Package: python-ete3 / 3.1.2+dfsg-3

syntax_fixes.patch Patch series | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
Author: Andreas Tille <tille@debian.org>
Last-Update: Mon, 29 Oct 2018 14:47:53 +0100
Description: Run 2to3 on examples
Forwarded: Jaime Huerta-Cepas <huerta@embl.de>

--- a/examples/clustering/bubbles_validation.py
+++ b/examples/clustering/bubbles_validation.py
@@ -13,7 +13,7 @@ array =  t.arraytable
 
 # Calculates some stats on the matrix. Needed to establish the color
 # gradients.
-matrix_dist = [i for r in xrange(len(array.matrix))\
+matrix_dist = [i for r in range(len(array.matrix))\
                for i in array.matrix[r] if numpy.isfinite(i)]
 matrix_max = numpy.max(matrix_dist)
 matrix_min = numpy.min(matrix_dist)
--- a/examples/clustering/cluster_visualization.py
+++ b/examples/clustering/cluster_visualization.py
@@ -13,8 +13,8 @@ F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.7
 G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
 H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
 """
-print "Example numerical matrix"
-print matrix
+print("Example numerical matrix")
+print(matrix)
 # #Names  col1    col2    col3    col4    col5    col6    col7
 # A       -1.23   -0.81   1.79    0.78    -0.42   -0.69   0.58
 # B       -1.76   -0.94   1.16    0.36    0.41    -0.35   1.12
--- a/examples/clustering/clustering_tree.py
+++ b/examples/clustering/clustering_tree.py
@@ -13,8 +13,8 @@ F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.7
 G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
 H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
 """
-print "Example numerical matrix"
-print matrix
+print("Example numerical matrix")
+print(matrix)
 # #Names  col1    col2    col3    col4    col5    col6    col7
 # A       -1.23   -0.81   1.79    0.78    -0.42   -0.69   0.58
 # B       -1.76   -0.94   1.16    0.36    0.41    -0.35   1.12
@@ -30,7 +30,7 @@ print matrix
 # numerical matrix. We use the text_array argument to link the tree
 # with numerical matrix.
 t = ClusterTree("(((A,B),(C,(D,E))),(F,(G,H)));", text_array=matrix)
-print "Example tree", t
+print("Example tree", t)
 #                              /-A
 #                    /--------|
 #                   |          \-B
@@ -49,18 +49,18 @@ print "Example tree", t
 
 # Now we can ask the numerical profile associated to each node
 A = t.search_nodes(name='A')[0]
-print "A associated profile:\n", A.profile
+print("A associated profile:\n", A.profile)
 # [-1.23 -0.81  1.79  0.78 -0.42 -0.69  0.58]
 #
 # Or we can ask for the mean numerical profile of an internal
 # partition, which is computed as the average of all vectors under the
 # the given node.
 cluster = t.get_common_ancestor("E", "A")
-print "Internal cluster mean profile:\n", cluster.profile
+print("Internal cluster mean profile:\n", cluster.profile)
 #[-1.574 -0.686  1.048 -0.012 -0.118  0.614  0.728]
 #
 # We can also obtain the std. deviation vector of the mean profile
-print "Internal cluster std deviation profile:\n", cluster.deviation
+print("Internal cluster std deviation profile:\n", cluster.deviation)
 #[ 0.36565558  0.41301816  0.40676283  0.56211743  0.50704635  0.94949671
 #  0.26753691]
 # If would need to re-link the tree to a different matrix or use
@@ -96,7 +96,7 @@ H\t0\t0\t0\t0\t0\t0\t0
 # obviated from association.
 t.children[0].link_to_arraytable(matrix_ones)
 t.children[1].link_to_arraytable(matrix_zeros)
-print "A profile (using matrix with 1s", (t&"A").profile
-print "H profile (using matrix with 0s)", (t&"H").profile
+print("A profile (using matrix with 1s", (t&"A").profile)
+print("H profile (using matrix with 0s)", (t&"H").profile)
 #A profile (using matrix with 1s [ 1.  1.  1.  1.  1.  1.  1.]
 #H profile (using matrix with 0s) [ 0.  0.  0.  0.  0.  0.  0.]
--- a/examples/evol/1_freeratio.py
+++ b/examples/evol/1_freeratio.py
@@ -23,13 +23,13 @@ tree = EvolTree ("data/S_example/measuri
 
 print (tree)
 
-input ('\n   tree loaded, hit some key.\n')
+eval(input ('\n   tree loaded, hit some key.\n'))
 
 print ('Now, it is necessary to link this tree to an alignment:')
 
 tree.link_to_alignment ('data/S_example/alignment_S_measuring_evol.fasta')
 
-input ('\n   alignment loaded, hit some key to see.\n')
+eval(input ('\n   alignment loaded, hit some key to see.\n'))
 
 tree.show()
 
@@ -38,28 +38,28 @@ we will run free-ratio model that is one
 function run_model:
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 ''')
-print (tree.run_model.__doc__ +'\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
+print(tree.run_model.__doc__ +'\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
 
 tree.run_model ('fb.example')
 
-input ('free-ratio model runned, all results are store in a Model object.')
+eval(input ('free-ratio model runned, all results are store in a Model object.'))
 
 fb = tree.get_evol_model('fb.example')
 
 print ('Have a look to the parameters used to run this model on codeml: ')
-print (fb.get_ctrl_string())
-input ('hit some key...')
+print(fb.get_ctrl_string())
+eval(input ('hit some key...'))
 
 
 print ('Have a look to run message of codeml: ')
-print (fb.run)
-input ('hit some key...')
+print(fb.run)
+eval(input ('hit some key...'))
 
 print ('Have a look to log likelihood value of this model, and number of parameters:')
-print ('lnL: %s and np: %s' % (fb.lnL, fb.np))
-input ('hit some key...')
+print('lnL: %s and np: %s' % (fb.lnL, fb.np))
+eval(input ('hit some key...'))
 
-input ('finally have a look to two layouts available to display free-ratio:')
+eval(input ('finally have a look to two layouts available to display free-ratio:'))
 tree.show()
 
 # have to import layou
--- a/examples/evol/2_sites_model.py
+++ b/examples/evol/2_sites_model.py
@@ -24,14 +24,14 @@ try:
 except NameError:
     pass
 
-input ('\n   tree and alignment loaded\n Hit some key, to start computation of site models M1 and M2.\n')
+eval(input ('\n   tree and alignment loaded\n Hit some key, to start computation of site models M1 and M2.\n'))
 
 print ('running model M1')
 tree.run_model ('M1')
 print ('running model M2')
 tree.run_model ('M2')
 
-print ('\n\n comparison of models M1 and M2, p-value: ' + str(tree.get_most_likely ('M2','M1')))
+print('\n\n comparison of models M1 and M2, p-value: ' + str(tree.get_most_likely ('M2','M1')))
 
 #tree.show()
 
@@ -73,8 +73,8 @@ tree.run_model ('M8a')
 print ('running model M3')
 tree.run_model ('M3')
 
