#!/usr/bin/env python
"""Unit tests for statistical tests and utility functions.
"""
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.test import tail, G_2_by_2,G_fit, likelihoods,\
    posteriors, bayes_updates, t_paired, t_one_sample, t_two_sample, \
    t_one_observation,correlation, correlation_matrix, z_test, z_tailed_prob, \
    t_tailed_prob, sign_test,\
    reverse_tails, ZeroExpectedError, combinations, multiple_comparisons, \
    multiple_inverse, multiple_n, fisher, regress, regress_major,\
    f_value, f_two_sample, calc_contingency_expected, G_fit_from_Dict2D, \
    chi_square_from_Dict2D, MonteCarloP, \
    regress_residuals, safe_sum_p_log_p, G_ind, regress_origin, stdev_from_mean, \
    regress_R2, permute_2d, mantel, kendall_correlation, std, median,\
    get_values_from_matrix, get_ltm_cells, distance_matrix_permutation_test,\
    ANOVA_one_way

from numpy import array, reshape, arange, ones, testing, cov, sqrt
from cogent.util.dict2d import Dict2D
import math
from cogent.maths.stats.util import Numbers

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Catherine Lozupone", "Gavin Huttley",
                    "Sandra Smit", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

class TestsTests(TestCase):
    """Tests miscellaneous functions."""
    def test_std(self):
        """Should produce a standard deviation of 1.0 for a std normal dist"""
        expected = 1.58113883008
        self.assertFloatEqual(std(array([1,2,3,4,5])), expected)

        expected_a = array([expected, expected, expected, expected, expected])
        a = array([[1,2,3,4,5],[5,1,2,3,4],[4,5,1,2,3],[3,4,5,1,2],[2,3,4,5,1]])
        self.assertFloatEqual(std(a,axis=0), expected_a)
        self.assertFloatEqual(std(a,axis=1), expected_a)
        self.assertRaises(ValueError, std, a, 5)

    def test_std_2d(self):
        """Should produce from 2darray the same stdevs as scipy.stats.std"""
        inp = array([[1,2,3],[4,5,6]])
        exps = ( #tuple(scipy_std(inp, ax) for ax in [None, 0, 1])
            1.8708286933869707,
            array([ 2.12132034,  2.12132034,  2.12132034]),
            array([ 1.,  1.]))
        results = tuple(std(inp, ax) for ax in [None, 0, 1])
        for obs, exp in zip(results, exps):
            testing.assert_almost_equal(obs, exp)
            
    def test_std_3d(self):
        """Should produce from 3darray the same std devs as scipy.stats.std"""
        inp3d = array(#2,2,3
                   [[[ 0,  2,  2],
                     [ 3,  4,  5]],

                    [[ 1,  9,  0],
                     [ 9, 10, 1]]])
        exp3d = (#for axis None, 0, 1, 2: calc from scipy.stats.std
            3.63901418552,
            array([[ 0.70710678,  4.94974747,  1.41421356],
                [ 4.24264069,  4.24264069,  2.82842712]]),
            array([[ 2.12132034,  1.41421356,  2.12132034],
                [ 5.65685425,  0.70710678,  0.70710678]]),
            array([[ 1.15470054,  1.        ],
                [ 4.93288286,  4.93288286]]))
        res = tuple(std(inp3d, ax) for ax in [None, 0, 1, 2])
        for obs, exp in zip(res, exp3d):
            testing.assert_almost_equal(obs, exp)
            
    def test_median(self):
        """_median should work similarly to numpy.mean (in terms of axis)"""
        m = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
        expected = 6.5
        observed = median(m, axis=None)
        self.assertEqual(observed, expected)

        expected = array([5.5, 6.5, 7.5])
        observed = median(m, axis=0)
        self.assertEqual(observed, expected)

        expected = array([2.0, 5.0, 8.0, 11.0])
        observed = median(m, axis=1)
        self.assertEqual(observed, expected)

        self.assertRaises(ValueError, median, m, 10)

    def test_tail(self):
        """tail should return x/2 if test is true; 1-(x/2) otherwise"""
        self.assertFloatEqual(tail(0.25, 'a'=='a'), 0.25/2)
        self.assertFloatEqual(tail(0.25, 'a'!='a'), 1-(0.25/2))

    def test_combinations(self):
        """combinations should return correct binomial coefficient"""
        self.assertFloatEqual(combinations(5,3), 10)
        self.assertFloatEqual(combinations(5,2), 10)
        #only one way to pick no items or the same number of items
        self.assertFloatEqual(combinations(123456789, 0), 1)
        self.assertFloatEqual(combinations(123456789, 123456789), 1)
        #n ways to pick one item
        self.assertFloatEqual(combinations(123456789, 1), 123456789)
        #n(n-1)/2 ways to pick 2 items
        self.assertFloatEqual(combinations(123456789, 2), 123456789*123456788/2)
        #check an arbitrary value in R
        self.assertFloatEqual(combinations(1234567, 12), 2.617073e64)
    
    def test_multiple_comparisons(self):
        """multiple_comparisons should match values from R"""
        self.assertFloatEqual(multiple_comparisons(1e-7, 10000), 1-0.9990005)
        self.assertFloatEqual(multiple_comparisons(0.05, 10), 0.4012631)
        self.assertFloatEqual(multiple_comparisons(1e-20, 1), 1e-20)
        self.assertFloatEqual(multiple_comparisons(1e-300, 1), 1e-300)
        self.assertFloatEqual(multiple_comparisons(0.95, 3),0.99987499999999996)
        self.assertFloatEqual(multiple_comparisons(0.75, 100),0.999999999999679)
        self.assertFloatEqual(multiple_comparisons(0.5, 1000),1)
        self.assertFloatEqual(multiple_comparisons(0.01, 1000),0.99995682875259)
        self.assertFloatEqual(multiple_comparisons(0.5, 5), 0.96875)
        self.assertFloatEqual(multiple_comparisons(1e-20, 10), 1e-19)

