            fst = True
            for subthing in self.GroupBy:
                if fst:
                    fst = False
                else:
                    stmt.text += ", "
                stmt.append(subthing.subSQL(queryGenerator, allTables))

        if self.Having is not None:
            havingstmt = self.Having.subSQL(queryGenerator, allTables)
            stmt.text += " having "
            stmt.append(havingstmt)

        if self.SetExpression is not None:
            stmt.append(SQLFragment(")"))
            stmt.append(self.SetExpression.subSQL(queryGenerator, allTables))

        if self.OrderBy is not None:
            stmt.text += " order by "
            fst = True
            for subthing in self.OrderBy:
                if fst:
                    fst = False
                else:
                    stmt.text += ", "
                stmt.append(subthing.subSQL(queryGenerator, allTables))
            if self.Ascending is not None:
                if self.Ascending:
                    kw = " asc"
                else:
                    kw = " desc"
                stmt.append(SQLFragment(kw))

        if self.ForUpdate:
            # FOR UPDATE not supported with sqlite - but that is probably not relevant
            # given that sqlite does file level locking of the DB
            if queryGenerator.dbtype.dialect != SQLITE_DIALECT:
                # Oracle turns this statement into a sub-select if Limit is non-zero, but we can't have
                # the "for update" in the sub-select. So suppress it here and add it in the outer limit
                # select later.
                if self.Limit is None or queryGenerator.dbtype.dialect != ORACLE_DIALECT:
                    stmt.text += " for update"
                    if self.NoWait:
                        stmt.text += " nowait"
                    if self.SkipLocked:
                        stmt.text += " skip locked"

        if self.Limit is not None:
            limitConst = Constant(self.Limit).subSQL(queryGenerator, allTables)
            if queryGenerator.dbtype.dialect == ORACLE_DIALECT:
                wrapper = SQLFragment("select * from (")
                wrapper.append(stmt)
                wrapper.append(SQLFragment(") where ROWNUM <= "))
                stmt = wrapper
            else:
                stmt.text += " limit "
            stmt.append(limitConst)

            # Add in any Oracle "for update"
            if self.ForUpdate and queryGenerator.dbtype.dialect == ORACLE_DIALECT:
                stmt.text += " for update"
                if self.NoWait:
                    stmt.text += " nowait"

        return stmt

    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment("(")
        result.append(self.toSQL(queryGenerator))
        result.append(SQLFragment(")"))

        if self.As is not None:
            if self.As == "":
                self.As = queryGenerator.nextGeneratedID()
            result.append(SQLFragment(" %s" % (self.As,)))

        return result

    def _resultColumns(self):
        """
        Determine the list of L{ColumnSyntax} objects that will represent the
        result.  Normally just the list of selected columns; if wildcard syntax
        is used though, determine the ordering from the database.
        """
        if self.columns is ALL_COLUMNS:
            # TODO: Possibly this rewriting should always be done, before even
            # executing the query, so that if we develop a schema mismatch with
            # the database (additional columns), the application will still see
            # the right rows.
            for table in self.From.tables():
                for column in table:
                    yield column
        else:
            for column in self.columns.columns:
                yield column

    def tables(self):
        """
        Determine the tables used by the result columns.
        """
        if self.columns is ALL_COLUMNS:
            # TODO: Possibly this rewriting should always be done, before even
            # executing the query, so that if we develop a schema mismatch with
            # the database (additional columns), the application will still see
            # the right rows.
            return self.From.tables()
        else:
            tables = set([
                column.model.table for column in self.columns.columns
                if isinstance(column, ColumnSyntax)
            ])
            for table in self.From.tables():
                tables.add(table.model)
            return [TableSyntax(table) for table in tables]


class Call(_Statement):
    """
    CALL statement. Only supported by Oracle.
    """

    def __init__(self, name, *args, **kwargs):
        """
        @param name: name of procedure or function to call
        @type name: L{str}
        @param *args: arguments for the procedure or functions
        @type *args: L{list}
        @param returnType: kwarg: the Python type of the return value for
            a function
        @type returnType: L{Type}
        """
        self.Name = name
        self.Args = args
        self.ReturnType = kwargs.get("returnType")

    def _toSQL(self, queryGenerator):
        """
        Generate an SQL statement of the form "call <name>()" with a list of
        args, where the first arg is always the return type (which is C{None}
        for a procedure, rather than a function, call).