-print ('\n\n comparison of models M7 and M8, p-value: ' + str(tree.get_most_likely ('M8','M7')))
-print ('\n\n comparison of models M8a and M8, p-value: ' + str(tree.get_most_likely ('M8','M8a')))
+print('\n\n comparison of models M7 and M8, p-value: ' + str(tree.get_most_likely ('M8','M7')))
+print('\n\n comparison of models M8a and M8, p-value: ' + str(tree.get_most_likely ('M8','M8a')))
 
 
 print ('The End.')
--- a/examples/evol/3_branchsite_test.py
+++ b/examples/evol/3_branchsite_test.py
@@ -34,9 +34,9 @@ tree.run_model('M0')
 
 for leaf in tree:
     leaf.node_id
-    print ('\n---------\nNow working with leaf ' + leaf.name)
+    print('\n---------\nNow working with leaf ' + leaf.name)
     tree.mark_tree([leaf.node_id], marks=['#1'])
-    print (tree.write())
+    print(tree.write())
     # to organize a bit, we name model with the name of the marked node
     # any character after the dot, in model name, is not taken into account
     # for computation. (have a look in /tmp/ete3.../bsA.. directory)
@@ -46,9 +46,9 @@ for leaf in tree:
     print ('p-value of positive selection for sites on this branch is: ')
     ps = tree.get_most_likely('bsA.' + leaf.name, 'bsA1.'+ leaf.name)
     rx = tree.get_most_likely('bsA1.'+ leaf.name, 'M0')
-    print (str(ps))
+    print(str(ps))
     print ('p-value of relaxation for sites on this branch is: ')
-    print (str(rx))
+    print(str(rx))
     model = tree.get_evol_model("bsA." + leaf.name)
     if ps < 0.05 and float(model.classes['foreground w'][2]) > 1:
         print ('we have positive selection on sites on this branch')
@@ -58,7 +58,7 @@ for leaf in tree:
     else:
         print ('no signal detected on this branch, best fit for M0')
     print ('\nclean tree, remove marks')
-    tree.mark_tree(map(lambda x: x.node_id, tree.get_descendants()),
+    tree.mark_tree([x.node_id for x in tree.get_descendants()],
                     marks=[''] * len(tree.get_descendants()), verbose=True)
 
 # nothing working yet to get which sites are under positive selection/relaxation,
--- a/examples/evol/4_branch_models.py
+++ b/examples/evol/4_branch_models.py
@@ -28,12 +28,12 @@ tree.link_to_alignment ('data/S_example/
 print (tree)
 
 print ('Tree and alignment loaded.')
-input ('Tree will be mark in order to contrast Gorilla and Chimpanzee as foreground \nspecies.')
+eval(input ('Tree will be mark in order to contrast Gorilla and Chimpanzee as foreground \nspecies.'))
 
 marks = ['1', '3', '7']
 
 tree.mark_tree (marks, ['#1'] * 3)
-print (tree.write ())
+print(tree.write ())
 
 print ('we can easily colorize marked branches')
 # display marked branches in orange
@@ -57,13 +57,13 @@ tree.run_model ('b_neut.137')
 print ('running M0 (all branches have the save value of omega)...')
 tree.run_model ('M0')
 
-input ('''Now we can do comparisons...
+eval(input ('''Now we can do comparisons...
 Compare first if we have one or 2 rates of evolution among phylogeny.
 LRT between b_free and M0 (that is one or two rates of omega value)
-p-value ofthis comparison is:''')
-print (tree.get_most_likely ('b_free.137', 'M0'))
+p-value ofthis comparison is:'''))
+print(tree.get_most_likely ('b_free.137', 'M0'))
 
-input ('''
+eval(input ('''
 Now test if foreground rate is significantly different of 1.
 (b_free with significantly better likelihood than b_neut)
 if significantly different, and higher than one, we will be under
@@ -71,17 +71,17 @@ positive selection, if different and low
 negative selection. And finally if models are not significantly different
 we should accept null hypothesis that omega value on marked branches is
 equal to 1, what would be a signal of relaxation.
-p-value for difference in rates between marked branches and the rest:''')
-print (tree.get_most_likely ('b_free.137', 'M0'))
+p-value for difference in rates between marked branches and the rest:'''))
+print(tree.get_most_likely ('b_free.137', 'M0'))
 print ('p-value representing significance that omega is different of 1:')
-print (tree.get_most_likely ('b_free.137', 'b_neut.137'))
+print(tree.get_most_likely ('b_free.137', 'b_neut.137'))
 
 print ('value of omega in marked branch (frg branch):')
 b_free = tree.get_evol_model ('b_free.137')
-print (b_free.branches[1]['w'])
+print(b_free.branches[1]['w'])
 
 print ('and value of omega for background: ')
-print (b_free.branches[2]['w'])
+print(b_free.branches[2]['w'])
 
 print ('we will now run 2 branch models over this tree, one letting the omega \nvalue of foreground species to be free, and the other fixing it at one.\n')
 
--- a/examples/evol/5_branchsite_cladetest.py
+++ b/examples/evol/5_branchsite_cladetest.py
@@ -26,12 +26,12 @@ tree.link_to_alignment ('data/S_example/
 print (tree)
 
 print ('Tree and alignment loaded.')
-input ('Tree will be mark in order to contrast Gorilla and Chimpanzee as foreground \nspecies.')
+eval(input ('Tree will be mark in order to contrast Gorilla and Chimpanzee as foreground \nspecies.'))
 
 marks = ['1', 3, '7']
 
 tree.mark_tree (marks, ['#1'] * 3)
-print (tree.write ())
+print(tree.write ())
 
 # display marked branches in orange
 for node in tree.traverse ():
@@ -65,7 +65,7 @@ tree.run_model ('M1')
 
 print ('''p-value that, in marked clade, we have one class of site
 specifically evolving at a different rate:''')
-print (tree.get_most_likely ('bsC.137', 'M1'))
+print(tree.get_most_likely ('bsC.137', 'M1'))
 #print ('p-value representing significance that omega is different of 1:')
 #print (tree.get_most_likely ('bsD.137', 'M3'))
 
--- a/examples/evol/measuring_evolution_trees.py
+++ b/examples/evol/measuring_evolution_trees.py
@@ -7,7 +7,7 @@ import sys, re
 
 typ = None
 while typ != 'L' and typ != 'S':
-    typ = raw_input(\
+    typ = input(\
         "choose kind of example [L]ong or [S]hort, hit [L] or [S]:\n").upper()
 TREE_PATH    = "data/%s_example/measuring_%s_tree.nw" % (typ, typ)
 
@@ -24,8 +24,8 @@ ALG_PATH  = MY_PATH + re.sub('\./', '',
 # load tree
 
 
-print '\n         ----> we create a EvolTree object, and give to him a topology, from',
-print TREE_PATH
+print('\n         ----> we create a EvolTree object, and give to him a topology, from\n')
+print(TREE_PATH)
 out = True
 while out == True:
     try:
@@ -33,7 +33,7 @@ while out == True:
         out = False
     except:
         sys.stderr.write('Bad path for working directory. Enter new path or quit("Q"):\n')
-        PATH = raw_input('')
+        PATH = input('')
         if PATH.startswith('q') or PATH.startswith('Q'):
             sys.exit()
         TREE_PATH    = "./measuring_%s_tree.nw" % (typ)
@@ -42,62 +42,62 @@ while out == True:
         ALG_PATH  = PATH + re.sub('\./', '', ALG_PATH )
 
 
-print T
-print '\n         ----> and an alignment from: \n'+ALG_PATH+'\n\n'
+print(T)
+print('\n         ----> and an alignment from: \n'+ALG_PATH+'\n\n')
 T.link_to_alignment(ALG_PATH)
-raw_input("         ====> hit some key to see the Tree with alignment")
+input("         ====> hit some key to see the Tree with alignment")
 T.show()
 
 ###
 # run free-branch model, and display result
-print '\n\n\n         ----> We define now our working directory, that will be created:', \
-      WORKING_PATH
+print('\n\n\n         ----> We define now our working directory, that will be created:', \
+      WORKING_PATH)
 T.workdir = (WORKING_PATH)
-print '\n            ----> and run the free-branch model with run_model function:\n\n%s\n%s\n%s\n'\
-      % ('*'*10 + ' doc ' + '*'*10, T.run_model.func_doc, '*'*30)
+print('\n            ----> and run the free-branch model with run_model function:\n\n%s\n%s\n%s\n'\
+      % ('*'*10 + ' doc ' + '*'*10, T.run_model.__doc__, '*'*30))
 
-raw_input("         ====> Hit some key to start free-branch computation with codeml...\n")
+input("         ====> Hit some key to start free-branch computation with codeml...\n")
 T.run_model('fb')
 T.show()
 
 ###
 # run site model, and display result
-print '\n\n\n         ----> We are now goingn to run sites model M1 and M2 with run_model function:\n'
-raw_input("         ====> hit some key to start")
+print('\n\n\n         ----> We are now goingn to run sites model M1 and M2 with run_model function:\n')
+input("         ====> hit some key to start")
 for model in ['M1', 'M2']:
-    print 'running model ' + model
+    print('running model ' + model)
     T.run_model(model)
 
