#!/usr/bin/env python3




##################################################
## DEPENDENCIES
import sys
import os
import os.path
try:
    import builtins as builtin
except ImportError:
    import __builtin__ as builtin
from os.path import getmtime, exists
import time
import types
from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion
from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple
from Cheetah.Template import Template
from Cheetah.DummyTransaction import *
from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList
from Cheetah.CacheRegion import CacheRegion
import Cheetah.Filters as Filters
import Cheetah.ErrorCatchers as ErrorCatchers
from Cheetah.compat import unicode
from xpdeint.Features._Stochastic import _Stochastic
from xpdeint.Operators.DeltaAOperator import DeltaAOperator

##################################################
## MODULE CONSTANTS
VFFSL=valueFromFrameOrSearchList
VFSL=valueFromSearchList
VFN=valueForName
currentTime=time.time
__CHEETAH_version__ = '3.2.3'
__CHEETAH_versionTuple__ = (3, 2, 3, 'final', 0)
__CHEETAH_genTime__ = 1558054969.8204257
__CHEETAH_genTimestamp__ = 'Fri May 17 11:02:49 2019'
__CHEETAH_src__ = '/home/mattias/xmds-2.2.3/admin/staging/xmds-3.0.0/xpdeint/Features/Stochastic.tmpl'
__CHEETAH_srcLastModified__ = 'Thu Apr  4 16:29:24 2019'
__CHEETAH_docstring__ = 'Autogenerated by Cheetah: The Python-Powered Template Engine'

if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple:
    raise AssertionError(
      'This template was compiled with Cheetah version'
      ' %s. Templates compiled before version %s must be recompiled.'%(
         __CHEETAH_version__, RequiredCheetahVersion))

##################################################
## CLASSES

class Stochastic(_Stochastic):

    ##################################################
    ## CHEETAH GENERATED METHODS


    def __init__(self, *args, **KWs):

        super(Stochastic, self).__init__(*args, **KWs)
        if not self._CHEETAH__instanceInitialized:
            cheetahKWArgs = {}
            allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split()
            for k,v in KWs.items():
                if k in allowedKWs: cheetahKWArgs[k] = v
            self._initCheetahInstance(**cheetahKWArgs)
        

    def description(self, **KWS):



        ## Generated from @def description: Stochastic at line 28, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        write('''Stochastic''')
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def globals(self, **KWS):