        @return: a C{call} statement with arguments
        @rtype: L{SQLFragment}
        """

        if queryGenerator.dbtype.dialect != ORACLE_DIALECT:
            raise NotImplementedError("CALL statement only available with Oracle DB")
        args = (self.ReturnType,) + self.Args
        stmt = SQLFragment("call ", args)
        stmt.text += self.Name
        stmt.text += "()"

        return stmt

    def _fixOracleNulls(self, rows):
        """
        Suppress the super class behavior because we are getting result values
        directly, not from columns.
        """
        return rows[0][0]


def _commaJoined(stmts):
    first = True
    cstatement = SQLFragment()
    for stmt in stmts:
        if first:
            first = False
        else:
            cstatement.append(SQLFragment(", "))
        cstatement.append(stmt)
    return cstatement


def _inParens(stmt):
    result = SQLFragment("(")
    result.append(stmt)
    result.append(SQLFragment(")"))
    return result


def _fromSameTable(columns):
    """
    Extract the common table used by a list of L{Column} objects, raising
    L{TableMismatch}.
    """
    table = columns[0].table
    for column in columns:
        if table is not column.table:
            raise TableMismatch("Columns must all be from the same table.")
    return table


def _modelsFromMap(columnMap):
    """
    Get the L{Column} objects from a mapping of L{ColumnSyntax} to values.
    """
    return [c.model for c in columnMap.keys()]


class _CommaList(object):

    def __init__(self, subfragments):
        self.subfragments = subfragments

    def subSQL(self, queryGenerator, allTables):
        return _commaJoined(
            f.subSQL(queryGenerator, allTables)
            for f in self.subfragments
        )


class _DMLStatement(_Statement):
    """
    Common functionality of Insert/Update/Delete statements.
    """

    def _returningClause(self, queryGenerator, stmt, allTables):
        """
        Add a dialect-appropriate C{returning} clause to the end of the given
        SQL statement.

        @param queryGenerator: describes the database we are generating the
            statement for.
        @type queryGenerator: L{QueryGenerator}

        @param stmt: the SQL fragment generated without the C{returning} clause
        @type stmt: L{SQLFragment}

        @param allTables: all tables involved in the query; see any C{subSQL}
            method.

        @return: the C{stmt} parameter.
        """
        retclause = self.Return

        if retclause is None:
            return stmt

        if isinstance(retclause, (tuple, list)):
            retclause = _CommaList(retclause)

        if queryGenerator.dbtype.dialect == SQLITE_DIALECT:
            # sqlite does this another way.
            return stmt

        if retclause is not None:
            stmt.text += " returning "
            stmt.append(retclause.subSQL(queryGenerator, allTables))
            if queryGenerator.dbtype.dialect == ORACLE_DIALECT:
                stmt.text += " into "
                params = []
                retvals = self._returnAsList()
                for n, _ignore_v in enumerate(retvals):
                    params.append(
                        Constant(Parameter("oracle_out_" + str(n)))
                        .subSQL(queryGenerator, allTables)
                    )
                stmt.append(_commaJoined(params))

        return stmt

    def _returnAsList(self):
        if not isinstance(self.Return, (tuple, list)):
            return [self.Return]
        else:
            return self.Return

    def _extraVars(self, txn, queryGenerator):
        if self.Return is None:
            return []
        result = []
        rvars = self._returnAsList()
        if queryGenerator.dbtype.dialect == ORACLE_DIALECT:
            for n, v in enumerate(rvars):
                result.append(("oracle_out_" + str(n), _OracleOutParam(v)))
        return result

    def _extraResult(self, result, outvars, queryGenerator):
        if (
            queryGenerator.dbtype.dialect == ORACLE_DIALECT and
            self.Return is not None
        ):
            def processIt(emptyListResult):
                # See comment in L{adbapi2._ConnectedTxn._reallyExecSQL}. If the
                # result is an empty list, just return that. If the result is a
                # L{list} of empty L{list} then there are return into rows to return.
                if len(emptyListResult) > 0:
                    emptyListResult = [[v.value for _ignore_k, v in outvars]]
                return emptyListResult
            return result.addCallback(processIt)
        else:
            return result

    def _resultColumns(self):
        return self._returnAsList()


class _OracleOutParam(object):
    """
    A parameter that will be populated using the cx_Oracle API for host
    variables.
    """
    implements(IDerivedParameter)

    def __init__(self, columnSyntax):
        self.typeID = columnSyntax.model.type.name.lower()

    def preQuery(self, cursor):
        typeMap = {"integer": cx_Oracle.NUMBER,
                   "text": cx_Oracle.NCLOB,
                   "varchar": cx_Oracle.STRING,
                   "timestamp": cx_Oracle.TIMESTAMP}
        self.var = cursor.var(typeMap[self.typeID])
        return self.var