-print '\n\n\n            ----> and use the get_most_likely function to compute the LRT between those models:\n'
-print 'get_most_likely function: \n\n'+ '*'*10 + ' doc ' + '*'*10
-print '\n' + T.get_most_likely.func_doc
-print '*'*30
+print('\n\n\n            ----> and use the get_most_likely function to compute the LRT between those models:\n')
+print('get_most_likely function: \n\n'+ '*'*10 + ' doc ' + '*'*10)
+print('\n' + T.get_most_likely.__doc__)
+print('*'*30)
 
-raw_input("\n         ====> Hit some key to launch LRT")
+input("\n         ====> Hit some key to launch LRT")
 
 pv = T.get_most_likely('M2', 'M1')
 if pv <= 0.05:
-    print '         ---->   -> most likely model is model M2, there is positive selection, pval: ',pv
+    print('         ---->   -> most likely model is model M2, there is positive selection, pval: ',pv)
 else:
-    print '         ---->   -> most likely model is model M1, pval: ',pv
+    print('         ---->   -> most likely model is model M1, pval: ',pv)
 
-raw_input("         ====> Hit some key...")
+input("         ====> Hit some key...")
 
 ###
 # tengo que encontrar un ejemplo mas bonito pero bueno.... :P
 
-print '\n\n\n         ----> We now add histograms to our tree to repesent site models with add_histface function: \n\n%s\n%s\n%s\n'\
-      % ('*'*10 + ' doc ' + '*'*10, T.get_evol_model('M2').set_histface.func_doc,'*'*30)
-print 'Upper face is an histogram representing values of omega for each column in the alignment,'
-print '\
+print('\n\n\n         ----> We now add histograms to our tree to repesent site models with add_histface function: \n\n%s\n%s\n%s\n'\
+      % ('*'*10 + ' doc ' + '*'*10, T.get_evol_model('M2').set_histface.__doc__,'*'*30))
+print('Upper face is an histogram representing values of omega for each column in the alignment,')
+print('\
 Colors represent significantly conserved sites(cyan to blue), neutral sites(greens), or under \n\
 positive selection(orange to red). \n\
 Lower face also represents values of omega(red line) and bars represent the error of the estimation.\n\
 Also significance of belonging to one class of site can be painted in background(here lightgrey for\n\
 evrething significant)\n\
 Both representation are done according to BEB estimation of M2, M1 or M7 estimation can also be \n\
-drawn but should not be used.\n'
-raw_input("         ====> Hit some key to display, histograms of omegas BEB from M2 model...")
+drawn but should not be used.\n')
+input("         ====> Hit some key to display, histograms of omegas BEB from M2 model...")
 
 col = {'NS' : 'grey',
        'RX' : 'grey',
@@ -118,12 +118,12 @@ T.show(histfaces = ['M1', 'M2'])
 
 ###
 # re-run without reeeeeeeeee-run
-print '\n\n\n         ----> Now we have runned once those 3 models, we can load again our tree from'
-print '         ----> our tree file and alignment file, and this time load directly oufiles from previous'
-print '               with the function link_to_evol_model \n\n%s\n%s\n%s\n' % ('*'*10 + ' doc ' + '*'*10, \
-                                                                      T.link_to_evol_model.func_doc, \
-                                                                      '*'*30)
-raw_input('runs\n         ====> hit some key to see...')
+print('\n\n\n         ----> Now we have runned once those 3 models, we can load again our tree from')
+print('         ----> our tree file and alignment file, and this time load directly oufiles from previous')
+print('               with the function link_to_evol_model \n\n%s\n%s\n%s\n' % ('*'*10 + ' doc ' + '*'*10, \
+                                                                      T.link_to_evol_model.__doc__, \
+                                                                      '*'*30))
+input('runs\n         ====> hit some key to see...')
 T = EvolTree(TREE_PATH)
 T.link_to_alignment(ALG_PATH)
 T.workdir = (WORKING_PATH)
@@ -141,41 +141,41 @@ T.show(histfaces = ['M1', 'M2'])
 
 ###
 # mark tree functionality
-print T.write(format=10)
+print(T.write(format=10))
 name = None
 while name not in T.get_leaf_names():
-    name = raw_input('         ====> As you need to mark some branches to run branch\n\
+    name = input('         ====> As you need to mark some branches to run branch\n\
     models, type the name of one leaf: ')
 
 idname = T.get_leaves_by_name(name)[0].node_id
 
-print '         ----> you want to mark:',name,'that has this idname: ', idname
+print('         ----> you want to mark:',name,'that has this idname: ', idname)
 T.mark_tree([idname]) # by default will mark with '#1'
-print 'have a look to the mark: '
-print re.sub('#','|',re.sub('[0-9a-zA-Z_(),;]',' ',T.write(format=10)))
-print re.sub('#','v',re.sub('[0-9a-zA-Z_(),;]',' ',T.write(format=10)))
-print T.write(format=10)
-print '\n You have marked the tree with a command like:  T.mark_tree([%d])\n' % (idname)
-print '\n%s\n%s\n%s\n' % ('*'*10 + ' doc ' + '*'*10, T.mark_tree.func_doc, \
-                                                                      '*'*30)
+print('have a look to the mark: ')
+print(re.sub('#','|',re.sub('[0-9a-zA-Z_(),;]',' ',T.write(format=10))))
+print(re.sub('#','v',re.sub('[0-9a-zA-Z_(),;]',' ',T.write(format=10))))
+print(T.write(format=10))
+print('\n You have marked the tree with a command like:  T.mark_tree([%d])\n' % (idname))
+print('\n%s\n%s\n%s\n' % ('*'*10 + ' doc ' + '*'*10, T.mark_tree.__doc__, \
+                                                                      '*'*30))
 
-print '\n\n\n         ----> We are now going to run branch-site models bsA and bsA1:\n\n'
-raw_input("         ====> hit some key to start computation with our marked tree")
+print('\n\n\n         ----> We are now going to run branch-site models bsA and bsA1:\n\n')
+input("         ====> hit some key to start computation with our marked tree")
 for model in ['bsA','bsA1']:
-    print 'running model ' + model
+    print('running model ' + model)
     T.run_model(model)
 
 
-print '\n\n\n            ----> again we use the get_most_likely function to compute the LRT between those models:\n'
-raw_input("         ====> Hit some key to launch LRT")
+print('\n\n\n            ----> again we use the get_most_likely function to compute the LRT between those models:\n')
+input("         ====> Hit some key to launch LRT")
 
 pv = T.get_most_likely('bsA', 'bsA1')
 if pv <= 0.05:
-    print '         ---->   -> most likely model is model bsA, there is positive selection, pval: ',pv
-    print '                         ' + name + ' is under positive selection.'
+    print('         ---->   -> most likely model is model bsA, there is positive selection, pval: ',pv)
+    print('                         ' + name + ' is under positive selection.')
 else:
-    print '         ---->   -> most likely model is model bsA1, pval of LRT: ',pv
-    print '                         ' + name + ' is not under positive selection.'
+    print('         ---->   -> most likely model is model bsA1, pval of LRT: ',pv)
+    print('                         ' + name + ' is not under positive selection.')
 
 
 sys.stderr.write('\n\nThe End.\n\n')
--- a/examples/evol/test_protamine.py
+++ b/examples/evol/test_protamine.py
@@ -30,15 +30,15 @@ def main():
     tree.link_to_evol_model (WRKDIR + 'paml/M7/M7.out', 'M7')
     tree.link_to_evol_model (WRKDIR + 'paml/M8/M8.out', 'M8')
     tree.link_to_alignment  (WRKDIR + 'alignments.fasta_ali')
-    print 'pv of LRT M2 vs M1: ',
-    print tree.get_most_likely ('M2','M1')
-    print 'pv of LRT M8 vs M7: ',
-    print tree.get_most_likely ('M8','M7')
+    print('pv of LRT M2 vs M1: \n')
+    print(tree.get_most_likely ('M2','M1'))
+    print('pv of LRT M8 vs M7: \n')
+    print(tree.get_most_likely ('M8','M7'))
 
 
     tree.show (histfaces=['M2'])
 