        ## CHEETAH: generated from @def globals at line 35, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        _v = super(Stochastic, self).globals()
        if _v is not None: write(_filter(_v))
        # 
        for integrator in self.adaptiveIntegratorsWithNoises() : # generated from line 39, col 3
            write('''// ********************************************************
// struct used to store step size and noise vector to ensure
// stochastic convergence
struct _dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 43, col 26
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 43, col 26.
            write(''' {
  real _step;
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 46, col 5
                write('''  ''')
                _v = VFFSL(SL,"noiseVector.type",True) # '$noiseVector.type' on line 47, col 3
                if _v is not None: write(_filter(_v, rawExpr='$noiseVector.type')) # from line 47, col 3.
                write('''* _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 47, col 23
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 47, col 23.
                write(''';
''')
            write('''  
  _dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 50, col 21
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 50, col 21.
            write('''() {
  _step = 0;
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 53, col 5
                write('''  _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 54, col 4
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 54, col 4.
                write(''' = NULL;
''')
            write('''  }
  ~_dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 57, col 22
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 57, col 22.
            write('''() {
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 59, col 5
                write('''    if (_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 60, col 10
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 60, col 10.
                write(''')
      xmds_free(_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 61, col 18
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 61, col 18.
                write(''');
''')
            write('''  }
};
''')
        # 
        for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 67, col 3
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 1
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 1.
            write('''* ''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 68, col 17
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 68, col 17.
            write('''_invsqrt = (''')
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 56
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 56.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 92
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 92.
            write(''') * (''')
            _v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 68, col 111
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 68, col 111.
            write('''));
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def mainBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def mainBegin($dict) at line 73, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 75, col 3
            write('''for (long ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 11
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 11.
            write(''' = 0; ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 36
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 36.
            write(''' < ''')
            _v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 76, col 58
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 76, col 58.
            write('''; ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 83
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 83.
            write('''++) {
  ''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 3
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 3.
            write('''_invsqrt[''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 39
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 39.
            write('''] = (real)1.0/sqrt(''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 77
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 77.
            write('''[''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 105
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 105.
            write('''] * (''')
            _v = VFFSL(SL,"dimRep.volumePrefactor",True) # '${dimRep.volumePrefactor}' on line 77, col 129
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.volumePrefactor}')) # from line 77, col 129.
            write('''));
}
''')
        write('''
''')
        for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 81, col 3
            _v = VFFSL(SL,"noiseVector.initialiseGlobalSeeds",True) # '${noiseVector.initialiseGlobalSeeds}' on line 82, col 1
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseGlobalSeeds}')) # from line 82, col 1.
            write('''
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def topLevelSequenceBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def topLevelSequenceBegin($dict) at line 88, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 90, col 3
            _v = VFFSL(SL,"noiseVector.initialiseLocalSeeds",True) # '${noiseVector.initialiseLocalSeeds}' on line 91, col 1
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseLocalSeeds}')) # from line 91, col 1.
            write('''
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepBegin($dict) at line 97, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 101, col 3
            return
        # 
        write('''typedef _dtdWstore_segment''')
        _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 105, col 27
        if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 105, col 27.
        write(''' _dtdWstore;
list<_dtdWstore> _noise_list;
list<_dtdWstore>::iterator _active_node;
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepEnd(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepEnd($dict) at line 111, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 115, col 3
            return
        # 
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 119, col 3
            write('''_active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 9
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 9.
            write(''' = _''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 30
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 30.
            write(''';
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateFixedStepInnerLoopBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateFixedStepInnerLoopBegin(dict) at line 125, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 129, col 3
            return
        # 
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 133, col 3
            write('''
_active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 9
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 9.
            write(''' = _''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 30
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 30.
            write(''';
''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}" on line 136, col 1
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}")) # from line 136, col 1.
            write('''
''')
        # 
        if 'ErrorCheck' in VFFSL(SL,"features",True): # generated from line 139, col 3
            write('''
if (!_half_step) { // For the full step we average the two noises.
''')
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 142, col 5
                # 
                write('''  _active_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 11
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 11.
                write(''' = _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 32
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 32.
                write('''2;
  ''')
                _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}" on line 145, col 3
                if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}")) # from line 145, col 3.
                write('''
  ''')
                _v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([noiseVector],
  """_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);
  """, basis = noiseVector.initialBasis)
                if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([noiseVector],\n  """_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);\n  """, basis = noiseVector.initialBasis), autoIndent=True}')) # from line 146, col 3.
                write('''  _active_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 11
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 11.
                write(''' = _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 32
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 32.
                write(''';
''')
            write('''}
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepInnerLoopBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepInnerLoopBegin(dict) at line 156, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 160, col 3
            return
        # 
        write('''if (_noise_list.empty()) {
  // Noise list empty so start afresh
  _noise_list.push_front(_dtdWstore());
  _active_node = _noise_list.begin();
  _active_node->_step = _step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 169, col 3
            write('''  
  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 171, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 171, col 11.
            write(''' =  (''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 33
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 33.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 74
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 74.
            write(''') * MAX(''')
            _v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 171, col 101
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 171, col 101.
            write(''',1));
  _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 18
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 18.
            write(''' = _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 46.
            write(''';
  ''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_step') # "${noiseVector.functions['evaluate'].call(_step = '_step')}" on line 173, col 3
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_step')}")) # from line 173, col 3.
            write('''
''')
        write('''} else if (_step*(1.0 + _EPSILON) < _noise_list.begin()->_step) {
  // Create new smallest time step
  
  // If the step is greater than 50% of the current smallest step size
  // then we should just use half the step size because we are going to have
  // to do the other half at some point too.
  
  const real _old_smallest_step = _noise_list.begin()->_step;
  
  if (_step > 0.5*_old_smallest_step*(1.0 + _EPSILON))
    _step = 0.5*_old_smallest_step;
  
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 187, col 3
            #  It is necessary to transform the noise vector back to its original basis, as it may have been transformed in the mean time.
            write('''  ''')
            _v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}' on line 189, col 3
            if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}')) # from line 189, col 3.
            write('''  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 190, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 190, col 11.
            write(''' = (''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 32
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 32.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 73
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 73.
            write(''') * MAX(''')
            _v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 190, col 100
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 190, col 100.
            write(''',1));
  ''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['split'],"call",False)(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id) # "${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}" on line 191, col 3
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}")) # from line 191, col 3.
            write('''
  
''')
        # 
        write('''  _noise_list.push_front(_dtdWstore());
  _active_node = _noise_list.begin();
  _active_node->_step = _step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 198, col 3
            write('''  _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 18
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 18.
            write(''' = _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 46.
            write(''';
''')
        write('''} else {
  // Use step already attempted
  for (_active_node = _noise_list.begin(); (_active_node != _noise_list.end()) && (_active_node->_step <= _step*(1.0 + _EPSILON)); _active_node++)
    ;
  