    def test_multiple_inverse(self):
        """multiple_inverse should invert multiple_comparisons results"""
        #NOTE: multiple_inverse not very accurate close to 1
        self.assertFloatEqual(multiple_inverse(1-0.9990005, 10000), 1e-7)
        self.assertFloatEqual(multiple_inverse(0.4012631 , 10), 0.05)
        self.assertFloatEqual(multiple_inverse(1e-20, 1), 1e-20)
        self.assertFloatEqual(multiple_inverse(1e-300, 1), 1e-300)
        self.assertFloatEqual(multiple_inverse(0.96875, 5), 0.5)
        self.assertFloatEqual(multiple_inverse(1e-19, 10), 1e-20)

    def test_multiple_n(self):
        """multiple_n should swap parameters in multiple_comparisons"""
        self.assertFloatEqual(multiple_n(1e-7, 1-0.9990005), 10000)
        self.assertFloatEqual(multiple_n(0.05, 0.4012631), 10)
        self.assertFloatEqual(multiple_n(1e-20, 1e-20), 1)
        self.assertFloatEqual(multiple_n(1e-300, 1e-300), 1)
        self.assertFloatEqual(multiple_n(0.95,0.99987499999999996),3)
        self.assertFloatEqual(multiple_n(0.5,0.96875),5)
        self.assertFloatEqual(multiple_n(1e-20, 1e-19), 10)

    def test_fisher(self):
        """fisher results should match p 795 Sokal and Rohlf"""
        self.assertFloatEqual(fisher([0.073,0.086,0.10,0.080,0.060]), 
            0.0045957946540917905)

    def test_regress(self):
        """regression slope, intercept should match p 459 Sokal and Rohlf"""
        x = [0, 12, 29.5,43,53,62.5,75.5,85,93]
        y = [8.98, 8.14, 6.67, 6.08, 5.90, 5.83, 4.68, 4.20, 3.72]
        self.assertFloatEqual(regress(x, y), (-0.05322, 8.7038), 0.001)
        #higher precision from OpenOffice
        self.assertFloatEqual(regress(x, y), (-0.05322215,8.70402730))

    def test_regress_origin(self):
        """regression slope constrained through origin should match Excel"""
        x = array([1,2,3,4])
        y = array([4,2,6,8])
        self.assertFloatEqual(regress_origin(x, y), (1.9333333,0))

    def test_regress_R2(self):
        """regress_R2 returns the R^2 value of a regression"""
        x = [1.0,2.0,3.0,4.0,5.0]
        y = [2.1,4.2,5.9,8.4,9.6]
        result = regress_R2(x, y)
        self.assertFloatEqual(result, 0.99171419347896)

    def test_regress_residuals(self):
        """regress_residuals reprts error for points in linear regression"""
        x = [1.0,2.0,3.0,4.0,5.0]
        y = [2.1,4.2,5.9,8.4,9.6]
        result = regress_residuals(x, y)
        self.assertFloatEqual(result, [-0.1, 0.08, -0.14, 0.44, -0.28])

    def test_stdev_from_mean(self):
        """stdev_from_mean returns num std devs from mean for each val in x"""
        x = [2.1, 4.2, 5.9, 8.4, 9.6]
        result = stdev_from_mean(x)
        self.assertFloatEqual(result, [-1.292463399014413, -0.60358696806764478, -0.045925095396451399, 0.77416589382589174, 1.1678095686526162])

    def test_regress_major(self):
        """major axis regression should match p 589 Sokal and Rohlf"""
        #Note that the Sokal and Rohlf example flips the axes, such that the
        #equation is for explaining x in terms of y, not y in terms of x.
        #Behavior here is the reverse, for easy comparison with regress.
        y = [159, 179, 100, 45, 384, 230, 100, 320, 80, 220, 320, 210]
        x = [14.40, 15.20, 11.30, 2.50, 22.70, 14.90, 1.41, 15.81, 4.19, 15.39,
             17.25, 9.52]
        self.assertFloatEqual(regress_major(x, y), (18.93633,-32.55208))
    
    def test_sign_test(self):
        """sign_test, should match values from R"""
        v = [("two sided", 26, 50, 0.88772482734078251),
             ("less", 26, 50, 0.6641),
             ("l", 10, 50, 1.193066583837777e-05),
             ("hi", 30, 50, 0.1013193755322703),
             ("h", 0, 50, 1.0),
             ("2", 30, 50, 0.20263875106454063),
             ("h", 49, 50, 4.5297099404706387e-14),
             ("h", 50, 50, 8.8817841970012543e-16)
             ]
        for alt, success, trials, p in v:
            result = sign_test(success, trials, alt=alt)
            self.assertFloatEqual(result, p, eps=1e-5)


class GTests(TestCase):
    """Tests implementation of the G tests for fit and independence."""
    def test_G_2_by_2_2tailed_equal(self):
        """G_2_by_2 should return 0 if all cell counts are equal"""
        self.assertFloatEqual(0, G_2_by_2(1, 1, 1, 1, False, False)[0])
        self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, False, False)[0])
        self.assertFloatEqual(0, G_2_by_2(100, 100, 100, 100, True, False)[0])
   
    def test_G_2_by_2_bad_data(self):
        """G_2_by_2 should raise ValueError if any counts are negative"""
        self.assertRaises(ValueError, G_2_by_2, 1, -1, 1, 1)
   