-    print 'The End.'
+    print('The End.')
 
 
 def random_swap(tree):
@@ -49,9 +49,9 @@ def random_swap(tree):
 def check_annotation (tree):
     for node in tree.iter_descendants():
         if not hasattr (node, 'paml_id'):
-            print 'Error, unable to label with paml ids'
+            print('Error, unable to label with paml ids')
             break
-    print 'Labelling ok!'
+    print('Labelling ok!')
 
 
 if __name__ == "__main__":
--- a/examples/general/add_features.py
+++ b/examples/general/add_features.py
@@ -2,7 +2,7 @@ import random
 from ete3 import Tree
 # Creates a normal tree
 t = Tree( '((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:0.5,(J:1.3, (F:1.2, D:0.1):0.5):0.5):0.5):0.5);' )
-print t
+print(t)
 # Let's locate some nodes using the get common ancestor method
 ancestor=t.get_common_ancestor("J", "F", "C")
 # the search_nodes method (I take only the first match )
@@ -26,8 +26,8 @@ for leaf in t.traverse():
     else:
         leaf.add_features(vowel=False, confidence=random.random())
 # Now we use these information to analyze the tree.
-print "This tree has", len(t.search_nodes(vowel=True)), "vowel nodes"
-print "Which are", [leaf.name for leaf in t.iter_leaves() if leaf.vowel==True]
+print("This tree has", len(t.search_nodes(vowel=True)), "vowel nodes")
+print("Which are", [leaf.name for leaf in t.iter_leaves() if leaf.vowel==True])
 # But features may refer to any kind of data, not only simple
 # values. For example, we can calculate some values and store them
 # within nodes.
@@ -38,10 +38,10 @@ matches = [leaf for leaf in ancestor.tra
 # And save this pre-computed information into the ancestor node
 ancestor.add_feature("long_branch_nodes", matches)
 # Prints the precomputed nodes
-print "These are nodes under ancestor with long branches", \
-    [n.name for n in ancestor.long_branch_nodes]
+print("These are nodes under ancestor with long branches", \
+    [n.name for n in ancestor.long_branch_nodes])
 # We can also use the add_feature() method to dynamically add new features.
-label = raw_input("custom label:")
-value = raw_input("custom label value:")
+label = input("custom label:")
+value = input("custom label value:")
 ancestor.add_feature(label, value)
-print "Ancestor has now the [", label, "] attribute with value [", value, "]"
+print("Ancestor has now the [", label, "] attribute with value [", value, "]")
--- a/examples/general/byoperand_search.py
+++ b/examples/general/byoperand_search.py
@@ -8,14 +8,14 @@ path = []
 while node.up:
     path.append(node)
     node = node.up
-print t
+print(t)
 # I substract D node from the total number of visited nodes
-print "There are", len(path)-1, "nodes between D and the root"
+print("There are", len(path)-1, "nodes between D and the root")
 # Using parentheses you can use by-operand search syntax as a node
 # instance itself
 Dsparent= (t&"C").up
 Bsparent= (t&"B").up
 Jsparent= (t&"J").up
 # I check if nodes belong to certain partitions
-print "It is", Dsparent in Bsparent, "that C's parent is under B's ancestor"
-print "It is", Dsparent in Jsparent, "that C's parent is under J's ancestor"
+print("It is", Dsparent in Bsparent, "that C's parent is under B's ancestor")
+print("It is", Dsparent in Jsparent, "that C's parent is under J's ancestor")
--- a/examples/general/copy_and_paste_trees.py
+++ b/examples/general/copy_and_paste_trees.py
@@ -3,13 +3,13 @@ from ete3 import Tree
 t1 = Tree('(A,(B,C));')
 t2 = Tree('((D,E), (F,G));')
 t3 = Tree('(H, ((I,J), (K,L)));')
-print "Tree1:", t1
+print("Tree1:", t1)
 #            /-A
 #  ---------|
 #           |          /-B
 #            \--------|
 #                      \-C
-print "Tree2:", t2
+print("Tree2:", t2)
 #                      /-D
 #            /--------|
 #           |          \-E
@@ -17,7 +17,7 @@ print "Tree2:", t2
 #           |          /-F
 #            \--------|
 #                      \-G
-print "Tree3:", t3
+print("Tree3:", t3)
 #            /-H
 #           |
 #  ---------|                    /-I
@@ -32,7 +32,7 @@ A = t1.search_nodes(name='A')[0]
 # and adds the two other trees as children.
 A.add_child(t2)
 A.add_child(t3)
-print "Resulting concatenated tree:", t1
+print("Resulting concatenated tree:", t1)
 #                                          /-D
 #                                /--------|
 #                               |          \-E
--- a/examples/general/create_trees_from_scratch.py
+++ b/examples/general/create_trees_from_scratch.py
@@ -15,7 +15,7 @@ R = A.add_child(name="R") # Adds a third
 # randomly.
 R.populate(6, names_library=["r1","r2","r3","r4","r5","r6"])
 # Prints the tree topology
-print t
+print(t)
 #                     /-C
 #                    |
 #                    |--D
--- a/examples/general/custom_search.py
+++ b/examples/general/custom_search.py
@@ -10,9 +10,9 @@ def conditional_function(node):
 # method in the filter function. This will iterate over all nodes to
 # assess if they meet our custom conditions and will return a list of
 # matches.
-matches = filter(conditional_function, t.traverse())
-print len(matches), "nodes have distance >0.3"
+matches = list(filter(conditional_function, t.traverse()))
+print(len(matches), "nodes have distance >0.3")
 # depending on the complexity of your conditions you can do the same
 # in just one line with the help of lambda functions:
-matches = filter(lambda n: n.dist>0.3 and n.is_leaf(), t.traverse() )
-print len(matches), "nodes have distance >0.3 and are leaves"
+matches = [n for n in t.traverse() if n.dist>0.3 and n.is_leaf()]
+print(len(matches), "nodes have distance >0.3 and are leaves")
--- a/examples/general/custom_tree_traversing.py
+++ b/examples/general/custom_tree_traversing.py
@@ -3,7 +3,7 @@ t = Tree( '(A:1,(B:1,(C:1,D:1):0.5):0.5)
 # Browse the tree from a specific leaf to the root
 node = t.search_nodes(name="C")[0]
 while node:
-    print node
+    print(node)
     node = node.up
 # --C
 #           /-C
--- a/examples/general/get_common_ancestor.py
+++ b/examples/general/get_common_ancestor.py
@@ -1,8 +1,8 @@
 from ete3 import Tree
 #Loads a tree
 tree = Tree( '((H:1,I:1):0.5, A:1, (B:1,(C:1,D:1):0.5):0.5);' )
-print "this is the original tree:"
-print tree
+print("this is the original tree:")
+print(tree)
 #                    /-H
 #          /--------|
 #         |          \-I
@@ -16,15 +16,15 @@ print tree
 #                              \-D
 # Finds the first common ancestor between B and C.
 ancestor = tree.get_common_ancestor("D", "C")
-print "The ancestor of C and D is:"
-print ancestor
+print("The ancestor of C and D is:")
+print(ancestor)
 #          /-C
 #---------|
 #          \-D
 # You can use more than two nodes in the search
 ancestor = tree.get_common_ancestor("B", "C", "D")
-print "The ancestor of B, C and D is:"
-print ancestor
+print("The ancestor of B, C and D is:")
+print(ancestor)
 #          /-B
 #---------|
 #         |          /-C
@@ -33,9 +33,9 @@ print ancestor
 # Finds the first sister branch of the ancestor node. Because
 # multifurcations are allowed, many sister branches are possible.
 sisters = ancestor.get_sisters()
-print "which has has", len(sisters), "sister nodes"
-print "and the first of such sister nodes like this:"
-print sisters[0]
+print("which has has", len(sisters), "sister nodes")
+print("and the first of such sister nodes like this:")