  _active_node--;
  _step = _active_node->_step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 208, col 3
            write('''  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 11.
            write(''' = _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 46.
            write(''';
''')
            if noiseVector.needsTransforms: # generated from line 210, col 5
                write('''  _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 211, col 4
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 211, col 4.
                write('''_basis = ''')
                _v = VFFSL(SL,"basisIndexForBasis",False)(noiseVector.initialBasis) # '${basisIndexForBasis(noiseVector.initialBasis)}' on line 211, col 30
                if _v is not None: write(_filter(_v, rawExpr='${basisIndexForBasis(noiseVector.initialBasis)}')) # from line 211, col 30.
                write(''';
''')
        write('''  
  if ( _break_next && !((_''')
        _v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 27
        if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 27.
        write('''_local + _step)*(1.0 + _EPSILON) >= _''')
        _v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 87
        if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 87.
        write('''_break_next))
    _break_next = false;
} 

''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def adaptiveStepSucceeded(self, dict, **KWS):



        ## CHEETAH: generated from @def adaptiveStepSucceeded(dict) at line 222, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 226, col 3
            return
        # 
        write('''
// Trim dtdW tree
_active_node++;
if (_active_node == _noise_list.end())
  _noise_list.clear();
else {
  for (list<_dtdWstore>::iterator _temp_iter = _active_node; _temp_iter != _noise_list.end(); _temp_iter++) {
    _temp_iter->_step -= _step;
    real _temp_step = _temp_iter->_step;
    
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 240, col 3
            #  The noise vector must be transformed back to its initial basis in case it has been transformed during the integration step.
            write('''    ''')
            _v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}' on line 242, col 5
            if _v is not None: write(_filter(_v, autoIndent = True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}')) # from line 242, col 5.
            write('''    ''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 243, col 5
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 243, col 5.
            write('''* _temp_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 32
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 32.
            write(''' = _temp_iter->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 65
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 65.
            write(''';
    ''')
            _v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([VFFSL(SL,"noiseVector",True)],
"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;
""")
            if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([$noiseVector],\n"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;\n"""), autoIndent=True}')) # from line 244, col 5.
        write('''  }
  
  _noise_list.erase(_noise_list.begin(), _active_node);
}
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def writeBody(self, **KWS):



        ## CHEETAH: main method generated for this template
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        write('''
''')
        # 
        # Stochastic.tmpl
        # 
        # Created by Graham Dennis on 2007-12-11.
        # 
        # Copyright (c) 2007-2012, Graham Dennis and Joe Hope
        # 
        # This program is free software: you can redistribute it and/or modify
        # it under the terms of the GNU General Public License as published by
        # the Free Software Foundation, either version 2 of the License, or
        # (at your option) any later version.
        # 
        # This program is distributed in the hope that it will be useful,
        # but WITHOUT ANY WARRANTY; without even the implied warranty of
        # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        # GNU General Public License for more details.
        # 
        # You should have received a copy of the GNU General Public License
        # along with this program.  If not, see <http://www.gnu.org/licenses/>.
        # 
        write('''


''')
        # 
        #   Globals
        write('''







''')
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        
    ##################################################
    ## CHEETAH GENERATED ATTRIBUTES


    _CHEETAH__instanceInitialized = False

    _CHEETAH_version = __CHEETAH_version__

    _CHEETAH_versionTuple = __CHEETAH_versionTuple__

    _CHEETAH_genTime = __CHEETAH_genTime__

    _CHEETAH_genTimestamp = __CHEETAH_genTimestamp__

    _CHEETAH_src = __CHEETAH_src__

    _CHEETAH_srcLastModified = __CHEETAH_srcLastModified__

    featureName = 'Stochastic'

    uselib = ['randomisation_seeding']

    _mainCheetahMethod_for_Stochastic = 'writeBody'

## END CLASS DEFINITION

if not hasattr(Stochastic, '_initCheetahAttributes'):
    templateAPIClass = getattr(Stochastic,
                               '_CHEETAH_templateClass',
                               Template)
    templateAPIClass._addCheetahPlumbingCodeToClass(Stochastic)


# CHEETAH was developed by Tavis Rudd and Mike Orr
# with code, advice and input from many other volunteers.
# For more information visit https://cheetahtemplate.org/

##################################################
## if run from command line:
if __name__ == '__main__':
    from Cheetah.TemplateCmdLineIface import CmdLineIface
    CmdLineIface(templateObj=Stochastic()).run()