    def test_G_2_by_2_2tailed_examples(self):
        """G_2_by_2 values should match examples in Sokal & Rohlf"""
        #example from p 731, Sokal and Rohlf (1995)
        #without correction
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[0],
            1.33249, 0.0001)
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, False, False)[1],
            0.24836, 0.0001)
        #with correction
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[0],
            1.30277, 0.0001)
        self.assertFloatEqual(G_2_by_2(12, 22, 16, 50, True, False)[1],
            0.25371, 0.0001)

    def test_G_2_by_2_1tailed_examples(self):
        """G_2_by_2 values should match values from codon_binding program"""
        #first up...the famous arginine case
        self.assertFloatEqualAbs(G_2_by_2(36, 16, 38, 106), (29.111609, 0),
            0.00001)
        #then some other miscellaneous positive and negative values
        self.assertFloatEqualAbs(G_2_by_2(0,52,12,132), (-7.259930, 0.996474),
            0.00001)
        self.assertFloatEqualAbs(G_2_by_2(5,47,14,130), (-0.000481, 0.508751),
            0.00001)
        self.assertFloatEqualAbs(G_2_by_2(5,47,36,108), (-6.065167, 0.993106),
            0.00001)

    def test_calc_contingency_expected(self):
        """calcContingencyExpected returns new matrix with expected freqs"""
        matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
                  'b': {'env1': 1, 'env3': 1, 'env2': 3}})
        result = calc_contingency_expected(matrix)
        self.assertFloatEqual(result['rest_of_tree']['env1'], [2, 1.125])
        self.assertFloatEqual(result['rest_of_tree']['env3'], [1, 0.75])
        self.assertFloatEqual(result['rest_of_tree']['env2'], [0, 1.125])
        self.assertFloatEqual(result['b']['env1'], [1, 1.875])
        self.assertFloatEqual(result['b']['env3'], [1, 1.25])
        self.assertFloatEqual(result['b']['env2'], [3, 1.875])
        
    def test_Gfit_unequal_lists(self):
        """Gfit should raise errors if lists unequal"""
        #lists must be equal
        self.assertRaises(ValueError, G_fit, [1, 2, 3], [1, 2])

    def test_Gfit_negative_observeds(self):
        """Gfit should raise ValueError if any observeds are negative."""
        self.assertRaises(ValueError, G_fit, [-1, 2, 3], [1, 2, 3])
    
    def test_Gfit_nonpositive_expecteds(self):
        """Gfit should raise ZeroExpectedError if expecteds are zero/negative"""
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [0, 1, 2])
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [-1, 1, 2])
    
    def test_Gfit_good_data(self):
        """Gfit tests for fit should match examples in Sokal and Rohlf"""
        #example from p. 699, Sokal and Rohlf (1995)
        obs = [63, 31, 28, 12, 39, 16, 40, 12]
        exp = [ 67.78125, 22.59375, 22.59375, 7.53125, 45.18750,
                15.06250, 45.18750, 15.06250]
        #without correction
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 8.82397, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.26554, 0.00002)
        #with correction
        self.assertFloatEqualAbs(G_fit(obs, exp)[0], 8.76938, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.26964, 0.00002)
        
        #example from p. 700, Sokal and Rohlf (1995)
        obs = [130, 46]
        exp = [132, 44]
        #without correction
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[0], 0.12002, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp, False)[1], 0.72901, 0.00002)
        #with correction
        self.assertFloatEqualAbs(G_fit(obs, exp)[0], 0.11968, 0.00002)
        self.assertFloatEqualAbs(G_fit(obs, exp)[1], 0.72938, 0.00002)

    def test_safe_sum_p_log_p(self):
        """safe_sum_p_log_p should ignore zero elements, not raise error"""
        m = array([2,4,0,8])
        self.assertEqual(safe_sum_p_log_p(m,2), 2*1+4*2+8*3)

    def test_G_ind(self):
        """G test for independence should match Sokal and Rohlf p 738 values"""
        a = array([[29,11],[273,191],[8,31],[64,64]])
        self.assertFloatEqual(G_ind(a)[0], 28.59642)
        self.assertFloatEqual(G_ind(a, True)[0], 28.31244)

    def test_G_fit_from_Dict2D(self):
        """G_fit_from_Dict2D runs G-fit on data in a Dict2D
        """
        matrix = Dict2D({'Marl': {'val':[2, 5.2]},
                        'Chalk': {'val':[10, 5.2]},
                        'Sandstone':{'val':[8, 5.2]},
                        'Clay':{'val':[2, 5.2]},
                        'Limestone':{'val':[4, 5.2]}
                        })
        g_val, prob = G_fit_from_Dict2D(matrix)
        self.assertFloatEqual(g_val, 9.84923)
        self.assertFloatEqual(prob, 0.04304536)

    def test_chi_square_from_Dict2D(self):
        """chi_square_from_Dict2D calcs a Chi-Square and p value from Dict2D"""
        #test1
        obs_matrix = Dict2D({'rest_of_tree': {'env1': 2, 'env3': 1, 'env2': 0},
                  'b': {'env1': 1, 'env3': 1, 'env2': 3}})
        input_matrix = calc_contingency_expected(obs_matrix)
        test, csp = chi_square_from_Dict2D(input_matrix)
        self.assertFloatEqual(test, 3.0222222222222221)
        #test2
        test_matrix_2 = Dict2D({'Marl': {'val':[2, 5.2]},
                                'Chalk': {'val':[10, 5.2]},
                                'Sandstone':{'val':[8, 5.2]},
                                'Clay':{'val':[2, 5.2]},
                                'Limestone':{'val':[4, 5.2]}
                                })
        test2, csp2 = chi_square_from_Dict2D(test_matrix_2)
        self.assertFloatEqual(test2, 10.1538461538)
        self.assertFloatEqual(csp2, 0.0379143890013)
        #test3
        matrix3_obs = Dict2D({'AIDS':{'Males':4, 'Females':2, 'Both':3},
                        'No_AIDS':{'Males':3, 'Females':16, 'Both':2}
                       })
        matrix3 = calc_contingency_expected(matrix3_obs)
        test3, csp3 = chi_square_from_Dict2D(matrix3)
        self.assertFloatEqual(test3, 7.6568405139833722)
        self.assertFloatEqual(csp3, 0.0217439383468)
    

class LikelihoodTests(TestCase):
    """Tests implementations of likelihood calculations."""