+print(sisters[0])
 #
 #          /-H
 #---------|
--- a/examples/general/get_distances_between_nodes.py
+++ b/examples/general/get_distances_between_nodes.py
@@ -7,7 +7,7 @@ nw = """(((A:0.1, B:0.01):0.001, C:0.000
 (((((D:0.00001,I:0):0,F:0):0,G:0):0,H:0):0,
 E:0.000001):0.0000001):2.0;"""
 t = Tree(nw)
-print t
+print(t)
 #                              /-A
 #                    /--------|
 #          /--------|          \-B
@@ -30,24 +30,24 @@ print t
 A = t&"A"
 C = t&"C"
 # Calculate distance from current node
-print "The distance between A and C is",  A.get_distance("C")
+print("The distance between A and C is",  A.get_distance("C"))
 # Calculate distance between two descendants of current node
-print "The distance between A and C is",  t.get_distance("A","C")
+print("The distance between A and C is",  t.get_distance("A","C"))
 # Calculate the toplogical distance (number of nodes in between)
-print "The number of nodes between A and D is ",  \
-    t.get_distance("A","D", topology_only=True)
+print("The number of nodes between A and D is ",  \
+    t.get_distance("A","D", topology_only=True))
 # Calculate the farthest node from E within the whole structure
 farthest, dist = (t&"E").get_farthest_node()
-print "The farthest node from E is", farthest.name, "with dist=", dist
+print("The farthest node from E is", farthest.name, "with dist=", dist)
 # Calculate the farthest node from E within the whole structure,
 # regarding the number of nodes in between as distance value
 # Note that the result is differnt.
 farthest, dist = (t&"E").get_farthest_node(topology_only=True)
-print "The farthest (topologically) node from E is", \
-    farthest.name, "with", dist, "nodes in between"
+print("The farthest (topologically) node from E is", \
+    farthest.name, "with", dist, "nodes in between")
 # Calculate farthest node from an internal node
 farthest, dist = t.get_farthest_node()
-print "The farthest node from root is", farthest.name, "with dist=", dist
+print("The farthest node from root is", farthest.name, "with dist=", dist)
 #
 # The program results in the following information:
 #
--- a/examples/general/get_midpoint_outgroup.py
+++ b/examples/general/get_midpoint_outgroup.py
@@ -2,7 +2,7 @@ from ete3 import Tree
 # generates a random tree
 t = Tree();
 t.populate(15);
-print t
+print(t)
 #
 #
 #                    /-qogjl
@@ -38,7 +38,7 @@ print t
 R = t.get_midpoint_outgroup()
 # and set it as tree outgroup
 t.set_outgroup(R)
-print t
+print(t)
 #                              /-opben
 #                             |
 #                    /--------|                    /-xoryn
--- a/examples/general/getting_leaves.py
+++ b/examples/general/getting_leaves.py
@@ -1,7 +1,7 @@
 from ete3 import Tree
 # Loads a basic tree
 t = Tree( '(A:0.2,(B:0.4,(C:1.1,D:0.45):0.5):0.1);' )
-print t
+print(t)
 #          /-A
 #---------|
 #         |          /-B
@@ -13,16 +13,16 @@ print t
 nleaves = 0
 for leaf in t.get_leaves():
     nleaves += 1
-print "This tree has", nleaves, "terminal nodes"
+print("This tree has", nleaves, "terminal nodes")
 # But, like this is much simpler :)
 nleaves = len(t)
-print "This tree has", nleaves, "terminal nodes [proper way: len(tree) ]"
+print("This tree has", nleaves, "terminal nodes [proper way: len(tree) ]")
 # Counts leaves within the tree
 ninternal = 0
 for node in t.get_descendants():
     if not node.is_leaf():
         ninternal +=1
-print "This tree has", ninternal,  "internal nodes"
+print("This tree has", ninternal,  "internal nodes")
 # Counts nodes with whose distance is higher than 0.3
 nnodes = 0
 for node in t.get_descendants():
@@ -30,4 +30,4 @@ for node in t.get_descendants():
         nnodes +=1
 # or, translated into a better pythonic
 nnodes = len([n for n in t.get_descendants() if n.dist>0.3])
-print "This tree has", nnodes,  "nodes with a branch length > 0.3"
+print("This tree has", nnodes,  "nodes with a branch length > 0.3")
--- a/examples/general/iterators.py
+++ b/examples/general/iterators.py
@@ -7,16 +7,16 @@ tree.populate(10000)
 t1 = time.time()
 for leaf in tree.iter_leaves():
     if "aw" in leaf.name:
-        print "found a match:", leaf.name,
+        print("found a match:", leaf.name, '\n')
         break
-print "Iterating: ellapsed time:", time.time()-t1
+print("Iterating: ellapsed time:", time.time()-t1)
 # This slower
 t1 = time.time()
 for leaf in tree.get_leaves():
     if "aw" in leaf.name:
-        print "found a match:", leaf.name,
+        print("found a match:", leaf.name, '\n')
         break
-print "Getting: ellapsed time:", time.time()-t1
+print("Getting: ellapsed time:", time.time()-t1)
 # Results in something like:
 # found a match: guoaw Iterating: ellapsed time: 0.00436091423035 secs
 # found a match: guoaw Getting: ellapsed time: 0.124316930771 secs
--- a/examples/general/label_nodes.py
+++ b/examples/general/label_nodes.py
@@ -1,16 +1,16 @@
 from ete3 import Tree
 tree = Tree( '(A:1,(B:1,(C:1,D:1):0.5):0.5);' )
 # Prints the name of every leaf under the tree root
-print "Leaf names:"
+print("Leaf names:")
 for leaf in tree.get_leaves():
-    print leaf.name
+    print(leaf.name)
 # Label nodes as terminal or internal. If internal, saves also the
 # number of leaves that it contains.
-print "Labeled tree:"
+print("Labeled tree:")
 for node in tree.get_descendants():
     if node.is_leaf():
         node.add_features(ntype="terminal")
     else:
         node.add_features(ntype="internal", size=len(node))
 # Gets the extended newick of the tree including new node features
-print tree.write(features=[])
+print(tree.write(features=[]))
--- a/examples/general/nhx_format.py
+++ b/examples/general/nhx_format.py
@@ -2,7 +2,7 @@ import random
 from ete3 import Tree
 # Creates a normal tree
 t = Tree('((H:0.3,I:0.1):0.5, A:1,(B:0.4,(C:0.5,(J:1.3,(F:1.2, D:0.1):0.5):0.5):0.5):0.5);')
-print t
+print(t)
 # Let's locate some nodes using the get common ancestor method
 ancestor=t.get_common_ancestor("J", "F", "C")
 # Let's label  leaf nodes
@@ -16,21 +16,21 @@ for leaf in t.traverse():
 matches = [leaf for leaf in ancestor.traverse() if leaf.dist>1.0]
 # And save this pre-computed information into the ancestor node
 ancestor.add_feature("long_branch_nodes", matches)
-print
-print "NHX notation including vowel and confidence attributes"
-print
-print t.write(features=["vowel", "confidence"])
-print
-print "NHX notation including all node's data"
-print
+print()
+print("NHX notation including vowel and confidence attributes")
+print()
+print(t.write(features=["vowel", "confidence"]))
+print()
+print("NHX notation including all node's data")
+print()
 # Note that when all features are requested, only those with values
 # equal to text-strings or numbers are considered. "long_branch_nodes"
 # is not included into the newick string.
-print t.write(features=[])
-print
-print "basic newick formats are still available"
-print
-print t.write(format=9, features=["vowel"])
+print(t.write(features=[]))
+print()
+print("basic newick formats are still available")
+print()
+print(t.write(format=9, features=["vowel"]))
 # You don't need to do anything speciall to read NHX notation. Just
 # specify the newick format and the NHX tags will be automatically
 # detected.
@@ -46,4 +46,4 @@ t = Tree(nw)
 # And access node's attributes.
 for n in t.traverse():
     if hasattr(n,"S"):
-        print n.name, n.S