    def postQuery(self, cursor):
        self.value = mapOracleOutputType(self.var.getvalue())
        self.var = None


class Insert(_DMLStatement):
    """
    C{insert} statement.
    """

    def __init__(self, columnMap, Return=None):
        self.columnMap = columnMap
        self.Return = Return
        columns = _modelsFromMap(columnMap)
        table = _fromSameTable(columns)
        required = [column for column in table.columns if column.needsValue()]
        unspecified = [column for column in required
                       if column not in columns]
        if unspecified:
            raise NotEnoughValues(
                "Columns [%s] required."
                % (", ".join([c.name for c in unspecified]))
            )

    def _toSQL(self, queryGenerator):
        """
        @return: a C{insert} statement with placeholders and arguments

        @rtype: L{SQLFragment}
        """
        columnsAndValues = self.columnMap.items()
        tableModel = columnsAndValues[0][0].model.table
        specifiedColumnModels = [x.model for x in self.columnMap.keys()]

        if queryGenerator.dbtype.dialect == ORACLE_DIALECT:
            # See test_nextSequenceDefaultImplicitExplicitOracle.
            for column in tableModel.columns:
                if isinstance(column.default, Sequence):
                    columnSyntax = ColumnSyntax(column)
                    if column not in specifiedColumnModels:
                        columnsAndValues.append(
                            (columnSyntax, SequenceSyntax(column.default))
                        )

        sortedColumns = sorted(
            columnsAndValues,
            key=lambda (c, v): c.model.name
        )
        allTables = []

        stmt = SQLFragment("insert into ")
        stmt.append(TableSyntax(tableModel).subSQL(queryGenerator, allTables))
        stmt.append(SQLFragment(" "))
        stmt.append(_inParens(_commaJoined([
            c.subSQL(queryGenerator, allTables)
            for (c, _ignore_v) in sortedColumns
        ])))
        stmt.append(SQLFragment(" values "))
        stmt.append(_inParens(_commaJoined([
            _convert(v).subSQL(queryGenerator, allTables)
            for (c, v) in sortedColumns
        ])))

        return self._returningClause(queryGenerator, stmt, allTables)

    @inlineCallbacks
    def on(self, txn, *a, **kw):
        """
        Override to provide extra logic for L{Insert}s that return values on
        databases that don't provide return values as part of their C{INSERT}
        behavior.
        """
        result = yield super(_DMLStatement, self).on(txn, *a, **kw)
        if self.Return is not None and txn.dbtype.dialect == SQLITE_DIALECT:
            table = self._returnAsList()[0].model.table
            result = yield Select(
                self._returnAsList(),
                # TODO: error reporting when "return" includes columns
                # foreign to the primary table.
                From=TableSyntax(table),
                Where=(
                    ColumnSyntax(
                        Column(table, "rowid", SQLType("integer", None))
                    ) == _sqliteLastInsertRowID()
                )
            ).on(txn, *a, **kw)
        returnValue(result)


def _convert(x):
    """
    Convert a value to an appropriate SQL AST node.  (Currently a simple
    isinstance, could be promoted to use adaptation if we want to get fancy.)
    """
    if isinstance(x, ExpressionSyntax):
        return x
    else:
        return Constant(x)


class Update(_DMLStatement):
    """
    C{update} statement

    @ivar columnMap: A L{dict} mapping L{ColumnSyntax} objects to values to
        change; values may be simple database values (such as L{str},
        L{unicode}, L{datetime.datetime}, L{float}, L{int} etc) or L{Parameter}
        instances.
    @type columnMap: L{dict}
    """

    def __init__(self, columnMap, Where, Return=None):
        super(Update, self).__init__()
        _fromSameTable(_modelsFromMap(columnMap))
        self.columnMap = columnMap
        self.Where = Where
        self.Return = Return