    def test_likelihoods_unequal_list_lengths(self):
        """likelihoods should raise ValueError if input lists unequal length"""
        self.assertRaises(ValueError, likelihoods, [1, 2], [1])

    def test_likelihoods_equal_priors(self):
        """likelihoods should equal Pr(D|H) if priors the same"""
        equal = [0.25, 0.25, 0.25,0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        for obs, exp in zip(likelihoods(equal, equal), equal_answer):
            self.assertFloatEqual(obs, exp)

        for obs, exp in zip(likelihoods(unequal, equal), unequal_answer):
            self.assertFloatEqual(obs, exp)

    def test_likelihoods_equal_evidence(self):
        """likelihoods should return vector of 1's if evidence equal for all"""
        equal = [0.25, 0.25, 0.25,0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        not_unity = [0.7, 0.7, 0.7, 0.7]
        
        for obs, exp in zip(likelihoods(equal, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)

        #should be the same if evidences don't sum to 1
        for obs, exp in zip(likelihoods(not_unity, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)

    def test_likelihoods_unequal_evidence(self):
        """likelihoods should update based on weighted sum if evidence unequal"""
        not_unity = [1, 0.5, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        products = [1.4545455, 0.7272727, 0.3636364, 0.3636364]

        #if priors and evidence both unequal, likelihoods should change
        #(calculated using StarCalc)
        for obs, exp in zip(likelihoods(not_unity, unequal), products):
            self.assertFloatEqual(obs, exp)
        
    def test_posteriors_unequal_lists(self):
        """posteriors should raise ValueError if input lists unequal lengths"""
        self.assertRaises(ValueError, posteriors, [1, 2, 3], [1])

    def test_posteriors_good_data(self):
        """posteriors should return products of paired list elements"""
        first = [0, 0.25, 0.5, 1, 0.25]
        second = [0.25, 0.5, 0, 0.1, 1]
        product = [0, 0.125, 0, 0.1, 0.25]
        for obs, exp in zip(posteriors(first, second), product):
            self.assertFloatEqual(obs, exp)

class BayesUpdateTests(TestCase):
    """Tests implementation of Bayes calculations"""

    def setUp(self):
        first = [0.25, 0.25, 0.25]
        second = [0.1, 0.75, 0.3]
        third = [0.95, 1e-10, 0.2]
        fourth = [0.01, 0.9, 0.1]
        bad = [1, 2, 1, 1, 1]
        self.bad = [first, bad, second, third]
        self.test = [first, second, third, fourth]
        self.permuted = [fourth, first, third, second]
        self.deleted = [second, fourth, third]
        self.extra = [first, second, first, third, first, fourth, first]

        #BEWARE: low precision in second item, so need to adjust threshold
        #for assertFloatEqual accordingly (and use assertFloatEqualAbs).
        self.result = [0.136690646154, 0.000000009712, 0.863309344133]
       
    def test_bayes_updates_bad_data(self):
        """bayes_updates should raise ValueError on unequal-length lists"""
        self.assertRaises(ValueError, bayes_updates, self.bad)

    def test_bayes_updates_good_data(self):
        """bayes_updates should match hand calculations of probability updates"""
        #result for first -> fourth calculated by hand
        for obs, exp in zip(bayes_updates(self.test), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)

    def test_bayes_updates_permuted(self):
        """bayes_updates should not be affected by order of inputs"""
        for obs, exp in zip(bayes_updates(self.permuted), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)

    def test_bayes_update_nondiscriminating(self):
        """bayes_updates should be unaffected by extra nondiscriminating data"""
        #deletion of non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.deleted), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)
        #additional non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.extra), self.result):
            self.assertFloatEqualAbs(obs, exp, 1e-11)
        

class StatTests(TestCase):
    """Tests that the t and z tests are implemented correctly"""

    def setUp(self):
        self.x = [   
                7.33, 7.49, 7.27, 7.93, 7.56,
                7.81, 7.46, 6.94, 7.49, 7.44,
                7.95, 7.47, 7.04, 7.10, 7.64,
            ]

        self.y = [   
                7.53, 7.70, 7.46, 8.21, 7.81,
                8.01, 7.72, 7.13, 7.68, 7.66,
                8.11, 7.66, 7.20, 7.25, 7.79,
            ]


    def test_t_paired_2tailed(self):
        """t_paired should match values from Sokal & Rohlf p 353"""
        x, y = self.x, self.y
        #check value of t and the probability for 2-tailed
        self.assertFloatEqual(t_paired(y, x)[0], 19.7203, 1e-4)
        self.assertFloatEqual(t_paired(y, x)[1], 1.301439e-11, 1e-4)

    def test_t_paired_no_variance(self):
        """t_paired should return None if lists are invariant"""
        x = [1, 1, 1]
        y = [0, 0, 0]
        self.assertEqual(t_paired(x,x), (None, None))
        self.assertEqual(t_paired(x,y), (None, None))
        
    def test_t_paired_1tailed(self):
        """t_paired should match pre-calculated 1-tailed values"""
        x, y = self.x, self.y
        #check probability for 1-tailed low and high
        self.assertFloatEqual(
            t_paired(y, x, "low")[1], 1-(1.301439e-11/2), 1e-4)
        self.assertFloatEqual(
            t_paired(x, y, "high")[1], 1-(1.301439e-11/2), 1e-4)
        self.assertFloatEqual(
            t_paired(y, x, "high")[1], 1.301439e-11/2, 1e-4)
        self.assertFloatEqual(
            t_paired(x, y, "low")[1], 1.301439e-11/2, 1e-4)

