Next: , Previous: DWT Transform Functions, Up: Wavelet Transforms   [Index]

### 32.4 Examples

The following program demonstrates the use of the one-dimensional wavelet transform functions. It computes an approximation to an input signal (of length 256) using the 20 largest components of the wavelet transform, while setting the others to zero.

```#include <stdio.h>
#include <math.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_wavelet.h>

int
main (int argc, char **argv)
{
(void)(argc); /* avoid unused parameter warning */
int i, n = 256, nc = 20;
double *data = malloc (n * sizeof (double));
double *abscoeff = malloc (n * sizeof (double));
size_t *p = malloc (n * sizeof (size_t));

FILE * f;
gsl_wavelet *w;
gsl_wavelet_workspace *work;

w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4);
work = gsl_wavelet_workspace_alloc (n);

f = fopen (argv[1], "r");
for (i = 0; i < n; i++)
{
fscanf (f, "%lg", &data[i]);
}
fclose (f);

gsl_wavelet_transform_forward (w, data, 1, n, work);

for (i = 0; i < n; i++)
{
abscoeff[i] = fabs (data[i]);
}

gsl_sort_index (p, abscoeff, 1, n);

for (i = 0; (i + nc) < n; i++)
data[p[i]] = 0;

gsl_wavelet_transform_inverse (w, data, 1, n, work);

for (i = 0; i < n; i++)
{
printf ("%g\n", data[i]);
}

gsl_wavelet_free (w);
gsl_wavelet_workspace_free (work);

free (data);
free (abscoeff);
free (p);
return 0;
}
```

The output can be used with the GNU plotutils `graph` program,

```\$ ./a.out ecg.dat > dwt.txt
\$ graph -T ps -x 0 256 32 -h 0.3 -a dwt.txt > dwt.ps
```