    @inlineCallbacks
    def on(self, txn, *a, **kw):
        """
        Override to provide extra logic for L{Update}s that return values on
        databases that don't provide return values as part of their C{UPDATE}
        behavior.
        """
        doExtra = self.Return is not None and txn.dbtype.dialect == SQLITE_DIALECT
        upcall = lambda: super(_DMLStatement, self).on(txn, *a, **kw)

        if doExtra:
            table = self._returnAsList()[0].model.table
            rowidcol = ColumnSyntax(Column(table, "rowid",
                                           SQLType("integer", None)))
            prequery = Select([rowidcol], From=TableSyntax(table),
                              Where=self.Where)
            preresult = prequery.on(txn, *a, **kw)
            before = yield preresult
            yield upcall()
            result = yield Select(
                self._returnAsList(),
                # TODO: error reporting when "return" includes
                # columns foreign to the primary table.
                From=TableSyntax(table),
                Where=reduce(
                    lambda left, right: left.Or(right),
                    ((rowidcol == x) for [x] in before)
                )
            ).on(txn, *a, **kw)
            returnValue(result)
        else:
            returnValue((yield upcall()))

    def _toSQL(self, queryGenerator):
        """
        @return: an C{insert} statement with placeholders and arguments
        @rtype: L{SQLFragment}
        """
        sortedColumns = sorted(
            self.columnMap.items(), key=lambda (c, v): c.model.name
        )
        allTables = []
        result = SQLFragment("update ")
        result.append(
            TableSyntax(sortedColumns[0][0].model.table).subSQL(
                queryGenerator, allTables
            )
        )
        result.text += " set "
        result.append(_commaJoined([
            c.subSQL(queryGenerator, allTables).append(
                SQLFragment(" = ").subSQL(queryGenerator, allTables)
            ).append(
                _convert(v).subSQL(queryGenerator, allTables)
            )
            for (c, v) in sortedColumns
        ]))

        if self.Where is not None:
            result.append(SQLFragment(" where "))
            result.append(self.Where.subSQL(queryGenerator, allTables))

        return self._returningClause(queryGenerator, result, allTables)


class Delete(_DMLStatement):
    """
    C{delete} statement.
    """

    def __init__(self, From, Where, Return=None):
        """
        If Where is None then all rows will be deleted.
        """
        self.From = From
        self.Where = Where
        self.Return = Return

    def _toSQL(self, queryGenerator):
        result = SQLFragment()
        allTables = self.From.tables()
        result.text += "delete from "
        result.append(self.From.subSQL(queryGenerator, allTables))
        if self.Where is not None:
            result.text += " where "
            result.append(self.Where.subSQL(queryGenerator, allTables))
        return self._returningClause(queryGenerator, result, allTables)

    @inlineCallbacks
    def on(self, txn, *a, **kw):
        upcall = lambda: super(Delete, self).on(txn, *a, **kw)
        if txn.dbtype.dialect == SQLITE_DIALECT and self.Return is not None:
            result = yield Select(
                self._returnAsList(),
                From=self.From, Where=self.Where
            ).on(txn, *a, **kw)
            yield upcall()
        else:
            result = yield upcall()
        returnValue(result)


class _LockingStatement(_Statement):
    """
    A statement related to lock management, which implicitly has no results.
    """

    def _resultColumns(self):
        """
        No columns should be expected, so return an infinite iterator of None.
        """
        return repeat(None)


class Lock(_LockingStatement):
    """
    An SQL "lock" statement.
    """

    def __init__(self, table, mode):
        self.table = table
        self.mode = mode

    @classmethod
    def exclusive(cls, table):
        return cls(table, "exclusive")

    def _toSQL(self, queryGenerator):
        if queryGenerator.dbtype.dialect == SQLITE_DIALECT:
            # FIXME - this is only stubbed out for testing right now, actual
            # concurrency would require some kind of locking statement here.
            # BEGIN IMMEDIATE maybe, if that's okay in the middle of a
            # transaction or repeatedly?
            return SQLFragment("select null")

        return SQLFragment("lock table ").append(
            self.table.subSQL(queryGenerator, [self.table])
        ).append(
            SQLFragment(" in %s mode" % (self.mode,))
        )


class DatabaseLock(_LockingStatement):
    """
    An SQL exclusive session level advisory lock
    """

    def _toSQL(self, queryGenerator):
        assert(queryGenerator.dbtype.dialect == POSTGRES_DIALECT)
        return SQLFragment("select pg_advisory_lock(1)")

    def on(self, txn, *a, **kw):
        """
        Override on() to only execute on Postgres
        """
        if txn.dbtype.dialect == POSTGRES_DIALECT:
            return super(DatabaseLock, self).on(txn, *a, **kw)

        return succeed(None)


class DatabaseUnlock(_LockingStatement):
    """
    An SQL exclusive session level advisory lock
    """

    def _toSQL(self, queryGenerator):
        assert(queryGenerator.dbtype.dialect == POSTGRES_DIALECT)
        return SQLFragment("select pg_advisory_unlock(1)")