    def test_t_paired_specific_difference(self):
        """t_paired should allow a specific difference to be passed"""
        x, y = self.x, self.y
        #difference is 0.2, so test should be non-significant if 0.2 passed
        self.failIf(t_paired(y, x, exp_diff=0.2)[0] > 1e-10)
        #same, except that reversing list order reverses sign of difference
        self.failIf(t_paired(x, y, exp_diff=-0.2)[0] > 1e-10)
        #check that there's no significant difference from the true mean
        self.assertFloatEqual(
            t_paired(y, x,exp_diff=0.2)[1], 1, 1e-4)
            
    def test_t_paired_bad_data(self):
        """t_paired should raise ValueError on lists of different lengths"""
        self.assertRaises(ValueError, t_paired, self.y, [1, 2, 3])

    def test_t_two_sample(self):
        """t_two_sample should match example on p.225 of Sokal and Rohlf"""
        I =  array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        self.assertFloatEqual(t_two_sample(I, II), (-0.1184, 0.45385 * 2),
            0.001)

    def test_t_two_sample_no_variance(self):
        """t_two_sample should return None if lists are invariant"""
        x = array([1, 1, 1])
        y = array([0, 0, 0])
        self.assertEqual(t_two_sample(x,x), (None, None))
        self.assertEqual(t_two_sample(x,y), (None, None))

    def test_t_one_sample(self):
        """t_one_sample results should match those from R"""
        x = array(range(-5,5))
        y = array(range(-1,10))
        self.assertFloatEqualAbs(t_one_sample(x), (-0.5222, 0.6141), 1e-4)
        self.assertFloatEqualAbs(t_one_sample(y), (4, 0.002518), 1e-4)
        #do some one-tailed tests as well
        self.assertFloatEqualAbs(t_one_sample(y, tails='low'),(4, 0.9987),1e-4)
        self.assertFloatEqualAbs(t_one_sample(y,tails='high'),(4,0.001259),1e-4)
   
    def test_t_two_sample_switch(self):
        """t_two_sample should call t_one_observation if 1 item in sample."""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = array([3.02])
        self.assertFloatEqual(t_two_sample(x,sample),(-1.5637254,0.1929248))
        self.assertFloatEqual(t_two_sample(sample, x),(-1.5637254,0.1929248))
        #can't do the test if both samples have single item
        self.assertEqual(t_two_sample(x,x), (None, None))
   
    def test_t_one_observation(self):
        """t_one_observation should match p. 228 of Sokal and Rohlf"""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = 3.02
        #note that this differs after the 3rd decimal place from what's in the
        #book, because Sokal and Rohlf round their intermediate steps...
        self.assertFloatEqual(t_one_observation(x,sample),\
            (-1.5637254,0.1929248))
    
    def test_reverse_tails(self):
        """reverse_tails should return 'high' if tails was 'low' or vice versa"""
        self.assertEqual(reverse_tails('high'), 'low')
        self.assertEqual(reverse_tails('low'), 'high')
        self.assertEqual(reverse_tails(None), None)
        self.assertEqual(reverse_tails(3), 3)

    def test_tail(self):
        """tail should return prob/2 if test is true, or 1-(prob/2) if false"""
        self.assertFloatEqual(tail(0.25, True), 0.125)
        self.assertFloatEqual(tail(0.25, False), 0.875)
        self.assertFloatEqual(tail(1, True), 0.5)
        self.assertFloatEqual(tail(1, False), 0.5)
        self.assertFloatEqual(tail(0, True), 0)
        self.assertFloatEqual(tail(0, False), 1)

    def test_z_test(self):
        """z_test should give correct values"""
        sample = array([1,2,3,4,5])
        self.assertFloatEqual(z_test(sample, 3, 1), (0,1))
        self.assertFloatEqual(z_test(sample, 3, 2, 'high'), (0,0.5))
        self.assertFloatEqual(z_test(sample, 3, 2, 'low'), (0,0.5))
        #check that population mean and variance, and tails, can be set OK.
        self.assertFloatEqual(z_test(sample, 0, 1), (6.7082039324993694, \
            1.9703444711798951e-11))
        self.assertFloatEqual(z_test(sample, 1, 10), (0.44721359549995793, \
            0.65472084601857694))
        self.assertFloatEqual(z_test(sample, 1, 10, 'high'), \
            (0.44721359549995793, 0.65472084601857694/2))
        self.assertFloatEqual(z_test(sample, 1, 10, 'low'), \
            (0.44721359549995793, 1-(0.65472084601857694/2)))
    
class CorrelationTests(TestCase):
    """Tests of correlation coefficients."""
    def test_correlation(self):
        """Correlations and significance should match R's cor.test()"""
        x = [1,2,3,5]
        y = [0,0,0,0]
        z = [1,1,1,1]
        a = [2,4,6,8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]

        bad = [1,2,3]   #originally gave r = 1.0000000002
        
        self.assertFloatEqual(correlation(x,x), (1, 0))
        self.assertFloatEqual(correlation(x,y), (0,1))
        self.assertFloatEqual(correlation(y,z), (0,1))
        self.assertFloatEqualAbs(correlation(x,a), (0.9827076, 0.01729), 1e-5)
        self.assertFloatEqualAbs(correlation(x,b), (-0.9621405, 0.03786), 1e-5)
        self.assertFloatEqualAbs(correlation(x,c), (0.3779645, 0.622), 1e-3)
        self.assertEqual(correlation(bad,bad), (1, 0))