+        print(n.name, n.S)
--- a/examples/general/prune_tree.py
+++ b/examples/general/prune_tree.py
@@ -1,8 +1,8 @@
 from ete3 import Tree
 # Let's create simple tree
 t = Tree('((((H,K),(F,I)G),E),((L,(N,Q)O),(P,S)));', format=1)
-print "Original tree looks like this:"
-print t
+print("Original tree looks like this:")
+print(t)
 #
 #                                        /-H
 #                              /--------|
@@ -25,8 +25,8 @@ print t
 #                              \-S
 # Prune the tree in order to keep only some leaf nodes.
 t.prune(["H","F","E","Q", "P"])
-print "Pruned tree"
-print t
+print("Pruned tree")
+print(t)
 #
 #                              /-F
 #                    /--------|
--- a/examples/general/remove_and_delete_nodes.py
+++ b/examples/general/remove_and_delete_nodes.py
@@ -1,11 +1,11 @@
 from ete3 import Tree
 # Loads a tree. Note that we use format 1 to read internal node names
 t = Tree('((((H,K)D,(F,I)G)B,E)A,((L,(N,Q)O)J,(P,S)M)C);', format=1)
-print "original tree looks like this:"
+print("original tree looks like this:")
 # This is an alternative way of using "print t". Thus we have a bit
 # more of control on how tree is printed. Here i print the tree
 # showing internal node names
-print t.get_ascii(show_internal=True)
+print(t.get_ascii(show_internal=True))
 #
 #                                        /-H
 #                              /D-------|
@@ -37,8 +37,8 @@ C = t.search_nodes(name="C")[0]
 removed_node = J.detach() # = C.remove_child(J)
 # if we know print the original tree, we will see how J partition is
 # no longer there.
-print "Tree after REMOVING the node J"
-print t.get_ascii(show_internal=True)
+print("Tree after REMOVING the node J")
+print(t.get_ascii(show_internal=True))
 #                                        /-H
 #                              /D-------|
 #                             |          \-K
@@ -56,8 +56,8 @@ print t.get_ascii(show_internal=True)
 # tree, and all its descendants will then hang from the next upper
 # node.
 G.delete()
-print "Tree after DELETING the node G"
-print t.get_ascii(show_internal=True)
+print("Tree after DELETING the node G")
+print(t.get_ascii(show_internal=True))
 #                                        /-H
 #                              /D-------|
 #                             |          \-K
--- a/examples/general/rooting_subtrees.py
+++ b/examples/general/rooting_subtrees.py
@@ -1,7 +1,7 @@
 from ete3 import Tree
 t = Tree('(((A,C),((H,F),(L,M))),((B,(J,K)),(E,D)));')
-print "Original tree:"
-print t
+print("Original tree:")
+print(t)
 #                              /-A
 #                    /--------|
 #                   |          \-C
@@ -29,8 +29,8 @@ node1 = t.get_common_ancestor("A","H")
 node2 = t.get_common_ancestor("B","D")
 node1.set_outgroup("H")
 node2.set_outgroup("E")
-print "Tree after rooting each node independently:"
-print t
+print("Tree after rooting each node independently:")
+print(t)
 #
 #                              /-F
 #                             |
--- a/examples/general/rooting_trees.py
+++ b/examples/general/rooting_trees.py
@@ -3,8 +3,8 @@ from ete3 import Tree
 # node. This usually means that no information is available about
 # which of nodes is more basal.
 t = Tree('(A,(H,F),(B,(E,D)));')
-print "Unrooted tree"
-print t
+print("Unrooted tree")
+print(t)
 #          /-A
 #         |
 #         |          /-H
@@ -21,8 +21,8 @@ print t
 # course, the definition of an outgroup will depend on user criteria.
 ancestor = t.get_common_ancestor("E","D")
 t.set_outgroup(ancestor)
-print "Tree rooted at E and D's ancestor is more basal that the others."
-print t
+print("Tree rooted at E and D's ancestor is more basal that the others.")
+print(t)
 #
 #                    /-B
 #          /--------|
@@ -39,8 +39,8 @@ print t
 # Note that setting a different outgroup, a different interpretation
 # of the tree is possible
 t.set_outgroup( t&"A" )
-print "Tree rooted at a terminal node"
-print t
+print("Tree rooted at a terminal node")
+print(t)
 #                              /-H
 #                    /--------|
 #                   |          \-F
--- a/examples/general/search_nodes.py
+++ b/examples/general/search_nodes.py
@@ -1,7 +1,7 @@
 from ete3 import Tree
 #Loads a tree
 t = Tree( '((H:1,I:1):0.5, A:1, (B:1,(C:1,D:1):0.5):0.5);' )
-print t
+print(t)
 #                    /-H
 #          /--------|
 #         |          \-I
@@ -17,4 +17,4 @@ print t
 D = t.search_nodes(name="D")
 # I get all nodes with distance=0.5
 nodes = t.search_nodes(dist=0.5)
-print len(nodes), "nodes have distance=0.5"
+print(len(nodes), "nodes have distance=0.5")
--- a/examples/general/tree_basis.py
+++ b/examples/general/tree_basis.py
@@ -6,16 +6,16 @@ A = t.add_child(name="A")
 B = t.add_child(name="B")
 C = A.add_child(name="C")
 D = A.add_child(name="D")
-print t
+print(t)
 #                    /-C
 #          /--------|
 #---------|          \-D
 #         |
 #          \-B
-print 'is "t" the root?', t.is_root() # True
-print 'is "A" a terminal node?', A.is_leaf() # False
-print 'is "B" a terminal node?', B.is_leaf() # True
-print 'B.get_tree_root() is "t"?', B.get_tree_root() is t # True
-print 'Number of leaves in tree:', len(t) # returns number of leaves under node (3)
-print 'is C in tree?', C in t # Returns true
-print "All leaf names in tree:", [node.name for node in t]
+print('is "t" the root?', t.is_root()) # True
+print('is "A" a terminal node?', A.is_leaf()) # False
+print('is "B" a terminal node?', B.is_leaf()) # True
+print('B.get_tree_root() is "t"?', B.get_tree_root() is t) # True
+print('Number of leaves in tree:', len(t)) # returns number of leaves under node (3)
+print('is C in tree?', C in t) # Returns true
+print("All leaf names in tree:", [node.name for node in t])
--- a/examples/general/tree_traverse.py
+++ b/examples/general/tree_traverse.py
@@ -2,7 +2,7 @@ from ete3 import Tree
 t = Tree( '(A:1,(B:1,(C:1,D:1):0.5):0.5);' )
 # Visit nodes in preorder (this is the default strategy)
 for n in t.traverse():
-    print n
+    print(n)
 # It Will visit the nodes in the following order:
 #           /-A
 # ---------|
@@ -25,7 +25,7 @@ for n in t.traverse():
 # --D
 # Visit nodes in postorder
 for n in t.traverse("postorder"):
-    print n
+    print(n)
 # It Will visit the nodes in the following order:
 # --A
 # --B
--- a/examples/general/write_newick.py
+++ b/examples/general/write_newick.py
@@ -3,6 +3,6 @@ from ete3 import Tree
 t = Tree('(A:1,(B:1,(E:1,D:1)Internal_1:0.5)Internal_2:0.5)Root;', format=1)
 # And prints its newick representation omiting all the information but
 # the tree topology
-print t.write(format=100) # (,(,(,)));
+print(t.write(format=100)) # (,(,(,)));
 # We can also write into a file
 t.write(format=100, outfile="/tmp/tree.new")
--- a/examples/nexml/nexml_annotated_trees.py
+++ b/examples/nexml/nexml_annotated_trees.py
@@ -13,12 +13,12 @@ trees = tree_collection.tree
 # For each loaded tree, prints its structure and some of its
 # meta-properties
 for t in trees:
-    print t
-    print
-    print "Leaf node meta information:\n"
-    print
+    print(t)
+    print()
+    print("Leaf node meta information:\n")
+    print()
     for meta in  t.children[0].nexml_node.meta:
-        print  meta.property, ":", (meta.content)
+        print(meta.property, ":", (meta.content))
 
