Package: cain / 1.10+dfsg-2

help.patch Patch series | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Description: b0rken links
 This patch fixes some broken links in the documentation.
 .
 cain (1.9-2) unstable; urgency=low
 .
   * changed the partitioning of the package
Author: Ivo Maintz <ivo@maintz.de>
Bug-Ubuntu: https://bugs.launchpad.net/bugs/1032304
Last-Update: Fri, 10 Aug 2012 11:40:11 +0200

--- a/help/UserSolvers.htm
+++ b/help/UserSolvers.htm
@@ -221,14 +221,14 @@ The methods that require exponential dev
 	is generated by a linear search on the groups followed by selecting
 	a reaction within a group with the method of rejection.
 	This solver implements a slightly modified version of the composition
-	rejection method presented in [<a href="slepoy2008">Slepoy 2008</a>].
+	rejection method presented in [<a href="Bibliography.htm#slepoy2008">Slepoy 2008</a>].
 	<li>
 	<tt>Binary search, full CMF</tt>
 	- Generate O(log <em>M</em>). Modify O(<em>M</em>).
 	The cumulative mass function (CMF) is stored in an array. This allows
 	one to generate a discrete deviate with a binary search on that array.
 	At each time step the CMF is regenerated. This is an implementation
-	of the logarithmic direct method [<a href="li2006">Li 2006</a>].
+	of the logarithmic direct method [<a href="Bibliography.htm#li2006">Li 2006</a>].
 	<li>
 	<tt>Binary search, sorted CMF</tt>
 	- Generate O(log <em>M</em>). Modify O(<em>M</em>).
@@ -244,7 +244,7 @@ The methods that require exponential dev
         - Generate O(log <em>M</em>). Modify O(log <em>M</em>).
         Instead of storing the full CMF, a partial, recursive CMF is used.
         This approach is equivalent to the method presented in
-        [<a href="gibson2000">Gibson 2000</a>]. A deviate can be generated
+        [<a href="Bibliography.htm#gibson2000">Gibson 2000</a>]. A deviate can be generated
         with a binary search. Modifying a propensity affects at most
         log<sub>2</sub> <em>M</em> elements of the partial, recursive CMF.
         <li>