    def test_correlation_matrix(self):
        """Correlations in matrix should match values from R"""
        a = [2,4,6,8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]
        m = correlation_matrix([a,b,c])
        self.assertFloatEqual(m[0,0], [1.0])
        self.assertFloatEqual([m[1,0], m[1,1]], [correlation(b,a)[0], 1.0])
        self.assertFloatEqual(m[2], [correlation(c,a)[0], correlation(c,b)[0], \
            1.0])


class Ftest(TestCase):
    """Tests for the F test"""

    def test_f_value(self):
        """f_value: should calculate the correct F value if possible"""
        a = array([1,3,5,7,9,8,6,4,2])
        b = array([5,4,6,3,7,6,4,5])
        self.assertEqual(f_value(a,b), (8,7,4.375))
        self.assertFloatEqual(f_value(b,a), (7,8,0.2285714))
        too_short = array([4])
        self.assertRaises(ValueError, f_value, too_short, b)
    
    def test_f_two_sample(self):
        """f_two_sample should match values from R""" 
        
        #The expected values in this test are obtained through R.
        #In R the F test is var.test(x,y) different alternative hypotheses
        #can be specified (two sided, less, or greater).
        #The vectors are random samples from a particular normal distribution
        #(mean and sd specified).
        
        #a: 50 elem, mean=0 sd=1
        a = [-0.70701689, -1.24788845, -1.65516470,  0.10443876, -0.48526915,
        -0.71820656, -1.02603596,  0.03975982, -2.23404324, -0.21509363,
        0.08438468, -0.01970062, -0.67907971, -0.89853667,  1.11137131,
        0.05960496, -1.51172084, -0.79733957, -1.60040659,  0.80530639,
        -0.81715836, -0.69233474,  0.95750665,  0.99576429, -1.61340216,
        -0.43572590, -1.50862327,  0.92847551, -0.68382338, -1.12523522,
        -0.09147488,  0.66756023, -0.87277588, -1.36539039, -0.11748707,
        -1.63632578, -0.31343078, -0.28176086,  0.33854483, -0.51785630,
        2.25360559, -0.80761191, 1.18983499,  0.57080342, -1.44601700,
        -0.53906955, -0.01975266, -1.37147915, -0.31537616,  0.26877544]

        #b: 50 elem, mean=0, sd=1.2
        b=[0.081418743,  0.276571612, -1.864316504,  0.675213612, -0.769202643,
         0.140372825, -1.426250184,  0.058617884, -0.819287409, -0.007701916,
        -0.782722020, -0.285891593,  0.661980419,  0.383225191,  0.622444946,
        -0.192446150,  0.297150571,  0.408896059, -0.167359383, -0.552381362,
         0.982168338,  1.439730446,  1.967616101, -0.579607307,  1.095590943,
         0.240591302, -1.566937143, -0.199091349, -1.232983905,  0.362378169,
         1.166061081, -0.604676222, -0.536560206, -0.303117595,  1.519222792,
        -0.319146503,  2.206220810, -0.566351124, -0.720397392, -0.452001377,
         0.250890097,  0.320685395, -1.014632725, -3.010346273, -1.703955054,
         0.592587381, -1.237451255,  0.172243366, -0.452641122, -0.982148581]
       
        #c: 60 elem, mean=5, sd=1
        c=[4.654329, 5.242129, 6.272640, 5.781779, 4.391241, 3.800752,
        4.559463, 4.318922, 3.243020, 5.121280, 4.126385, 5.541131,
        4.777480, 5.646913, 6.972584, 3.817172, 6.128700, 4.731467,
        6.762068, 5.082983, 5.298511, 5.491125, 4.532369, 4.265552,
        5.697317, 5.509730, 2.935704, 4.507456, 3.786794, 5.548383,
        3.674487, 5.536556, 5.297847, 2.439642, 4.759836, 5.114649,
        5.986774, 4.517485, 4.579208, 4.579374, 2.502890, 5.190955,
        5.983194, 6.766645, 4.905079, 4.214273, 3.950364, 6.262393,
        8.122084, 6.330007, 4.767943, 5.194029, 3.503136, 6.039079,
        4.485647, 6.116235, 6.302268, 3.596693, 5.743316, 6.860152]

        #d: 30 elem, mean=0, sd =0.05 
        d=[ 0.104517366,  0.023039678,  0.005579091,  0.052928250,  0.020724823,
        -0.060823243, -0.019000890, -0.064133996, -0.016321594, -0.008898334,
        -0.027626992, -0.051946186,  0.085269587, -0.031190678,  0.065172938,
        -0.054628573,  0.019257306, -0.032427056, -0.058767356,  0.030927400,
         0.052247357, -0.042954937,  0.031842104,  0.094130522, -0.024828465,
         0.011320453, -0.016195062,  0.015631245, -0.050335598, -0.031658335]

        a,b,c,d = map(array,[a,b,c,d])
        self.assertEqual(map(len,[a,b,c,d]), [50, 50, 60, 30])
        
        #allowed error. This big, because results from R 
        #are rounded at 4 decimals
        error = 1e-4 
                
        self.assertFloatEqual(f_two_sample(a,a), (49, 49, 1, 1), eps=error)
        self.assertFloatEqual(f_two_sample(a,b), (49, 49, 0.8575, 0.5925),
            eps=error)
        self.assertFloatEqual(f_two_sample(b,a), (49, 49, 1.1662, 0.5925),
            eps=error)
        self.assertFloatEqual(f_two_sample(a,b, tails='low'),
            (49, 49, 0.8575, 0.2963), eps=error)
        self.assertFloatEqual(f_two_sample(a,b, tails='high'),
            (49, 49, 0.8575, 0.7037), eps=error)
        self.assertFloatEqual(f_two_sample(a,c),
            (49, 59, 0.6587, 0.1345), eps=error)
        #p value very small, so first check df's and F value
        self.assertFloatEqualAbs(f_two_sample(d,a, tails='low')[0:3],
            (29, 49, 0.0028), eps=error)
        assert f_two_sample(d,a, tails='low')[3] < 2.2e-16 #p value


    def test_MonteCarloP(self):
        """MonteCarloP calcs a p-value from a val and list of random vals"""
        val = 3.0
        random_vals = [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]