 
 # Output
--- a/examples/nexml/nexml_parser.py
+++ b/examples/nexml/nexml_parser.py
@@ -7,10 +7,10 @@ nexml_project.build_from_file("trees.xml
 
 # All XML elements are within the project instance.
 # exist in each element to access their attributes.
-print "Loaded Taxa:"
+print("Loaded Taxa:")
 for taxa in  nexml_project.get_otus():
     for otu in taxa.get_otu():
-        print "OTU:", otu.id
+        print("OTU:", otu.id)
 
 # Extracts all the collection of trees in the project
 tree_collections = nexml_project.get_trees()
@@ -21,10 +21,10 @@ collection_1 = tree_collections[0]
 for tree in  collection_1.get_tree():
     # trees contain all the nexml information in their "nexml_node",
     # "nexml_tree", and "nexml_edge" attributes.
-    print "Tree id", tree.nexml_tree.id
-    print tree
+    print("Tree id", tree.nexml_tree.id)
+    print(tree)
     for node in tree.traverse():
-        print "node", node.nexml_node.id, "is associated with", node.nexml_node.otu, "OTU"
+        print("node", node.nexml_node.id, "is associated with", node.nexml_node.otu, "OTU")
 
 
 # Output:
--- a/examples/phylogenies/dating_evolutionary_events.py
+++ b/examples/phylogenies/dating_evolutionary_events.py
@@ -8,8 +8,8 @@ nw = """
 ,Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));
 """
 t = PhyloTree(nw)
-print "Original tree:",
-print t
+print("Original tree:\n")
+print(t)
 #
 #             /-Dme_001
 #   /--------|
@@ -59,11 +59,11 @@ age2name = {
 }
 event1= t.get_common_ancestor("Hsa_001", "Hsa_004")
 event2=t.get_common_ancestor("Hsa_001", "Hsa_002")
-print
-print "The duplication event leading to the human sequences Hsa_001 and "+\
-    "Hsa_004 is dated at: ", age2name[event1.get_age(species2age)]
-print "The duplication event leading to the human sequences Hsa_001 and "+\
-    "Hsa_002 is dated at: ", age2name[event2.get_age(species2age)]
+print()
+print("The duplication event leading to the human sequences Hsa_001 and "+\
+    "Hsa_004 is dated at: ", age2name[event1.get_age(species2age)])
+print("The duplication event leading to the human sequences Hsa_001 and "+\
+    "Hsa_002 is dated at: ", age2name[event2.get_age(species2age)])
 # The duplication event leading to the human sequences Hsa_001 and Hsa_004
 # is dated at:  primates
 #
--- a/examples/phylogenies/link_sequences_to_phylogenies.py
+++ b/examples/phylogenies/link_sequences_to_phylogenies.py
@@ -25,9 +25,9 @@ iphylip_txt = """
 t = PhyloTree("(((seqA,seqB),seqC),seqD);", alignment=fasta_txt, alg_format="fasta")
 
 #We can now access the sequence of every leaf node
-print "These are the nodes and its sequences:"
+print("These are the nodes and its sequences:")
 for leaf in t.iter_leaves():
-    print leaf.name, leaf.sequence
+    print(leaf.name, leaf.sequence)
 #seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
 #seqC MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
 #seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
@@ -36,9 +36,9 @@ for leaf in t.iter_leaves():
 # The associated alignment can be changed at any time
 t.link_to_alignment(alignment=iphylip_txt, alg_format="iphylip")
 # Let's check that sequences have changed
-print "These are the nodes and its re-linked sequences:"
+print("These are the nodes and its re-linked sequences:")
 for leaf in t.iter_leaves():
-    print leaf.name, leaf.sequence
+    print(leaf.name, leaf.sequence)
 #seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAHQ----------FMALTNVSH
 #seqC MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAHQFMALTNVSH----------
 #seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMALTNVSH
@@ -46,7 +46,7 @@ for leaf in t.iter_leaves():
 #
 # The sequence attribute is considered as node feature, so you can
 # even include sequences in your extended newick format!
-print t.write(features=["sequence"], format=9)
+print(t.write(features=["sequence"], format=9))
 #
 #
 # (((seqA[&&NHX:sequence=MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQF
@@ -57,8 +57,8 @@ print t.write(features=["sequence"], for
 #
 # And yes, you can save this newick text and reload it into a PhyloTree instance.
 sametree = PhyloTree(t.write(features=["sequence"]))
-print "Recovered tree with sequence features:"
-print sametree
+print("Recovered tree with sequence features:")
+print(sametree)
 #
 #                              /-seqA
 #                    /--------|
@@ -68,5 +68,5 @@ print sametree
 #         |
 #          \-seqD
 #
-print "seqA sequence:", (t&"seqA").sequence
+print("seqA sequence:", (t&"seqA").sequence)
 # MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMALTNVSH
--- a/examples/phylogenies/orthology_and_paralogy_prediction.py
+++ b/examples/phylogenies/orthology_and_paralogy_prediction.py
@@ -5,7 +5,7 @@ nw = """
 (Ptr_002,(Hsa_002,Mmu_002))));
 """
 t = PhyloTree(nw)
-print t
+print(t)
 #                    /-Dme_001
 #          /--------|
 #         |          \-Dme_002
@@ -33,22 +33,22 @@ human_seq = matches[0]
 # Obtains its evolutionary events
 events = human_seq.get_my_evol_events()
 # Print its orthology and paralogy relationships
-print "Events detected that involve Hsa_001:"
+print("Events detected that involve Hsa_001:")
 for ev in events:
     if ev.etype == "S":
-        print '   ORTHOLOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs)
+        print('   ORTHOLOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs))
     elif ev.etype == "D":
-        print '   PARALOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs)
+        print('   PARALOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs))
 
 # Alternatively, you can scan the whole tree topology
 events = t.get_descendant_evol_events()
 # Print its orthology and paralogy relationships
-print "Events detected from the root of the tree"
+print("Events detected from the root of the tree")
 for ev in events:
     if ev.etype == "S":
-        print '   ORTHOLOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs)
+        print('   ORTHOLOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs))
     elif ev.etype == "D":
-        print '   PARALOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs)
+        print('   PARALOGY RELATIONSHIP:', ','.join(ev.in_seqs), "<====>", ','.join(ev.out_seqs))
 
 # If we are only interested in the orthology and paralogy relationship
 # among a given set of species, we can filter the list of sequences
@@ -56,16 +56,16 @@ for ev in events:
 # fseqs is a function that, given a list of sequences, returns only
 # those from human and mouse
 fseqs = lambda slist: [s for s in slist if s.startswith("Hsa") or s.startswith("Mms")]
-print "Paralogy relationships among human and mouse"
+print("Paralogy relationships among human and mouse")
 for ev in events:
     if ev.etype == "D":
         # Prints paralogy relationships considering only human and
         # mouse. Some duplication event may not involve such species,
         # so they will be empty
-        print '   PARALOGY RELATIONSHIP:', \
+        print('   PARALOGY RELATIONSHIP:', \
             ','.join(fseqs(ev.in_seqs)), \
             "<====>",\
-            ','.join(fseqs(ev.out_seqs))
+            ','.join(fseqs(ev.out_seqs)))
 