    def on(self, txn, *a, **kw):
        """
        Override on() to only execute on Postgres
        """
        if txn.dbtype.dialect == POSTGRES_DIALECT:
            return super(DatabaseUnlock, self).on(txn, *a, **kw)

        return succeed(None)


class Savepoint(_LockingStatement):
    """
    An SQL C{savepoint} statement.
    """

    def __init__(self, name):
        self.name = name

    def _toSQL(self, queryGenerator):
        return SQLFragment("savepoint %s" % (self.name,))


class RollbackToSavepoint(_LockingStatement):
    """
    An SQL C{rollback to savepoint} statement.
    """

    def __init__(self, name):
        self.name = name

    def _toSQL(self, queryGenerator):
        return SQLFragment("rollback to savepoint %s" % (self.name,))


class ReleaseSavepoint(_LockingStatement):
    """
    An SQL C{release savepoint} statement.
    """

    def __init__(self, name):
        self.name = name

    def _toSQL(self, queryGenerator):
        return SQLFragment("release savepoint %s" % (self.name,))


class SavepointAction(object):

    def __init__(self, name):
        self._name = name

    def _safeName(self, txn):
        if txn.dbtype.dialect == ORACLE_DIALECT:
            # Oracle limits the length of identifiers
            return self._name[:30]
        else:
            return self._name

    def acquire(self, txn):
        return Savepoint(self._safeName(txn)).on(txn)

    def rollback(self, txn):
        return RollbackToSavepoint(self._safeName(txn)).on(txn)

    def release(self, txn):
        if txn.dbtype.dialect == ORACLE_DIALECT:
            # There is no "release savepoint" statement in oracle, but then, we
            # don't need it because there's no resource to manage.  Just don't
            # do anything.
            return NoOp()
        else:
            return ReleaseSavepoint(self._safeName(txn)).on(txn)


class NoOp(object):

    def on(self, *a, **kw):
        return succeed(None)


class SQLFragment(object):
    """
    Combination of SQL text and arguments; a statement which may be executed
    against a database.
    """

    def __init__(self, text="", parameters=None):
        self.text = text
        if parameters is None:
            parameters = []
        self.parameters = parameters

    def bind(self, **kw):
        params = []
        for parameter in self.parameters:
            if isinstance(parameter, Parameter):
                if parameter.count is not None:
                    if parameter.count != len(kw[parameter.name]):
                        raise DALError(
                            "Number of place holders does not match "
                            "number of items to bind"
                        )
                    for item in kw[parameter.name]:
                        params.append(item)
                else:
                    params.append(kw[parameter.name])
            else:
                params.append(parameter)

        return SQLFragment(self.text, params)

    def append(self, anotherStatement):
        self.text += anotherStatement.text
        self.parameters += anotherStatement.parameters
        return self

    def __eq__(self, stmt):
        if not isinstance(stmt, SQLFragment):
            return NotImplemented
        return (self.text, self.parameters) == (stmt.text, stmt.parameters)

    def __ne__(self, stmt):
        if not isinstance(stmt, SQLFragment):
            return NotImplemented
        return not self.__eq__(stmt)

    def __repr__(self):
        return self.__class__.__name__ + repr((self.text, self.parameters))

    def subSQL(self, queryGenerator, allTables):
        return self


class Parameter(object):
    """
    Used to represent a place holder for a value to be bound to the query
    at a later date. If count > 1, then a "set" of parenthesized,
    comma separate place holders will be generated.
    """

    def __init__(self, name, count=None):
        self.name = name
        self.count = count
        if self.count is not None and self.count < 1:
            raise DALError("Must have Parameter.count > 0")

    def __eq__(self, param):
        if not isinstance(param, Parameter):
            return NotImplemented
        return self.name == param.name and self.count == param.count

    def __ne__(self, param):
        if not isinstance(param, Parameter):
            return NotImplemented
        return not self.__eq__(param)

    def __repr__(self):
        return "Parameter(%r)" % (self.name,)


# Common helpers:

# current timestamp in UTC format.  Hack to support standard syntax for this,
# rather than the compatibility procedure found in various databases.
utcNowSQL = NamedValue("CURRENT_TIMESTAMP at time zone 'UTC'")

# You can't insert a column with no rows.  In SQL that just isn't valid syntax,
# and in this DAL you need at least one key or we can't tell what table you're
# talking about.  Luckily there's the C{default} keyword to the rescue, which,
# in the context of an INSERT statement means "use the default value
# explicitly".
# (Although this is a special keyword in a CREATE statement, in an INSERT it
# behaves like an expression to the best of my knowledge.)
default = NamedValue("default")