        #test for "high" tail (larger values than expected by chance)
        p_val = MonteCarloP(val, random_vals, 'high')
        self.assertEqual(p_val, 0.7)

        #test for "low" tail (smaller values than expected by chance)
        p_val = MonteCarloP(val, random_vals, 'low')
        self.assertEqual(p_val, 0.4)

    def test_permute_2d(self):
        """permute_2d permutes rows and cols of a matrix."""
        a = reshape(arange(9), (3,3))
        self.assertEqual(permute_2d(a, [0,1,2]), a)
        self.assertEqual(permute_2d(a, [2,1,0]), \
            array([[8,7,6],[5,4,3],[2,1,0]]))
        self.assertEqual(permute_2d(a, [1,2,0]), \
            array([[4,5,3],[7,8,6],[1,2,0]]))

    def test_mantel(self):
        """mantel should be significant for same matrix, not for random"""
        a = reshape(arange(25), (5,5))
        b = a.copy()
        b[-1,-1] = 26    #slight change
        m = mantel(a, b, 1000)
        #closely related -- should be significant
        assert m < 0.05
        c = reshape(ones(25), (5,5))
        c[-1,-1] = 3
        #not related -- should not be significant
        m = mantel(a,c,1000)
        assert m > 0.3, m

class KendallTests(TestCase):
    """check accuracy of Kendall tests against values from R"""
    
    def do_test(self, x, y, alt_expecteds):
        """conducts the tests for each alternate hypothesis against expecteds"""
        for alt, exp_p, exp_tau in alt_expecteds:
            tau, p_val = kendall_correlation(x, y, alt=alt, warn=False)
            self.assertFloatEqual(tau, exp_tau, eps=1e-3)
            self.assertFloatEqual(p_val, exp_p, eps=1e-3)
    
    def test_exact_calcs(self):
        """calculations of exact probabilities should match R"""
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds = [["gt", 0.05972, 0.4444444],
                     ["lt",  0.9624, 0.4444444],
                     ["ts",  0.1194, 0.4444444]]
        self.do_test(x,y,expecteds)
    
    def test_with_ties(self):
        """tied values calculated from normal approx"""
        # R example with ties in x
        x = (44.4, 45.9, 41.9, 53.3, 44.4, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds = [#["gt", 0.05793, 0.4225771],
                     ["lt", 0.942, 0.4225771],
                     ["ts", 0.1159, 0.4225771]]
        self.do_test(x,y,expecteds)
        
        # R example with ties in y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = ( 2.6,  3.1,  2.5,  5.0,  3.1,  4.0,  5.2,  2.8,  3.8)
        expecteds = [["gt", 0.03737, 0.4789207],
                     ["lt",  0.9626, 0.4789207],
                     ["ts", 0.07474, 0.4789207]]
        self.do_test(x,y,expecteds)
        # R example with ties in x and y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 44.4, 60.1)
        y = ( 2.6,  3.6,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)
        expecteds=[["gt", 0.02891, 0.5142857],
                   ["lt",   0.971, 0.5142857],
                   ["ts", 0.05782, 0.5142857]]
        self.do_test(x,y,expecteds)
    
    def test_bigger_vectors(self):
        """docstring for test_bigger_vectors"""
        # q < expansion
        x= (0.118583104633, 0.227860069338, 0.143856130991, 0.935362617582,
            0.0471303856799, 0.659819202174, 0.739247965907, 0.268929000278,
            0.848250568194, 0.307764819102, 0.733949480141, 0.271662210481,
            0.155903098872)
        y= (0.749762144455, 0.407571703468, 0.934176427266, 0.188638794706,
            0.184844781493, 0.391485553856, 0.735504815302, 0.363655952442,
            0.18489971978, 0.851075466765, 0.139932273818, 0.333675110224,
            0.570250937033)
        expecteds = [["gt", 0.9183, -0.2820513],
                     ["lt", 0.1022, -0.2820513],
                     ["ts", 0.2044, -0.2820513]]
        self.do_test(x,y,expecteds)
        # q > expansion
        x= (0.2602556958, 0.441506392849, 0.930624643531, 0.728461775775,
            0.234341774892, 0.725677256368, 0.354788882728, 0.475882541956,
            0.347533553428, 0.608578046857, 0.144697962102, 0.784502692164,
            0.872607603407)
        y= (0.753056395718, 0.454332072011, 0.791882395707, 0.622853579015,
            0.127030232518, 0.232086215578, 0.586604349918, 0.0139051260749,
            0.579079370051, 0.0550643809812, 0.94798878249, 0.318410679439,
            0.86725134615)
        expecteds = [["gt", 0.4762, 0.02564103],
                     ["lt", 0.5711, 0.02564103],
                     ["ts", 0.9524, 0.02564103]]
        self.do_test(x,y,expecteds)

class TestDistMatrixPermutationTest(TestCase):
    """Tests of distance_matrix_permutation_test"""

    def setUp(self):
        """sets up variables for testing"""
        self.matrix = array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
        self.cells = [(0,1), (1,3)]
        self.cells2 = [(0,2), (2,3)]

    def test_get_ltm_cells(self):
        "get_ltm_cells converts indices to be below the diagonal"
        cells = [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(2, 0), (1, 0), (2, 1)])
        cells = [(0,1),(0,2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(2, 0), (1, 0)])

    def test_get_values_from_matrix(self):
        """get_values_from_matrix returns the special and other values from matrix"""
        matrix = self.matrix
        cells = [(1,0),(0,1),(2,0),(2,1)]
        #test that works for a symmetric matrix
        cells_sym = get_ltm_cells(cells)
        special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
         cells2=None, is_symmetric=True)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5,9,10])
        self.assertEqual(other_vals, [13,14,15])