 # Note that besides the list of events returned, the detection
 # algorithm has labeled the tree nodes according with the
--- a/examples/phylogenies/species_aware_phylogenies.py
+++ b/examples/phylogenies/species_aware_phylogenies.py
@@ -14,9 +14,9 @@ t = PhyloTree("(((Hsa_001,Ptr_001),(Cfa_
 #                    \-Dme_002
 #
 # Prints current leaf names and species codes
-print "Deafult mode:"
+print("Deafult mode:")
 for n in t.get_leaves():
-    print "node:", n.name, "Species name:", n.species
+    print("node:", n.name, "Species name:", n.species)
 # node: Dme_001 Species name: Dme
 # node: Dme_002 Species name: Dme
 # node: Hsa_001 Species name: Hsa
@@ -42,9 +42,9 @@ def get_species_name(node_name_string):
     return code2name[spcode]
 # Now, let's ask the tree to use our custom species naming function
 t.set_species_naming_function(get_species_name)
-print "Custom mode:"
+print("Custom mode:")
 for n in t.get_leaves():
-    print "node:", n.name, "Species name:", n.species
+    print("node:", n.name, "Species name:", n.species)
 # node: Dme_001 Species name: Drosophila melanogaster
 # node: Dme_002 Species name: Drosophila melanogaster
 # node: Hsa_001 Species name: Homo sapiens
@@ -63,9 +63,9 @@ mynewick = """
 (Dme_001[&&NHX:species=Fly],Dme_002[&&NHX:species=Fly]));
 """
 t = PhyloTree(mynewick, sp_naming_function=None)
-print "Disabled mode (manual set):"
+print("Disabled mode (manual set):")
 for n in t.get_leaves():
-    print "node:", n.name, "Species name:", n.species
+    print("node:", n.name, "Species name:", n.species)
 # node: Dme_001 Species name: Fly
 # node: Dme_002 Species name: Fly
 # node: Hsa_001 Species name: Human
@@ -76,8 +76,8 @@ for n in t.get_leaves():
 # Of course, once this info is available you can query any internal
 # node for species covered.
 human_mouse_ancestor = t.get_common_ancestor("Hsa_001", "Mms_001")
-print "These are the species under the common ancestor of Human & Mouse"
-print '\n'.join( human_mouse_ancestor.get_species() )
+print("These are the species under the common ancestor of Human & Mouse")
+print('\n'.join( human_mouse_ancestor.get_species() ))
 # Mouse
 # Chimp
 # Dog
--- a/examples/phylogenies/tree_reconciliation.py
+++ b/examples/phylogenies/tree_reconciliation.py
@@ -7,7 +7,7 @@ gene_tree_nw = '((Dme_001,Dme_002),(((Cf
 species_tree_nw = "((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
 genetree = PhyloTree(gene_tree_nw)
 sptree = PhyloTree(species_tree_nw)
-print genetree
+print(genetree)
 #                    /-Dme_001
 #          /--------|
 #         |          \-Dme_002
@@ -32,14 +32,14 @@ print genetree
 recon_tree, events = genetree.reconcile(sptree)
 # a new "reconcilied tree" is returned. As well as the list of
 # inferred events.
-print "Orthology and Paralogy relationships:"
+print("Orthology and Paralogy relationships:")
 for ev in events:
     if ev.etype == "S":
-        print 'ORTHOLOGY RELATIONSHIP:', ','.join(ev.inparalogs), "<====>", ','.join(ev.orthologs)
+        print('ORTHOLOGY RELATIONSHIP:', ','.join(ev.inparalogs), "<====>", ','.join(ev.orthologs))
     elif ev.etype == "D":
-        print 'PARALOGY RELATIONSHIP:', ','.join(ev.inparalogs), "<====>", ','.join(ev.outparalogs)
+        print('PARALOGY RELATIONSHIP:', ','.join(ev.inparalogs), "<====>", ','.join(ev.outparalogs))
 # And we can explore the resulting reconciled tree
-print recon_tree
+print(recon_tree)
 # You will notice how the reconcilied tree is the same as the gene
 # tree with some added branches. They are inferred gene losses.
 #
--- a/examples/phyloxml/phyloxml_from_scratch.py
+++ b/examples/phyloxml/phyloxml_from_scratch.py
@@ -9,7 +9,7 @@ phylo.phyloxml_phylogeny.set_name("test_
 # Add the tree to the phyloxml project
 project.add_phylogeny(phylo)
 
-print project.get_phylogeny()[0]
+print(project.get_phylogeny()[0])
 
 #          /-iajom
 #     /---|
--- a/examples/phyloxml/phyloxml_parser.py
+++ b/examples/phyloxml/phyloxml_parser.py
@@ -4,13 +4,13 @@ project.build_from_file("apaf.xml")
 
 # Each tree contains the same methods as a PhyloTree object
 for tree in project.get_phylogeny():
-    print tree
+    print(tree)
     # you can even use rendering options
     tree.show()
     # PhyloXML features are stored in the phyloxml_clade attribute
     for node in tree:
-        print "Node name:", node.name
+        print("Node name:", node.name)
         for seq in node.phyloxml_clade.get_sequence():
             for domain in seq.domain_architecture.get_domain():
                 domain_data = [domain.valueOf_, domain.get_from(), domain.get_to()]
-                print "  Domain:", '\t'.join(map(str, domain_data))
+                print("  Domain:", '\t'.join(map(str, domain_data)))
--- a/examples/treeview/barchart_and_piechart_faces.py
+++ b/examples/treeview/barchart_and_piechart_faces.py
@@ -2,7 +2,7 @@ import sys
 import random
 from ete3 import Tree, faces, TreeStyle, COLOR_SCHEMES
 
-schema_names = COLOR_SCHEMES.keys()
+schema_names = list(COLOR_SCHEMES.keys())
 
 def layout(node):
     if node.is_leaf():
--- a/examples/treeview/floating_piecharts.py
+++ b/examples/treeview/floating_piecharts.py
@@ -2,7 +2,7 @@ import sys
 import random
 from ete3 import Tree, faces, TreeStyle, COLOR_SCHEMES
 
-schema_names = COLOR_SCHEMES.keys()
+schema_names = list(COLOR_SCHEMES.keys())
 
 def layout(node):
     if not node.is_leaf():
--- a/examples/treeview/item_faces.py
+++ b/examples/treeview/item_faces.py
@@ -48,8 +48,7 @@ def random_color(h=None):
     return _hls2hex(h, l, s)
 
 def _hls2hex(h, l, s):
-    return '#%02x%02x%02x' %tuple(map(lambda x: int(x*255),
-                                      colorsys.hls_to_rgb(h, l, s)))
+    return '#%02x%02x%02x' %tuple([int(x*255) for x in colorsys.hls_to_rgb(h, l, s)])
 
 def ugly_name_face(node, *args, **kargs):
     """ This is my item generator. It must receive a node object, and
--- a/examples/treeview/new_seq_face.py
+++ b/examples/treeview/new_seq_face.py
@@ -297,9 +297,9 @@ if __name__ == "__main__":
 
     # Show very large algs
     tree = PhyloTree('(Orangutan,Human,Chimp);')
-    tree.link_to_alignment(">Human\n"       + ''.join([_aabgcolors.keys()[int(random() * len (_aabgcolors))] for _ in xrange (5000)]) + \
-                           "\n>Chimp\n"     + ''.join([_aabgcolors.keys()[int(random() * len (_aabgcolors))] for _ in xrange (5000)]) + \
-                           "\n>Orangutan\n" + ''.join([_aabgcolors.keys()[int(random() * len (_aabgcolors))] for _ in xrange (5000)]))
+    tree.link_to_alignment(">Human\n"       + ''.join([list(_aabgcolors.keys())[int(random() * len (_aabgcolors))] for _ in range (5000)]) + \
+                           "\n>Chimp\n"     + ''.join([list(_aabgcolors.keys())[int(random() * len (_aabgcolors))] for _ in range (5000)]) + \
+                           "\n>Orangutan\n" + ''.join([list(_aabgcolors.keys())[int(random() * len (_aabgcolors))] for _ in range (5000)]))
     tree.dist = 0
     ts = TreeStyle()
     ts.title.add_face(TextFace("better not set interactivity if alg is very large", fsize=15), column=0)
--- a/examples/treeview/random_draw.py
+++ b/examples/treeview/random_draw.py
@@ -28,7 +28,7 @@ def leaf_name(node):
 
 def aligned_faces(node):
     if node.is_leaf():
-        for i in xrange(3):
+        for i in range(3):
             F = faces.TextFace("ABCDEFGHIJK"[0:random.randint(1,11)])
             F.border.width = 1
             F.border.line_style = 1