        #test that work for a non symmetric matrix
        special_vals, other_vals = get_values_from_matrix(matrix, cells,\
         cells2=None, is_symmetric=False)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2,5,9,10])
        self.assertEqual(other_vals, [1,3,4,6,7,8,11,12,13,14,15,16])

        #test that works on a symmetric matrix when cells2 is defined
        cells2 = [(3,0),(3,2),(0,3)]
        cells2_sym = get_ltm_cells(cells2)
        special_vals, other_vals = get_values_from_matrix(matrix, cells_sym,\
         cells2=cells2_sym, is_symmetric=True)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5,9,10])
        self.assertEqual(other_vals, [13,15])

        #test that works when cells2 is defined and not symmetric
        special_vals, other_vals = get_values_from_matrix(matrix, cells, cells2=cells2,\
         is_symmetric=False)
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2,5,9,10])
        self.assertEqual(other_vals, [4,13,15])

    def test_distance_matrix_permutation_test_non_symmetric(self):
        """ evaluate empirical p-values for a non symmetric matrix 

            To test the empirical p-values, we look at a simple 3x3 matrix 
             b/c it is easy to see what t score every permutation will 
             generate -- there's only 6 permutations. 
             Running dist_matrix_test with n=1000, we expect that each 
             permutation will show up 160 times, so we know how many 
             times to expect to see more extreme t scores. We therefore 
             know what the empirical p-values will be. (n=1000 was chosen
             empirically -- smaller values seem to lead to much more frequent
             random failures.)


        """
        def make_result_list(*args, **kwargs):
            return [distance_matrix_permutation_test(*args,**kwargs)[2] \
                for i in range(10)]

        m = arange(9).reshape((3,3))
        n = 100
        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
            tails='high')
        self.assertSimilarMeans(r, 4./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,is_symmetric=False,\
            tails='low')
        self.assertSimilarMeans(r, 0./6.)
        
        # looks at each possible permutation n times --
        # compare last row to rest
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
            tails='high')
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(2,0),(2,1),(2,2)],n=n,is_symmetric=False,\
            tails='low')
        self.assertSimilarMeans(r, 4./6.)

    def test_distance_matrix_permutation_test_symmetric(self):
        """ evaluate empirical p-values for symmetric matrix

            See test_distance_matrix_permutation_test_non_symmetric 
            doc string for a description of how this test works. 

        """
        def make_result_list(*args, **kwargs):
            return [distance_matrix_permutation_test(*args)[2] for i in range(10)]

        m = array([[0,1,3],[1,2,4],[3,4,5]])
        # looks at each possible permutation n times -- 
        # compare first row to rest
        n = 100

        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n)
        self.assertSimilarMeans(r, 0./6.)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='high')
        self.assertSimilarMeans(r, 0.77281447417149496,0)
        r = make_result_list(m, [(0,0),(0,1),(0,2)],n=n,tails='low')
        self.assertSimilarMeans(r, 4./6.)

        ## The following lines are not part of the test code, but are useful in 
        ## figuring out what t-scores all of the permutations will yield. 
        #permutes = [[0, 1, 2], [0, 2, 1], [1, 0, 2],\
        # [1, 2, 0], [2, 0, 1], [2, 1, 0]]
        #results = []
        #for p in permutes:
        #    p_m = permute_2d(m,p)
        #    results.append(t_two_sample(\
        #     [p_m[0,1],p_m[0,2]],[p_m[2,1]],tails='high'))
        #print results

    def test_distance_matrix_permutation_test_alt_stat(self):
        def fake_stat_test(a,b,tails=None):
            return 42.,42.
        m = array([[0,1,3],[1,2,4],[3,4,5]])
        self.assertEqual(distance_matrix_permutation_test(m,\
            [(0,0),(0,1),(0,2)],n=5,f=fake_stat_test),(42.,42.,0.))

    def test_distance_matrix_permutation_test_return_scores(self):
        """ return_scores=True functions as expected """
        # use alt statistical test to make results simple
        def fake_stat_test(a,b,tails=None):
            return 42.,42.
        m = array([[0,1,3],[1,2,4],[3,4,5]])
        self.assertEqual(distance_matrix_permutation_test(\
            m,[(0,0),(0,1),(0,2)],\
            n=5,f=fake_stat_test,return_scores=True),(42.,42.,0.,[42.]*5))
    
    def test_ANOVA_one_way(self):
        """ANOVA one way returns same values as ANOVA on a stats package
        """
        g1 = Numbers([10.0, 11.0, 10.0, 5.0, 6.0])
        g2 = Numbers([1.0, 2.0, 3.0, 4.0, 1.0, 2.0])
        g3 = Numbers([6.0, 7.0, 5.0, 6.0, 7.0])
        i = [g1, g2, g3]
        dfn, dfd, F, between_MS, within_MS, group_means, prob = ANOVA_one_way(i)
        self.assertEqual(dfn, 2)
        self.assertEqual(dfd, 13)
        self.assertFloatEqual(F, 18.565450643776831)
        self.assertFloatEqual(between_MS, 55.458333333333343)
        self.assertFloatEqual(within_MS, 2.9871794871794868)
        self.assertFloatEqual(group_means, [8.4000000000000004, 2.1666666666666665, 6.2000000000000002])
        self.assertFloatEqual(prob, 0.00015486238993089464)

#execute tests if called from command line
if __name__ == '__main__':
    main()
